首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the era of high precision CMB measurements, systematic effects are beginning to limit the ability to extract subtler cosmological information. The non-circularity of the experimental beam has become progressively important as CMB experiments strive to attain higher angular resolution and sensitivity. The effect of non-circular beam on the power spectrum is important at multipoles larger than the beam-width. For recent experiments with high angular resolution, optimal methods of power spectrum estimation are computationally prohibitive and sub-optimal approaches, such as the Pseudo-Cl method are used. We provide an analytic framework for correcting the power spectrum for the effect of beam non-circularity and non-uniform sky coverage (including incomplete/masked sky maps). The approach is perturbative in the distortion of the beam from non-circularity allowing for rapid computations when the beam is mildly non-circular. We advocate that when the non-circular beams are important, it is computationally advantageous to employ ‘soft’ azimuthally apodized masks whose spherical harmonic transforms die down fast with m.  相似文献   

2.
In the context of cold dark matter (CDM) cosmological models, we have simulated images of the brightness temperature fluctuations in the cosmic microwave background (CMB) sky owing to the Sunyaev–Zel'dovich (S–Z) effect in a cosmological distribution of clusters. We compare the image statistics with recent ATCA limits on arcmin-scale CMB anisotropy. The S–Z effect produces a generically non-Gaussian field and we compute the variance in the simulated temperature-anisotropy images, after convolution with the ATCA beam pattern, for different cosmological models. All the models are normalized to the 4-yr COBE data. We find an increase in the simulated-sky temperature variance with increase in the cosmological density parameter Ω0. A comparison with the upper limits on the sky variance set by the ATCA appears to rule out our closed-universe model: low-Ω0 open-universe models are preferred. The result is independent of any present day observations of σ 8.  相似文献   

3.
In an attempt to detect cosmic microwave background (CMB) anisotropy on arcmin scales, we have made an 8.7-GHz image of a sky region with a resolution of 2 arcmin and high surface brightness sensitivity using the Australia Telescope Compact Array (ATCA) in an ultracompact configuration. The foreground discrete-source confusion was estimated from observations with higher resolution at the same frequency and in a scaled array at a lower frequency. Following the subtraction of the foreground confusion, the field shows no features in excess of the instrument noise. This limits the CMB anisotropy flat-band power to Q flat < 23.6 μ K with 95 per cent confidence; the ATCA filter function (which is available at the website www.atnf.csiro.au/Research/cmbr/cmbr_atca.html) F l in multipole l -space peaks at l eff = 4700 and has half-maximum values at l  = 3350 and 6050.  相似文献   

4.
The fluctuations of the cosmic microwave background (CMB) are investigated for a hyperbolic universe with finite volume. Four-component models with radiation, matter, vacuum energy and an extra spatially constant dark energy X -component are considered. The general solution of the Friedmann equation for the cosmic scalefactor a ( η ) is given for the four-component models in terms of the Weierstrass ℘-function. The lower parts of the angular power spectra C l of the CMB anisotropy are computed for nearly flat models with Ωtot≤0.95. It is shown that the particular compact fundamental cell that is considered in this paper leads to a suppression in C l for l ≲10 and Ωtot≲0.9.  相似文献   

5.
An Australia Telescope survey for CMB anisotropies   总被引:1,自引:0,他引:1  
We have surveyed six distinct 'empty fields' using the Australia Telescope Compact Array (ATCA) in an ultracompact configuration with the aim of imaging, with a high brightness sensitivity, any arcminute-scale brightness-temperature anisotropies in the background radio sky. The six well-separated regions were observed at a frequency of 8.7 GHz, and the survey regions were limited by the ATCA primary beams which have a full width at half-maximum of 6 arcmin at this frequency; all fields were observed with a resolution of 2 arcmin and an rms thermal noise of 24 μJy beam−1. After subtracting foreground confusion detected in higher resolution images of the fields, residual fluctuations in Stokes I images are consistent with the expectations from thermal noise and weaker (unidentified) foreground sources; the Stokes Q and U images are consistent with expectations from thermal noise.
Within the sensitivity of our observations, we have no reason to believe that there are any Sunyaev–Zeldovich holes in the microwave sky surveyed. Assuming Gaussian-form CMB anisotropy with a 'flat' spectrum, we derive 95 per cent confidence upper limits of Q flat<10–11 μK in polarized intensity and Q flat<25 μK in total intensity. The ATCA filter function peaks at l =4700 and has half-maximum values at l =3350 and 6050.  相似文献   

