首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melt inclusions in olivine and plagioclase phenocrysts from rocks (magnesian basalt, basaltic andesite, andesite, ignimbrite, and dacite) of various age from the Gorely volcanic center, southern Kamchatka, were studying by means of their homogenization and by analyzing the glasses in 100 melt inclusions on an electron microprobe and 24 inclusions on an ion probe. The SiO2 concentrations of the melts vary within a broad range of 45–74 wt %, as also are the concentrations of other major components. According to their SiO2, Na2O, K2O, TiO2, and P2O5 concentrations, the melts are classified into seven groups. The mafic melts (45–53 wt % SiO2) comprise the following varieties: potassic (on average 4.2 wt % K2O, 1.7 wt % Na2O, 1.0 wt % TiO2, and 0.20 wt % P2O5), sodic (3.2% Na2O, 1.1% K2O, 1.1% TiO2, and 0.40% P2O5), and titaniferous with high P2O5 concentrations (2.2% TiO2, 1.1% P2O5, 3.8% Na2O, and 3.0% K2O). The melts of intermediate composition (53–64% SiO2) also include potassic (5.6% K2O, 3.4% Na2O, 1.0% TiO2, and 0.4% P2O5) and sodic (4.3% Na2O, 2.8% K2O, 1.3% TiO2, and 0.4% P2O5) varieties. The acid melts (64–74% SiO2) are either potassic (4.5% K2O, 3.6% Na2O, 0.7% TiO2, and 0.15% P2O5) or sodic (4.5% Na2O, 3.1% K2O, 0.7% TiO2, and 0.13% P2O5). A distinctive feature of the Gorely volcanic center is the pervasive occurrence of K-rich compositions throughout the whole compositional range (silicity) of the melts. Melt inclusions of various types were sometimes found not only in a single sample but also in the same phenocrysts. The sodic and potassic types of the melts contain different Cl and F concentrations: the sodic melts are richer in Cl, whereas the potassic melts are enriched in F. We are the first to discover potassic melts with very high F concentrations (up to 2.7 wt %, 1.19 wt % on average, 17 analyses) in the Kuriles and Kamchatka. The average F concentration in the sodic melts is 0.16 wt % (37 analyses). The melts are distinguished for their richness in various groups of trace elements: LILE, REE (particularly HREE), and HFSE (except Nb). All of the melts share certain geochemical features. The concentrations of elements systematically increase from the mafic to acid melts (except only for the Sr and Eu concentrations, because of active plagioclase fractionation, and Ti, an element contained in ore minerals). The paper presents a review of literature data on volcanic rocks in the Kurile-Kamchatka area in which melt inclusions with high K2O concentrations (K2O/Na2O > 1) were found. K-rich melts are proved to be extremely widespread in the area and were found on such volcanoes as Avachinskii, Bezymyannyi, Bol’shoi Semyachek, Dikii Greben’, Karymskii, Kekuknaiskii, Kudryavyi, and Shiveluch and in the Valaginskii and Tumrok Ranges.  相似文献   

2.
Using various methods of melt inclusion investigation, including electron and ion microprobe techniques, we estimated the composition, evolution, and formation conditions of melts producing the trachydacites and pantellerites of the Late Paleozoic bimodal volcanic association of Dzarta-Khuduk, Central Mongolia. Primary crystalline and melt inclusions were detected in anorthoclase from trachydacites and quartz from pantellerites and pantelleritic tuffs. Among the crystalline inclusions, we identified hedenbergite, fluorapatite, and pyrrhotite in the trachydacites and F-arfvedsonite, fluorite, ilmenite, and the rare REE diorthosilicate chevkinite in the pantellerites. Melt inclusions in anorthoclase from the trachydacites are composed of glass, a gas phase, and daughter minerals (F-arfvedsonite, fluorite, villiaumite, and anorthoclase rim on the inclusion wall). Melt inclusions in quartz from the pantellerites are composed of glass, a gas phase, and a fine-grained salt aggregate consisting of Li, Na, and Ca fluorides (griceite, villiaumite, and fluorite). Melt inclusions in quartz crystalloclasts from the pantelleritic tuffs are composed of homogeneous silicate glasses. The phenocrysts of the trachydacites and pantellerites crystallized at temperatures of 1060–1000°C. During thermometric experiments with quartz-hosted melt inclusions from the pantellerites, the formation of immiscible silicate and salt (fluoride) melts was observed at a temperature of 800°C. Homogeneous melt inclusions in anorthoclase from the trachydacites have both trachydacite and rhyolite compositions (wt %): 68–70 SiO2, 12–13 Al2O3, 0.34–0.74 TiO2, 5–7 FeO, 0.4–0.9 CaO, and 9–12 Na2O + K2O. The agpaitic index ranges from 0.92 to 1.24. The glasses of homogenized melt inclusions in quartz from the pantellerites and pantelleritic tuffs have rhyolitic compositions. Compared with the homogeneous glasses trapped in anorthoclase of the trachydacites, quartz-hosted inclusions from the pantellerites show higher SiO2 (72–78 wt %) and lower Al2O3 contents (7.8–10.0 wt %). They also contain 0.14–0.26 wt % TiO2, 2.5–4.9 wt % FeO, 9–11 wt % Na2O + K2O, and 0.9–0.15 wt % CaO and show an agpaitic index of 1.2–2.05. Homogeneous melt inclusions in quartz from the pantelleritic tuffs contain 69–72 wt % SiO2. The contents of other major components, including TiO2, Al2O3, FeO, and CaO, are close to those in the homogeneous glasses of quartzhosted melt inclusions in the pantellerites. The contents of Na2O + K2O are 4–10 wt %, and the agpaitic index is 1.0–1.6. The glasses of melt inclusions from each rock group show distinctive volatile compositions. The H2O content is up to 0.08 wt % in anorthoclase of the trachydacites, 0.4–1.4 wt % in quartz of the pantellerites, and up to 5 wt % in quartz of the pantelleritic tuffs. The content of F in the glasses of melt inclusions in the phenocrysts of the trachydacites is no higher than 0.67 wt %, and up to 1.4–2.8 wt % in quartz from the pantellerites. The Cl content is up to 0.2 wt % in the glasses of melt inclusions in the minerals of the trachydacites and up to 0.5 wt % in the glasses of quartz-hosted melt inclusions from the pantellerites. The investigation of trace elements in the homogenized glasses of melt inclusions in minerals showed that the trachydacites and pantellerites were formed from strongly evolved rare-metal alkaline silicate melts with high contents of Li, Zr, Rb, Y, Hf, Th, U, and REE. The analysis of the composition of homogeneous melt inclusions in the minerals of the above rocks allowed us to distinguish magmatic processes resulting in the enrichment of these rocks in trace and rare earth elements. The most important processes are the crystallization differentiation and immiscible separation of silicate and fluoride salt melts. It was also shown that all the melts studied evolved in spatially separated magma chambers. This caused the differences in the character of melt evolution between the trachydacites and pantellerites. During the final stages of differentiation, when the magmatic system was saturated with respect to ore elements, Na-Ca fluoride melts were separated and extracted considerable amounts of Li.  相似文献   