6.
The locations of the peaks of the cosmic microwave background (CMB) spectrum are sensitive indicators of cosmological parameters, yet there is no known analytic formula which accurately describes their dependence on them. We parametrize the location of the peaks as   l m = l A( m - φ m )  , where l A is the analytically calculable acoustic scale and m labels the peak number. Fitting formulae for the phase shifts φ m for the first three peaks and the first trough are given. It is shown that in a wide range of parameter space, the acoustic scale l A can be retrieved from actual CMB measurements of the first three peaks within 1 per cent accuracy. This can be used to speed up likelihood analysis. We describe how the peak shifts can be used to distinguish between different models of dark energy.  相似文献   

7.
We study cosmic microwave background (CMB) secondary anisotropies produced by inhomogeneous reionization by means of cosmological simulations coupled with the radiative transfer code crash . The reionization history is consistent with the Wilkinson Microwave Anisotropy Probe Thomson optical depth determination. We find that the signal arising from this process dominates over the primary CMB component for   l ≳ 4000  and reaches a maximum amplitude of   l ( l + 1) Cl /2π≃ 1.6 × 10−13  on arcmin scales (i.e. l as large as several thousands). We then cross-correlate secondary CMB anisotropy maps with neutral hydrogen 21-cm line emission fluctuations obtained from the same simulations. The two signals are highly anticorrelated on angular scales corresponding to the typical size of H  ii regions (including overlapping) at the 21-cm map redshift. We show how the CMB/21-cm cross-correlation can be used: (i) to study the nature of the reionization sources; (ii) to reconstruct the cosmic reionization history; (iii) to infer the mean cosmic ionization level at any redshift. We discuss the feasibility of the proposed experiment with forthcoming facilities.  相似文献   

8.
This paper investigates the clustering properties of Submillimetre Common User Bolometric Array (SCUBA) selected galaxies within the framework of a unifying scheme relating the formation of quasi-stellar objects and spheroids. The theoretical angular correlation function is derived for different bias functions, corresponding to different values of the ratio M halo/ M sph between the mass of the dark halo and the final mass in stars. SCUBA sources are predicted to be strongly clustered, with a clustering strength increasing with mass. We show that the model accounts for the clustering of Lyman-break galaxies, seen as the optical counterpart of low- to intermediate-mass primeval spheroidal galaxies, and is also consistent with the observed angular correlation function of extremely red objects. Best agreement is obtained for M halo/ M sph=100 . We also consider the implications for small-scale fluctuations observed at submillimetre wavelengths by current or forthcoming experiments aimed at mapping the cosmic microwave background (CMB). The predicted amplitude of the clustering signal in the 350-GHz channel of the Planck mission strongly depends on the halo-to-bulge mass ratio and may be of comparable amplitude to primary CMB anisotropies for multipole numbers l ≳50 .  相似文献   

9.
We have constructed the first all-sky cosmic microwave background (CMB) temperature and polarization lensed maps based on a high-resolution cosmological N -body simulation, the Millennium Simulation (MS). We have exploited the lensing potential map obtained using a previously developed map-making procedure which integrates along the line-of-sight the MS dark matter distribution by stacking and randomizing the simulation boxes up to   z = 127  , and which semi-analytically supplies the large-scale power in the angular lensing potential that is not correctly sampled by the N -body simulation. The lensed sky has been obtained by properly modifying the latest version of the LensPix code to account for the MS structures. We have also produced all-sky lensed maps of the so-called  ψ E   and  ψ B   potentials, which are directly related to the electric and magnetic types of polarization. The angular power spectra of the simulated lensed temperature and polarization maps agree well with semi-analytic estimates up to   l ≤ 2500  , while on smaller scales we find a slight excess of power which we interpret as being due to non-linear clustering in the MS. We also observe how non-linear lensing power in the polarized CMB is transferred to large angular scales by suitably misaligned modes in the CMB and the lensing potential. This work is relevant in view of the future CMB probes, as a way to analyse the lensed sky and disentangle the contribution from primordial gravitational waves.  相似文献   

10.
We calculate the expected amplitude of the dipole and higher spherical harmonics in the angular distribution of radio galaxies. The median redshift of radio sources in existing catalogues is z  ∼ 1, which allows us to study large-scale structure on scales between those accessible to present optical and infrared surveys, and that of the cosmic microwave background (CMB). The dipole is a result of two effects which turn out to be of comparable magnitude: (i) our motion with respect to the CMB, and (ii) large-scale structure, parametrized here by a family of cold dark matter power-spectra. We make specific predictions for the Green Bank 1987 (87GB) and Parkes–MIT–NRAO (PMN) catalogues, which in our combined catalogue include ∼ 40 000 sources brighter than 50 mJy at 4.85 GHz, over about 70 per cent of the sky. For these relatively sparse catalogues both the motion and large-scale structure dipole effects are expected to be smaller than the Poisson shot noise. However, we detect dipole and higher harmonics in the combined 87GB–PMNraw catalogue which are far larger than expected. We attribute this to a 2 per cent flux mismatch between the two catalogues. Ad hoc corrections made in an effort to match the catalogues may suggest a marginal detection of a dipole. To detect a dipole and higher harmonics unambiguously, a catalogue with full sky coverage and ∼ 106 sources is required. We also investigate the existence and extent of the supergalactic plane in the above catalogues. In a strip of ± 10° of the standard supergalactic equator, we find a 3 σ detection in PMNraw, but only 1 σ in 87 GBraw. We briefly discuss the implications of ongoing surveys such as FIRST and NVSS and follow-up redshift surveys.  相似文献   

11.
Electron scattering induces a polarization in the cosmic microwave background (CMB) signal measured in the direction of a galaxy cluster owing to the presence of a quadrupole component in the CMB temperature distribution. Measuring the polarization towards distant clusters provides the unique opportunity to observe the evolution of the CMB quadrupole at moderate redshifts, z ∼0.5–3. We demonstrate that for the local cluster population the polarization degree will depend on the cluster celestial position. There are two extended regions in the sky, which are opposite to each other, where the polarization is maximal, ∼0.1( τ /0.02) μK in the Rayleigh–Jeans part of the CMB spectrum ( τ being the Thomson optical depth across the cluster). This value exceeds the polarization introduced by the cluster transverse peculiar motion if v t<1300 km s−1. One can hope to detect this small signal by measuring a large number of clusters, thereby effectively removing the systematic contribution from other polarization components produced in clusters. These polarization effects, which are of the order of ( v t c )2 τ , ( v t c ) τ 2 and ( kT e m e c 2) τ 2, as well as the polarization owing to the CMB quadrupole, were previously given by Sunyaev and Zel'dovich for the Rayleigh–Jeans part of the spectrum. We fully confirm their earlier results and present exact frequency dependences for all these effects. The polarization degree is considerably higher in the Wien region.  相似文献   

12.
We study gravitational lensing statistics, matter power spectra and the angular power spectra of the cosmic microwave background (CMB) radiation in x-matter models. We adopt an equation of state of x-matter which can express a wide range of matter from pressureless dust to the cosmological constant. A new ingredient in this model is the sound speed of the x-component, in addition to the equation of state w 0 =  p x0x0. Except for the cosmological constant case, the perturbations of x-matter itself are considered. Our primary interest is in the effect of non-zero sound speed on the structure formation and the CMB spectra. It is found that there exist parameter ranges where x-matter models are consistent with all current observations. The x-matter generally leaves imprints in the CMB anisotropy and the matter power spectrum, which should be detectable in future observations.  相似文献   

13.
We present a Gaussianity analysis of the Wilkinson Microwave Anisotropy Probe ( WMAP ) 5-yr cosmic microwave background (CMB) temperature anisotropy data maps. We use several third-order estimators based on the spherical Mexican hat wavelet. We impose constraints on the local non-linear coupling parameter f nl using well-motivated non-Gaussian simulations. We analyse the WMAP maps at resolution of 6.9 arcmin for the Q , V , and W frequency bands. We use the KQ 75 mask recommended by the WMAP team which masks out 28 per cent of the sky. The wavelet coefficients are evaluated at 10 different scales from 6.9 to 150 arcmin. With these coefficients, we compute the third order estimators which are used to perform a  χ2  analysis. The  χ2  statistic is used to test the Gaussianity of the WMAP data as well as to constrain the f nl parameter. Our results indicate that the WMAP data are compatible with the Gaussian simulations, and the f nl parameter is constrained to  −8 < f nl < +111  at 95 per cent confidence level (CL) for the combined   V + W   map. This value has been corrected for the presence of undetected point sources, which add a positive contribution of  Δ f nl= 3 ± 5  in the   V + W   map. Our results are very similar to those obtained by the WMAP team using the bispectrum.  相似文献   