3.
Melt inclusions were examined in phenocrysts in basalt, andesite, dacite, and rhyodacite from the Karymskii volcanic center in Kamchatka and dacite form Golovnina volcano in Kunashir Island, Kuriles. The inclusions were examined by homogenization and by analyzing glasses in more than 80 inclusions on an electron microscope and ion microprobe. The SiO2 concentrations in the melt inclusions in plagioclase phenocrysts from basalts from the Karymskii volcanic center vary from 47.4 to 57.1 wt %, these values for inclusions in plagioclase phenocrysts from andesites are 55.7–67.1 wt %, in plagioclase phenocrysts from the dacites and rhyodacites are 65.9–73.1 wt %, and those in quartz in the rhyodacites are 72.2–75.7 wt %. The SiO2 concentrations in melt inclusions in quartz from dacites from Golovnina volcano range from 70.2 to 77.0 wt %. The basaltic melts are characterized by usual concentrations of major components (wt %): TiO2 = 0.7–1.3, FeO = 6.8–11.4, MgO = 2.3–6.1, CaO = 6.7–10.8, and K2O = 0.4–1.7; but these rocks are notably enriched in Na2O (2.9–7.4 wt % at an average of 5.1 wt %, with the highest Na2O concentration detected in the most basic melts: SiO2 = 47.4–52.0 wt %. The concentrations of volatiles in the basic melts are 1.6 wt % for H2O, 0.14 wt % for S, 0.09 wt % for Cl, and 50 ppm for F. The andesite melts are characterized by high concentrations (wt %) of FeO (6.5 on average), CaO (5.2), and Cl (0.26) at usual concentrations of Na2O (4.5), K2O (2.1), and S (0.07). High water concentrations were determined in the dacite and rhyodacite melts: from 0.9 to 7.3 wt % (average of 15 analyses equals 4.5 wt %). The Cl concentration in these melts is 0.15 wt %, and those of F and S are 0.06 and 0.01 wt %, respectively. Melt inclusions in quartz from the dacites of Golovnina volcano are also rich in water: they contain from 5.0 to 6.7 wt % (average 5.6 wt %). The comparison of melt compositions from the Karymskii volcanic center and previously studied melts from Bezymyannyi and Shiveluch volcanoes revealed their significant differences. The former are more basic, are enriched in Ti, Fe, Mg, Ca, Na, and P but significantly depleted in K. The melts of the Karymskii volcanic center are most probably less differentiated than the melts of Bezymyannyi and Shiveluch volcanoes. The concentrations of water and 20 trace elements were measured in the glasses of 22 melt inclusions in plagioclase and quartz from our samples. Unusually high values were obtained for Li concentrations (along with high Na concentrations) in the basaltic melts from the Karymskii volcanic center: from 118 to 1750 ppm, whereas the dacite and rhyolite melts contain 25 ppm Li on average. The rhyolite melts of Golovnina volcano are much poorer in Li: 1.4 ppm on average. The melts of the Karymskii volcanic center are characterized by relative minima at Nb and Ti and maxima at B and K, as is typical of arc magmas.  相似文献   