14.
The subject of this paper is a quantification of the impact of uncertainties in bias and bias evolution on the interpretation of measurements of the integrated Sachs–Wolfe (ISW) effect, in particular on the estimation of cosmological parameters. We carry out a Fisher matrix analysis for quantifying the degeneracies between the parameters of a dark energy cosmology and bias evolution, for the combination of the PLANCK microwave sky survey with the EUCLID main galaxy sample, where bias evolution   b ( a ) = b 0+ (1 − a ) ba   is modelled with two parameters b 0 and   ba   . Using a realistic bias model introduces a characteristic suppression of the ISW spectrum on large angular scales, due to the altered distance-weighting functions. The errors in estimating cosmological parameters if the data with evolving bias is interpreted in the framework of cosmologies with constant bias are quantified in an extended Fisher formalism. We find that the best-fitting values of all parameters are shifted by an amount comparable to the statistical accuracy: the estimation bias in units of the statistical accuracy amounts to 1.19 for Ωm, 0.27 for σ8 and 0.72 for w for bias evolution with   ba = 1  . Leaving   ba   open as a free parameter deteriorates the statistical accuracy, in particular on Ωm and w .  相似文献   

15.
The SCUBA instrument on the James Clerk Maxwell Telescope has already had an impact on cosmology by detecting relatively large numbers of dusty galaxies at high redshift. Apart from identifying well-detected sources, such data can also be mined for information about fainter sources and their correlations, as revealed through low-level fluctuations in SCUBA maps. As a first step in this direction, we analyse a small SCUBA data set as if it were obtained from a cosmic microwave background (CMB) differencing experiment. This enables us to place limits on CMB anisotropy at 850 m. Expressed as Q flat, the quadrupole expectation value for a flat power spectrum, the limit is 152 K at 95 per cent confidence, corresponding to     (or T T <14105) for a Gaussian autocorrelation function, with a coherence angle of about 2025 arcsec. These results could easily be reinterpreted in terms of any other fluctuating sky signal. This is currently the best limit for these scales at high frequency, and comparable to limits at similar angular scales in the radio. Even with such a modest data set, it is possible to put a constraint on the slope of the SCUBA counts at the faint end, since even randomly distributed sources would lead to fluctuations. Future analysis of sky correlations in more extensive data sets ought to yield detections, and hence additional information on source counts and clustering.  相似文献   

16.
A principal-component analysis of cosmic microwave background (CMB) anisotropy measurements is used to investigate degeneracies among cosmological parameters. The results show that a degeneracy with tensor modes – the 'tensor degeneracy'– dominates uncertainties in estimates of the baryon and cold dark matter densities,   ω bb  h 2  ,   ω cc  h 2  , 1 from an analysis of CMB anisotropies alone. The principal-component analysis agrees well with a maximum-likelihood analysis of the observations, identifying the main degeneracy directions and providing an impression of the effective dimensionality of the parameter space.  相似文献   

17.
We derive the cosmic microwave background (CMB) radiative transfer equation in the form of a multipole hierarchy in the nearly Friedmann–Robertson–Walker limit of homogeneous, but anisotropic, universes classified via their Bianchi type. Compared with previous calculations, this allows a more sophisticated treatment of recombination, produces predictions for the polarization of the radiation and allows for reionization. Our derivation is independent of any assumptions about the dynamical behaviour of the field equations, except that it requires anisotropies to be small back to recombination; this is already demanded by observations.
We calculate the polarization signal in the Bianchi VII h case, with the parameters recently advocated to mimic the several large-angle anomalous features observed in the CMB. We find that the peak polarization signal is  ∼1.2 μK  for the best-fitting model to the temperature anisotropies, and is mostly confined to multipoles   l < 10  . Remarkably, the predicted large-angle EE and TE power spectra in the Bianchi model are consistent with Wilkinson Microwave Anisotropy Probe ( WMAP ) observations that are usually interpreted as evidence of early reionization. However, the power in B-mode polarization is predicted to be similar to the E-mode power and parity-violating correlations are also predicted by the model; the WMAP non-detection of either of these signals casts further strong doubts on the veracity of attempts to explain the large-angle anomalies with global anisotropy. On the other hand, given that there exist further dynamical degrees of freedom in the VII h universes that are yet to be compared with CMB observations, we cannot at this time definitively reject the anisotropy explanation.  相似文献   

18.
A combined sample of 79 high- and low-redshift Type Ia supernovae (SNe) is used to set constraints on the degree of anisotropy in the Universe out to z ≃1. First, we derive the global most probable values of matter density ΩM, the cosmological constant ΩΛ and the Hubble constant H 0, and find them to be consistent with the published results from the two data sets of Riess et al. and Perlmutter et al. We then examine the Hubble diagram (HD, i.e., the luminosity–redshift relation) in different directions on the sky by utilizing spherical harmonic expansion. In particular, via the analysis of the dipole anisotropy, we divide the sky into the two hemispheres that yield the most discrepant of the three cosmological parameters, and the scatter χ HD2 in each case. The most discrepant values roughly move along the locus −4ΩM+3ΩΛ=1 (cf. Perlmutter et al.), but by no more than Δ≈2.5 along this line. For a perfect Friedmann–Robertson–Walker universe, Monte Carlo realizations that mimic the current set of SNe yield values higher than the measured Δ in ∼1/5 of the cases (for ΩM). We discuss implications for the validity of the Cosmological Principle, and possible calibration problems in the SNe data sets.  相似文献   

19.
Using large numbers of simulations of the microwave sky, incorporating the cosmic microwave background (CMB) and the Sunyaev–Zel'dovich (SZ) effect due to clusters, we investigate the statistics of the power spectrum at microwave frequencies between spherical multipoles of 1000 and 10 000. From these virtual sky maps, we find that the spectrum of the SZ effect has a larger standard deviation by a factor of 3 than would be expected from purely Gaussian realizations, and has a distribution that is significantly skewed towards higher values, especially when small map sizes are used. The standard deviation is also increased by around 10 per cent compared to the trispectrum calculation due to the clustering of galaxy clusters. We also consider the effects of including residual point sources and uncertainties in the gas physics. This has implications for the excess power measured in the CMB power spectrum by the Cosmic Background Imager (CBI) and Berkeley–Illinois–Maryland Association (BIMA) experiments. Our results indicate that the observed excess could be explained using a lower value of σ8 than previously suggested, however the effect is not enough to match  σ8= 0.825  . The uncertainties in the gas physics could also play a substantial role. We have made our maps of the SZ effect available online.  相似文献   

20.
We discuss an approach to the component separation of microwave, multifrequency sky maps as those typically produced from cosmic microwave background (CMB) anisotropy data sets. The algorithm is based on the two-step, parametric, likelihood-based technique recently elaborated on by Eriksen et al., where the foreground spectral parameters are estimated prior to the actual separation of the components. In contrast with the previous approaches, we accomplish the former task with help of an analytically derived likelihood function for the spectral parameters, which, we show, yields estimates equal to the maximum likelihood values of the full multidimensional data problem. We then use these estimates to perform the second step via the standard, generalized-least-squares-like procedure. We demonstrate that the proposed approach is equivalent to a direct maximization of the full data likelihood, which is recast in a computationally tractable form. We use the corresponding curvature matrices to characterize statistical properties of the recovered parameters. We incorporate in the formalism some of the essential features of the CMB data sets, such as inhomogeneous pixel domain noise, unknown map offsets as well as calibration errors and study their consequences for the separation. We find that the calibration is likely to have a dominant effect on the precision of the spectral parameter determination for a realistic CMB experiment. We apply the algorithm to simulated data and discuss the results. Our focus is on partial sky, total intensity and polarization, CMB experiments such as planned balloon-borne and ground-based efforts, however, the techniques presented here should be also applicable to the full-sky data as for instance, those produced by the Wilkinson Microwave Anisotropy Probe ( WMAP ) satellite and anticipated from the Planck mission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号