4.
I. A. Andreeva 《Petrology》2016,24(5):462-476
Melt inclusions were studied by various methods, including electron and ion microprobe analysis, to determine the compositions of melts and mechanisms of formation of rare-metal peralkaline granites of the Khaldzan Buregtey massif in Mongolia. Primary crystalline and coexisting melt inclusions were found in quartz from the rare-metal granites of intrusive phase V. Among the crystalline inclusions, we identified potassium feldspar, albite, tuhualite, titanite, fluorite, and diverse rare-metal phases, including minerals of zirconium (zircon and gittinsite), niobium (pyrochlore), and rare earth elements (parisite). The observed crystalline inclusions reproduce almost the whole suite of major and accessory minerals of the rare-metal granites, which supports the possibility of their crystallization from a magmatic melt. Melt inclusions in quartz from these rocks are completely crystallized. Their daughter mineral assemblage includes quartz, microcline, aegirine, arfvedsonite, polylithionite, a zirconosilicate, pyrochlore, and a rare-earth fluorocarbonate. The melt inclusions were homogenized in an internally heated gas vessel at a temperature of 850°C and a pressure of 3 kbar. After the experiments, many inclusions were homogeneous and consisted of silicate glass. In addition to silicate glass, some inclusions contained tiny quench zircon crystals confined to the boundary of inclusions, which indicates that the melts were saturated in zircon. In a few inclusions, glass coexisted with a CO2 phase. This allowed us to estimate the content of CO2 in the inclusion as 1.5 wt %. The composition of glasses from the homogeneous melt inclusions is similar to the composition of the rare-metal granites, in particular, with respect to SiO2 (68–74 wt %), TiO2 (0.5–0.9 wt %), FeO (2.2–4.6 wt %), MgO (0.02 wt %), and Na2O + K2O (up to 8.5 wt %). On the other hand, the glasses of melt inclusions appeared to be strongly depleted compared with the rocks in CaO (0.22 and 4 wt %, respectively) and Al2O3 (5.5–7.0 and 9.6 wt %, respectively). The agpaitic index is 1.1–1.7. The melts contain up to 3 wt % H2O and 2–4 wt % F. The trace element analysis of glasses from homogenized melt inclusions in quartz showed that the rare-metal granites were formed from extensively evolved rare-metal alkaline melts with high contents of Zr, Nb, Th, U, Ta, Hf, Rb, Pb, Y, and REE, which reflects the metallogenic signature of the Khaldzan Buregtey deposit. The development of unique rare metal Zr–Nb–REE mineralization in these rocks is related to the prolonged crystallization differentiation of melts and assimilation of enclosing carbonate rocks.  相似文献   

5.
Melt and fluid inclusions were investigated in six quartz phenocryst samples from the igneous rocks of the extrusive (ignimbrites and rhyolites) and subvolcanic (granite porphyries) facies of the Lashkerek Depression in the Kurama mining district, Middle Tien Shan. The method of inclusion homogenization was used, and glasses from more than 40 inclusions were analyzed on electron and ion microprobes. The chemical characteristics of these inclusions are typical of silicic magmatic melts. The average composition is the following (wt %): 72.4 SiO2, 0.06 TiO2, 13.3 Al2O3, 0.95 FeO, 0.03 MnO, 0.01 MgO, 0.46 CaO, 3.33 Na2O, 5.16K2O, 0.32 F, and 0.21 Cl. Potassium strongly prevails over sodium in all of the inclusions (K2O/Na2O averages 1.60). The average total of components in melt inclusions from five samples is 95.3 wt %, which indicates a possible average water content in the melt of no less than 3–4 wt %. Water contents of 2.0 wt % and 6.6 wt % were determined in melt inclusions from two samples using an ion microprobe. The analyses of ore elements in the melt inclusions revealed high contents of Sn (up to 970 ppm), Th (19–62 ppm, 47 ppm on average), and U (9–26 ppm, 18 ppm on average), but very low Eu contents (0.01 ppm). Melt inclusions of two different compositions were detected in quartz from a granite porphyry sample: silicate and chloride, the latter being more abundant. In addition to Na and K chlorides, the salt inclusions usually contain one or several anisotropic crystals and an opaque phase. The homogenization temperatures of the salt inclusions are rather high, from 680 to 820°C. In addition to silicate inclusions with homogenization temperatures of 820–850°C, a primary fluid inclusion of aqueous solution with a concentration of 3.7 wt % NaCl eq. and a very high density of 0.93 g/cm3 was found in quartz from the ignimbrite. High fluid pressure values of 6.5–8.3 kbar were calculated for the temperature of quartz formation. These estimates are comparable with values obtained by us previously for other regions of the world: 2.6–4.3 kbar for Italy, 3.7 kbar for Mongolia, 3.3–8.7 kbar for central Slovakia, and 3.3–9.6 kbar for eastern Slovakia. Unusual melt inclusions were investigated in quartz from another ignimbrite sample. In addition to a gas phase and transparent glass, they contain spherical Feoxide globules (81.2 wt % FeO) with high content of SiO2 (9.9 wt %). The globules were dissolved in the silicate melt within a narrow temperature range of 1050–1100°C, and the complete homogenization of the inclusions was observed at temperatures of 1140°C or higher. The combined analysis of the results of the investigation of these inclusions allowed us to conclude that immiscible liquids were formed in the high-temperature silicic magma with the separation of iron oxide-dominated droplets.  相似文献   

6.
Inclusions of mineral-forming environments in apatite-containing ijolites and magnetite–phlogopite–apatite ores in carbonatites were studied to elucidate the genesis of apatite mineralization in the Guli alkaline ultramafic carbonatite massif. Primary inclusions of carbonate–salt and carbonate melts have been discovered and studied. The carbonate–salt melt inclusions are of alkaline high-Ca composition and are enriched in P, Sr, SO3, and F (wt.%): CaO—30–40, Na2O—5–12, K2O—2–4, P2O5—1–3, SO3—1.5–3, and SrO—1–3. They also contain minor MgO, FeO, BaO, and SiO2 (tenths and hundredths of percent). The homogenization temperature of these inclusions is 850–970 °C. The carbonate inclusions contain predominant CaO (54–67 wt.%) and minor MgO, FeO, SrO, Na2O, and P2O5 (tenths of percent). Their homogenization temperature is 840–860 °C. Similar primary carbonate–salt and carbonate inclusions were found in garnet, and secondary ones were detected in silicate minerals (clinopyroxene and nepheline) of ijolites. Clinopyroxenes of ijolites also contain primary inclusions of alkaline ultramafic high-Ca melts similar in composition to melilitite-melanephelinites highly enriched in P, SO3, and CO2 (wt.%): SiO2—41–46, Al2O3—8–16, FeO—2–8, MgO—3–6, CaO—12–20, Na2O—2–9, K2O—1–6, P2O5—0.4–2.1, SO3—0.2–2.3, and Cl—0.02–0.35. According to the obtained data, apatite of the magnetite–phlogopite–apatite ores and ijolites of the Guli pluton crystallized from phosphorus-rich alkaline carbonate–salt melts at 850–970 °C. The generation of these melts was, most likely, due to the silicate–salt immiscibility in melilitite-melanephelinite melts highly enriched in salts, which occurred either at the final stages of clinopyroxene crystallization or during the formation of melilite. The presence of alkalies, S, F, and CO2 in spatially separated carbonate–salt melts contributed to the concentration and preservation of phosphorus in them at low temperatures, which led to the formation of apatite mineralization in ijolites and ore deposit in carbonatites.© 2015, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.  相似文献   

7.
Melt inclusions were studied in chrome diopside from the Inagli deposit of gemstones in the Inagli massif of alkaline ultrabasic rocks of potassic affinity in the northwestern Aldan shield, Yakutia, Russia. The chrome diopside is highly transparent and has an intense green color. Its Cr2O3 content varies from 0.13 to 0.75 wt %. Primary and primary-secondary polyphase inclusions in chrome diopside are dominated by crystal phases (80–90 vol %) and contain aqueous solution and a gas phase. Using electron microprobe analysis and Raman spectroscopy, the following crystalline phases were identified. Silicate minerals are represented by potassium feldspar, pectolite [NaCa2Si3O8(OH)], and phlogopite. The most abundant minerals in the majority of inclusions are sulfates: glaserite (aphthitalite) [K3Na(SO4)2], glauberite [Na2Ca(SO4)2], aluminum sulfate, anhydrite (CaSO4), gypsum (CaSO4 × 2H2O), barite (BaSO4), bloedite [Na2Mg(SO4)2 × 4H2O], thenardite (NaSO4), polyhalite [K2Ca2Mg(SO4)4 × 2H2O], arcanite (K2SO4), and celestite (SrSO4). In addition, apatite was detected in some inclusions. Chlorides are probably present among small crystalline phases, because some analyses of aggregates of silicate and sulfate minerals showed up to 0.19–10.3 wt % Cl. Hydrogen was identified in the gas phase of polyphase inclusions by Raman spectroscopy. The composition of melt from which the chrome diopside crystallized was calculated on the basis of the investigation of silicate melt inclusions. This melt contains 53.5 wt % SiO2, considerable amounts of CaO (16.3 wt %), K2O (7.9 wt %), Na2O (3.5 wt %), and SO3 (1.4 wt %) and moderate amounts of Al2O3 (7.5 wt %), MgO (5.8 wt %), FeO (1.1 wt %), and H2O (0.75 wt %). The content of Cr2O3 in the melt was 0.13 wt %. Many inclusions were homogenized at 770–850°C, when all of the crystals and the gas phase were dissolved. The material of inclusions heated up to the homogenization temperature became heterogeneous even during very fast quenching (two seconds) producing numerous small crystals. This fact implies that most of the inclusions contained a salt (rather than silicate) melt of sulfate-dominated composition. Such inclusions were formed from salt globules (with a density of about 2.5 g/cm3) occurring as an emulsion in the denser (2.6 g/cm3) silicate melt from which the chrome diopside crystallized.  相似文献   

8.
Relicts of silicate-iron fluid media were found in the Early Cretaceous rhyolites of the Nilginskaya depression, Central Mongolia. They are localized in matrix cavities and in the inclusions in quartz and sanidine phenocrysts. The mineral composition of rhyolites and aggregates of silicate-iron phases has been studied. Calculations showed that crystallization of ilmenite and magnetite in a matrix occurred within a temperature range of 593–700°C and oxygen fugacity $\Delta \log f_{O_2 }$ NNO from ?2.29 to 1.68. The average compositions of the rhyolites and residual glasses in melt inclusions (MI) have A/CNK index of 1.03–1.05. The compositions of MI glasses define a trend from agpaitic to plumasitic types (A/NK and A/CNK change from 0.8–0.9 to 1.1–1.2). According to calculations, the rhyolitic melt was solidified at 640–750°C. Based on cathodoluminescent study, inclusions with silicate-iron phases are observed separately or together with MI in the early and intermediate growth zones of quartz and sanidine crystals. Aggregates found in the inclusions are represented by loose matter consisting of silica with small admixture of Al, Na, K, and Cl; silicate-iron aggregates with wide variations of Fe and Si; essentially Fe-rich micaceous and mica-silicate-iron aggregates. They usually have variable composition (wt %): 30–60 SiO2, 10–25 Al2O3, 10–30 FeO, up to 3 TiO2, 1.5–4 MgO, up to 3 CaO, up to 3 Na2O, up to 3 K2O, and up to 4 P2O5. They presumably contain up to 10–15 wt % H2O. Some inclusions comprise large segregations of siderophyllite enriched in F (3–10 wt %) and Cl (0.1–3.3 wt %). Evolution of the rhyolitic melt from magmatic chamber to its vitrification after ejection led to the decrease of F content. The highest F content (1–1.8 wt %) is typical of MI glasses, while the lowest content (0.05–0.1 wt %) was found in the glassy matrix and rhyolitic samples. The melt degassing was accompanied by the release of F-rich fluid containing up to 1.3 wt % F (based on partition coefficient fluid/meltDF) or 0.2–0.8 mol/dm3 HF (based on composition of micas from matrix and inclusions). Segregations of silicate-iron media existed in the rhyolitic magma. During formation of rhyolitic pile, these media were in a liquid state. The silicate-iron fluid media captured in MI could not be true fluids or silicate melts. They were likely formed during fluid-magmatic interaction and transformation of fluid phases of different density (vapor and liquid true solutions) that existed in a F-rich melt. The high concentrations of F and Cl and elevated alkalinity of fluids contribute their enrichment in silica and other elements, which could lead to the formation of hydrosilicate liquids. It is suggested that such liquids (gels) in dispersed (colloidal) state extracted F and many trace elements (P, Ti, Mg, Ca, REE, As, Nb, Th, and V) from surrounding rhyolitic magma.  相似文献   

9.
Experimental studies of diamond formation in the alkaline silicate-carbon system Na2O–K2O–MgO–CaO–Al2O3–SiO2–C were carried out at 8.5 GPa. In accordance with the diamond nucleation criterion, a high diamond generation efficiency (spontaneous mass diamond crystallization) has been confirmed for the melts of the system Na2SiO3–carbon and has been first established for the melts of the systems CaSiO3–carbon and (NaAlSi3O8)80(Na2SiO3)20–carbon. It is shown that in completely miscible carbonate-silicate melts oversaturated with dissolved diamond-related carbon, a concentration barrier of diamond nucleation (CBDN) arises at a particular ratio of carbonate and silicate components. Study of different systems (eclogite–K-Na-Mg-Ca-Fe-carbonatite–carbon, albite–K2CO3–carbon, etc.) has revealed a dependence of the barrier position on the chemical composition of the system and the inhibiting effect of silicate components on the nucleation density and rate of diamond crystal growth. In multicomponent eclogite-carbonatite solvent, the CBDN is within the range of carbonatite compositions (<50 wt.% silicates). Based on the experimental criterion for the syngenesis of diamond and growth inclusions in them, we studied the syngenesis diagram for the system melanocratic carbonatite–diamond and determined a set of the composition fields and physical parameters of the system that are responsible for the cogeneration of diamond and various mineral and melt parageneses. The experimental results were applied to substantiate a new physicochemical concept of carbonate-silicate (carbonatite) growth media for most of natural diamonds and to elaborate a genetic classification of growth mineral, melt, and fluid inclusions in natural diamonds of mantle genesis.  相似文献   

10.
Hydrothermal experiments were carried out at 2 kbar water pressure, 700 °–800 ° C, with the objective of determining the level of dissolved Zr required for precipitation of zircon from melts in the system SiO2-Al2O3-Na2O-K2O. The saturation level depends strongly upon molar (Na2O + K2O)/Al2O3 of the melts, with remarkably little sensitivity to temperature, SiO2 concentration, or melt Na2O/ K2O. For peraluminous melts and melts lying in the quartz-orthoclase-albite composition plane, less than 100 ppm Zr is required for zircon saturation. In peralkaline melts, however, zircon solubility shows pronounced, apparently linear, dependence upon (Na2O + K2O)/Al2O3, with the amount of dissolvable Zr ranging up to 3.9 wt.% at (Na2O + K2O)/Al2O3 = 2.0. Small amounts (1 wt.% each) of dissolved CaO and Fe2O3 cause a 25% relative reduction of zircon solubility in peralkaline melts.The main conclusion regarding zirconium/zircon behavior in nature is that any felsic, non-peralkaline magma is likely to contain zircon crystals, because the saturation level is so low for these compositions. Zircon fractionation, and its consequences to REE, Th, and Ta abundances must, therefore, be considered in modelling the evolution of these magmas. Partial melting in any region of the Earth's crust that contains more than 100 ppm Zr will produce granitic magmas whose Zr contents are buffered at constant low (< 100 ppm) values; unmelted zircon in the residual rock of such a melting event will impart to the residue a characteristic U- or V-shaped REE abundance pattern. In peralkaline, felsic magmas such as those that form pantellerites and comendites, extreme Zr (and REE, Ta) enrichment is possible because the feldspar fractionation that produces these magmas from non-peralkaline predecessors does not drive the melt toward saturation in zircon.Zircon solubility in felsic melts appears to be controlled by the formation of alkali-zirconosilicate complexes of simple (2:1) alkali oxide: ZrO2 stoichiometry.  相似文献   

11.
A wide variety of rock types are present in the O'Leary Peak and Strawberry Crater volcanics of the Pliocene to Recent San Francisco Volcanic Field (SFVF), AZ. The O'Leary Peak flows range from andesite to rhyolite (56–72 wt % SiO2) and the Strawberry Crater flows range from basalt to dacite (49–64 wt % SiO2). Our interpretation of the chemical data is that both magma mixing and crustal melting are important in the genesis of the intermediate composition lavas of both suites. Observed chemical variations in major and trace elements can be modeled as binary mixtures between a crustal melt similar to the O'Leary dome rhyolite and two different mafic end-members. The mafic end-member of the Strawberry suite may be a primary mantle-derived melt. Similar basalts have also been erupted from many other vents in the SFVF. In the O'Leary Peak suite, the mafic end-member is an evolved (low Mg/(Mg+ Fe)) basalt that is chemically distinct from the Strawberry Crater and other vent basalts as it is richer in total Fe, TiO2, Al2O3, MnO, Na2O, K2O, and Zr and poorer in MgO, CaO, P2O5, Ni, Sc, Cr, and V. The derivative basalt probably results from fractional crystallization of the more primitive, vent basalt type of magma. This evolved basalt occurs as xenolithic (but originally magmatic) inclusions in the O'Leary domes and andesite porphyry flow. The most mafic xenolith may represent melt that mixed with the O'Leary dome rhyolite resulting in andesite preserved as other xenoliths, a pyroclastic unit (Qoap), porphyry flow (Qoaf) and dacite (Darton Dome) magmas. Thermal constraints on the capacity of a melt to assimilate (and melt) a volume of solid material require that melt mixing and not assimilation has produced the observed intermediate lavas at both Strawberry Crater and O'Leary Peak. Textures, petrography, and mineral chemistry support the magma mixing model. Some of the inclusions have quenched rims where in contact with the host. The intermediate rocks, including the andesite xenoliths, contain xenocrysts of quartz, olivine and oligoclase, together with reversely zoned plagioclase and pyroxene phenocrysts. The abundance of intermediate volcanic rocks in the SFVF, as observed in detail at O'Leary Peak and Strawberry Crater, is due in part to crustal recycling, the result of basalt-driven crustal melting and the subsequent mixing of the silicic melts with basalts and derivative magmas.  相似文献   

12.
Melt and fluid inclusions have been studied in olivine phenocrysts (Fo 81–79) from trachybasalts of the Southern Baikal volcanic area, Dzhida field. The melt inclusions were homogenized, quenched, and analyzed on an electron and ion microprobe. The study of homogenized glasses of nine inclusions showed that basaltic melts (SiO2 = 47.1–50.3 wt %, MgO = 5.0–7.7 wt %, CaO = 7.1–11.1 wt %) have high contents of Al2O3 (17.1–19.6 wt %), Na2O (4.1–6.2 wt %), K2O (2.2–3.3 wt %), and P2O5 (0.6–1.1 wt %). The volatile contents are low (in wt %): 0.24–0.31 H2O, 0.08 F, 0.03 Cl, and 0.02 S. Primary fluid inclusions in olivines from four trachybasalt samples contain high-density CO2 (0.73–0.87 g/cm3), indicating a CO2 fluid pressure of 4.3–6.6 kbar at 1200–1300°C and olivine crystallization depths of 16–24 km. Ion microprobe analyses of 20 glasses from melt inclusions for trace elements showed that the magmas of the Baikal rift were enriched in incompatible elements, thus differing from oceanic rift basalts and resembling oceanic island basalts. A comparison of our data on melt and fluid inclusions in olivine from trachybasalts of the Dzhida field with preexisting data on the Eastern Tuva volcanic highland in the Southern Baikal volcanic area showed that they had similar contents of volatiles, major, and trace elements.  相似文献   

13.
Melt inclusions in kimberlitic and metamorphic diamonds worldwide range in composition from potassic aluminosilicate to alkali-rich carbonatitic and their low-temperature derivative, a saline high-density fluid (HDF). The discovery of CO2 inclusions in diamonds containing eclogitic minerals are also essential. These melts and HDFs may be responsible for diamond formation and metasomatic alteration of mantle rocks since the late Archean to Phanerozoic. Although a genetic link between these melts and fluids was suggested, their origin is still highly uncertain. Here we present experimental results on melting phase relations in a carbonated pelite at 6 GPa and 900–1500 °C. We found that just below solidus K2O enters potassium feldspar or K2TiSi3O9 wadeite coexisting with clinopyroxene, garnet, kyanite, coesite, and dolomite. The potassium phases react with dolomite to produce garnet, kyanite, coesite, and potassic dolomitic melt, 40(K0.90Na0.10)2CO3·60Ca0.55Mg0.24Fe0.21CO3 + 1.9 mol% SiO2 + 0.7 mol% TiO2 + 1.4 mol% Al2O3 at the solidus established near 1000 °C. Molecular CO2 liberates at 1100 °C. Potassic aluminosilicate melt appears in addition to carbonatite melt at 1200 °C. This melt contains (mol/wt%): SiO2 = 57.0/52.4, TiO2 = 1.8/2.3, Al2O3 = 8.5/13.0, FeO = 1.4/1.6, MgO = 1.9/1.2, CaO = 3.8/3.2, Na2O = 3.2/3.0, K2O = 10.5/15.2, CO2 = 12.0/8.0, while carbonatite melt can be approximated as 24(K0.81Na0.19)2CO3·76Ca0.59Mg0.21Fe0.20CO3 + 3.0 mol% SiO2 + 1.6 mol% TiO2 + 1.4 mol% Al2O3. Both melts remain stable to at least 1500 °C coexisting with CO2 fluid and residual eclogite assemblage consisting of K-rich omphacite (0.4–1.5 wt% K2O), almandine-pyrope-grossular garnet, kyanite, and coesite. The obtained immiscible alkali‑carbonatitic and potassic aluminosilicate melts resemble compositions of melt inclusions in diamonds worldwide. Thus, these melts entrapped by diamonds could be derived by partial melting of the carbonated material of the continental crust subducted down to 180–200 km depths. Given the high solubility of chlorides and water in both carbonate and aluminosilicate melts inferred in previous experiments, the saline end-member, brine, could evolve from potassic carbonatitic and/or silicic melts by fractionation of Ca-Mg carbonates/eclogitic minerals and accumulation of alkalis, chlorine and water in the residual low-temperature supercritical fluid. Direct extraction from the hydrated marine sediments under conditions of cold subduction would be another possibility for the brine formation.  相似文献   

14.
Minerals of olivine–melilite and olivine–monticellite rocks from the Krestovskiy massif contain primary silicate-salt, carbonate-salt, and salt melt inclusions. Silicate-salt inclusions are present in perovskite I and melilite. Thermometric experiments conducted on these inclusions at 1,230–1,250°C showed silicate–carbonate liquid immiscibility. Globules of composite carbonate-salt melt rich in alkalies, P, S, and Cl separated in silicate melt. Carbonate salt globules in some inclusions from perovskite II at 1,190–1,200°C separated into immiscible liquid phases of simpler composition. Carbonate-salt and salt inclusions occur in monticellite, melilite, and garnet and homogenize at close temperatures (980–780°C). They contain alkalies, Ca, P, SO3, Cl, and CO2. According to the ratio of these components and predominance of one of them, melt inclusions are divided into 6 types: I—hyperalkaline (CaO/(Na2O+K2O)≤1) carbonate melts; II—moderately alkaline (CaO/(Na2O+K2O)>1) carbonate melts; III—sulfate-alkaline melts; IV—phosphate-alkaline melts; V—alkali-chloridic melts, and VI—calc-carbonate melts. Joint occurrence of all the above types and their syngenetic character were established. Some inclusions demonstrated carbonate-salt immiscibility phenomena at 840–800°C. A conclusion in made that the origin of carbonate melts during the formation of intrusion rocks is related to silicate–carbonate immiscibility in parental alkali-ultrabasic magma. The separated carbonate melt had a complex alkaline composition. Under unstable conditions the melt began to decompose into simpler immiscible fractions. Different types of carbonate-salt and salt inclusions seem to reflect the composition of these spatially isolated immiscible fractions. Liquid carbonate-salt immiscibility took place in a wide temperature range from 1,200–1,190°C to 800°C. The occurrence of this kind of processes under macroconditions might, most likely, cause the appearance of different types of immiscible carbonate-salt melts and lead to the formation of different types of carbonatites: alkali-phosphatic, alkali-sulfatic, alkali-chloridic, and, most widespread, calcitic ones.  相似文献   

15.
Based on the analysis of data on the composition of melt inclusions in minerals and quenched glasses of igneous rocks, we considered the problems of the formation of peralkaline silicic magmas (i.e., whose agpaitic index, the molar ratio AI = (Na2O + K2O)/Al2O3, is higher than one). The mean compositions of peralkaline silicic melts are reported for island arcs and active continental margins and compared with the compositions of melts from other settings, primarily, intraplate continental areas. Peralkaline silicic rocks are rather common in the latter. Such rocks are rare in island arcs and active continental margins, but agpaitic melts were observed in inclusions in phenocrysts of plagioclase, quartz, pyroxene, and other minerals. Plagioclase fractionation from an alkali-rich melt with AI < 1 is considered as a possible mechanism for the formation of peralkaline silicic melts (Bowen’s plagioclase effect). However, the analysis of available experimental data on plagioclase-melt equilibria showed that natural peralkaline melts are almost never in equilibrium with plagioclase. For the same reason, the melting of the majority of crustal rocks, which usually contain plagioclase, does not produce peralkaline melts. The existence of peralkaline silicic melt inclusions in plagioclase phenocrysts suggests that plagioclase can crystallize from peralkaline melts, and the plagioclase effect may play a certain role. Another mechanism for the formation of peralkaline silicic magmas is the melting of alkali-rich basic and intermediate rocks, including the spilitized varieties of subalkali basalts.  相似文献   

16.
The investigation of rocks, minerals, and melt inclusions showed that porphyritic alkaline picrites and meimechites crystallized from different parental magmas. At a similar ultrabasic composition, the alkaline picrite melts were enriched in K2O relative to Na2O, and contained up to 0.12–0.13 wt % F and less Cr, Ni, and H2O (only 0.01–0.16 wt % H2O, versus 0.6–1.6 wt % in the meimechite melts) compared with the meimechite magmas. The crystallization of alkaline picrite melts occurred under stable conditions at relatively low temperatures without abrupt changes: olivine and clinopyroxene crystallized at 1340–1285 and 1230–1200°C, respectively, as compared with 1600–1450 and 1230–1200°C in the meimechites. The alkaline picrite melts evolved toward melanephelinite, nephelinite, tephrite, and trachydolerite; whereas the meimechite magmas gave rise to subalkaline picritic rocks. The partitioning of vanadium between olivine and melt suggests that the meimechite magma crystallized under more oxidizing conditions compared with the alkaline picrite melts: the KDV values for the meimechite melts (0.011–0.016) were three times lower than those for the alkaline picrite melts (0.045–0.052). The parental magmas of the alkaline picrites and meimechites were enriched in trace elements relative to mantle levels by factors of tens to hundreds. The alkaline picrite magma showed lower LILE and LREE contents compared with the meimechite magma. The magmas had also different indicator ratios of incompatible elements, including those immobile in aqueous fluids. It was concluded that the meimechite and alkaline picrite melts were derived from different mantle sources. The former were generated at lower degrees of melting of an undepleted mantle source, and the meimechite melts were produced by high-degree melting of a probably lherzolite-harzburgite source.  相似文献   

17.
Phase relations were investigated in the model water-saturated system Si-Al-Na-Li-F-O at high fluorine contents, a temperature of 800°C, and a pressure of 1 kbar. The obtained aluminosilicate melts are widely variable from quartz- to nepheline-normative compositions with agpaitic indexes both higher and lower than one. Various fluoride, aluminofluoride, and oxide phases were observed in the equilibrium assemblage depending on the melt composition: quartz and cryolite associate with the silica richest aluminosilicate melts, topaz and corundum coexist with peraluminous melts, and villiaumite was observed in highly peralkaline melts. Extensive immiscibility between aluminosilicate and aluminofluoride melts was observed in the system. Aluminofluoride melt coexists with quartz- and nepheline-normative aluminosilicate melts with agpaitic indexes (K a) of 0.7–1.4. The composition of aluminosilicate melt in equilibrium with aluminofluoride melt ranges from 33 to 70 wt % SiO2, from 12 to 24 wt % Al2O3, and from 5 to 16 wt % alkalis. The aluminofluoride melt is variable in composition, its Al/Na ratio ranges from 20/80 to 40/60 depending on the composition of the equilibrium aluminosilicate melt. The experimental aluminosilicate melts equilibrated with cryolite, topaz, and aluminofluoride melt coincide in major component proportions with the bulk compositions of cryolite- and topaz-bearing granites and melt inclusions in minerals.  相似文献   

18.
The paper presents data on naturally quenched melt inclusions in olivine (Fo 69–84) from Late Pleistocene pyroclastic rocks of Zhupanovsky volcano in the frontal zone of the Eastern Volcanic Belt of Kamchatka. The composition of the melt inclusions provides insight into the latest crystallization stages (∼70% crystallization) of the parental melt (∼46.4 wt % SiO2, ∼2.5 wt % H2O, ∼0.3 wt % S), which proceeded at decompression and started at a depth of approximately 10 km from the surface. The crystallization temperature was estimated at 1100 ± 20°C at an oxygen fugacity of ΔFMQ = 0.9–1.7. The melts evolved due to the simultaneous crystallization of olivine, plagioclase, pyroxene, chromite, and magnetite (Ol: Pl: Cpx: (Crt-Mt) ∼ 13: 54: 24: 4) along the tholeiite evolutionary trend and became progressively enriched in FeO, SiO2, Na2O, and K2O and depleted in MgO, CaO, and Al2O3. Melt crystallization was associated with the segregation of fluid rich in S-bearing compounds and, to a lesser extent, in H2O and Cl. The primary melt of Zhupanovsky volcano (whose composition was estimated from data on the most primitive melt inclusions) had a composition of low-Si (∼45 wt % SiO2) picrobasalt (∼14 wt % MgO), as is typical of parental melts in Kamchatka and other island arcs, and was different from MORB. This primary melt could be derived by ∼8% melting of mantle peridotite of composition close to the MORB source, under pressures of 1.5 ± 0.2 GPa and temperatures 20–30°C lower than the solidus temperature of “dry” peridotite (1230–1240°C). Melting was induced by the interaction of the hot peridotite with a hydrous component that was brought to the mantle from the subducted slab and was also responsible for the enrichment of the Zhupanovsky magmas in LREE, LILE, B, Cl, Th, U, and Pb. The hydrous component in the magma source of Zhupanovsky volcano was produced by the partial slab melting under water-saturated conditions at temperatures of 760–810°C and pressures of ∼3.5 GPa. As the depth of the subducted slab beneath Kamchatkan volcanoes varies from 100 to 125 km, the composition of the hydrous component drastically changes from relatively low-temperature H2O-rich fluid to higher temperature H2O-bearing melt. The geothermal gradient at the surface of the slab within the depth range of 100–125 km beneath Kamchatka was estimated at 4°C/km.  相似文献   

19.
Our database of published contents of volatile, major, and trace elements in melt inclusions in minerals and quenched glasses of volcanic rocks was used to calculate the mean compositions of alkaline and subalkaline melts of ocean islands. The data array included ~10300 determinations from more than 200 publications. The alkaline basic melts (mean Na2O + K2O is 4.75 wt %) are strongly enriched compared with the subalkaline melts (mean Na2O + K2O is 2.70 wt %) in volatile components (0.96 and 0.37 wt % H2O, 650 and 190 ppm Cl, 1480 and 320 ppm F, and 930 and 530 ppm S, respectively) and many trace elements. For instance, the alkaline and subalkaline melts contain 31.8 and 7.2 ppm Rb, 50.1 and 9.6 ppm Nb, and 39.9 and 5.7 ppm La, respectively. Such relations were not observed for V, Cr, Co, Cu, Ga, and Sc. As to the major elements, the alkaline melts show significantly higher contents of Ti, Fe, and P, but lower contents of Si and Mg compared with the subalkaline melts. The enrichment of the alkaline melts in many trace elements compared with the subalkaline melts is retained also in silicic melts. The distribution of trace elements suggests a higher contribution of pyroxenite material during the formation of alkaline melts.  相似文献   

20.
The compositions of approximately 70 naturally quenched melt inclusions in olivine, clinopyroxene, orthopyroxene, and plagioclase phenocrysts from tephra of the soil–pyroclastic cover of Simushir Island (Central Kuril Islands) were studied. The concentrations of the major rock-forming components, H2O, S, and Cl were analyzed in inclusions. The reconstructed melts contain 48.6–78.4 wt % SiO2, 0.3–8.26 wt % MgO, and 0.12–1.72 wt % K2O. The concentration of S and Cl in the melts changes regularly with increasing SiO2 content: from 0.14 to ~0.02 wt % S and from ~0.05 to ~0.28 wt % Cl. The content of H2O in parental melts is 4.2–4.5 wt %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号