首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RIEMANN himself has considered his formulation of the differential geometry of curved spaces as a first step to a unified geometrical theory of “one ether of gravity, electricity and magnetism”. RIEMANN has pointed out that a fundamental point in such a theory of gravitation has to be the asymmetry of its sources: only positive masses exist. – According to RIEMANN this asymmetry of sources to be coupled with an asymmetry of gravitation field equation against the time-reversion t → - t. Therefore, the gravitation field equation is of the type of a continuity-equation of a velocity field vi˜gikθ k Φ. RIEMANN 's ether is incompressible in empty space-domains: θ k (g1/2vk) = o. But, in domains with a massdensity σ > o it is θg1/2t = −2 kcσ = − 2 kcg1/2σ0 (with a universal constant kc). The matter-density defines depressions of the ether. In a general-relativistic approach RIEMANN 's ansatz means that in empty space-time domains the world-geometry is the purely metrical “RIEMANN ian” geometry. However, in domains with a non-vanishing matter-tensor Tμv ≠ o the geometry becomes “non-RIEMANN ian” affine connecting and is of the type of WEYL 's geometry or of the “EINSTEIN -CARTAN theories of gravitation”. Especially, RIEMANN 's field equation for the empty space θ k ((g1/2gikθ k Φ) = o. is the EINSTEIN equation (-|gμv|)1/2 R00 = o with g00 = - Φ2c-4.  相似文献   

2.
The strange non-evidence of the solar-neutrino current by the experiments of DAVIS et al. postulates a fundamental revision of the theory of weak interactions and of its relations to gravitation theory. (We assume that the astrophysical stellar models are not completely wrong.) – Our paper is based on PAULI 's grand hypothesis about the connection between weak and gravitational interactions. According to PAULI and BLACKETT the (dimensionless) gravitation constant is the square of the (dimensionless) FERMI -interaction constant and according to the hypotheses of PAULI, DE BROGLIE , and JORDAN the RIEMANN -EINSTEIN gravitational metric gik is fusioned by the four independent WEYL ian neutrino fields (β-neutrinos and β-antineutrinos, μ-neutrinos and μ-antineutrinos). This fusion gives four reference tetrads hiA(xl) as neutrino-current vectors, firstly. Then, the metric gik is defined by the equation gik = ηAB hiAhηB according to EINSTEIN 's theory of tele-parallelism in RIEMANN ian space-times. The relation of the gravitation field theory to FERMI 's theory of weak interactions becomes evident in our reference-tetrads theory of gravitation (TREDER 1967, 1971). – According to this theory the coupling of the gravitation potential hiA with the matter Tιi is given by a potential-like (FERMI -like) interaction term. In this interaction term two WEYL spinor-fields are operating on the matter-tensor, simultanously. Therefore, the gravitation coupling constant is PAULI 's square of the FERMI -constant. Besides of the fusion of the RIEMANN -EINSTEIN metric gik by four WEYL spinors we are able to construct a conformal flat metric ĝik = ϕ2ηik by fusion from each two WEYL spinors. (This hypothesis is in connection with our interpretation of EINSTEIN 's hermitian field theory as a unified field-theory of the gravitational metric gik and a WEYL spinor field [TREDER 1972].) Moreover, from the reference-tetrads theory is resulting that the WEYL spinors in the “new metric” ĝik are interacting with the DIRAC matter current by a FERMI -like interaction term and that these WEYL spinors fulfil a wave equation in the vacuum. Therefore, we have a long-range interaction with the radiced gravitational constant \documentclass{article}\pagestyle{empty}\begin{document}$ \sqrt {\frac{{tm^2 }}{{hc}}} $\end{document} as a coupling constant. That means, we have a long-range interaction which is 1018 times stronger than the gravitation interaction. – However, according to the algebraic structure of the conform-flat this long-range interaction is effective for the neutrino currents, only. And for these neutrinos the interaction is giving an EINSTEIN -like redshift of its frequences. The characteristic quantity of this “EINSTEIN shift” is a second gravitation radius â of each body: N = number of baryons, m = mass of a baryon.) This radius â is 1018 times larger than the EINSTEIN -SCHWARZSCHILD gravitation radius a = fM/c2: But, this big “weak radius” â has a meaning for the neutrinos, only.–The determination of the exterior and of the interior “metrics” ĝik is given by an “ansatz” which is analogous to the ansatz for determination of strong gravitational fields in our tetrads theory. That is by an ansatz which includes the “self-absorption” of the field by the matter. For all celestial bodies the “weak radius” â is much greater than its geometrical dimension. Therefore, a total EINSTEIN redshift of the neutrino frequences v is resulting according to the geometrical meaning of our long-range weak interaction potential ĝik = ϕ2ηik. That means, the cosmic neutrino radiation becomes very weak and unable for nuclear reactions. Theoretically, our hypothesis means an ansatz for unitary theory of gravitation and of weak interaction. This unitary field theory is firstly based on EINSTEIN 's hermitian field theory and secondly based on our reference-tetrads theory of gravitation.  相似文献   

3.
It is established that, in contrast to Einstein's theory, in the cosmological equations of the theory by Brans and Dicke the spatial component of the field equations follows from the remaining equations and the conservation lawT ik jk=0 only if one excludes the power law R –2. Some consequences are discussed.  相似文献   

4.
In the framework of the inverse problem of dynamics, we face the following question with reference to the motion of one material point: Given a region Torb of the xy plane, described by the inequality g (x, y) ≤ c0, are there potentials V = V (x, y) which can produce monoparametric families of orbits f (x, y) = c (also to be found) lying exclusively in the region Torb? As the relevant PDEs are nonlinear, an answer to this question (generally affirmative, but not with assurance) can be given by the procedure of the determination of certain constants specifying the pertinent functions. In this paper we ease the mathematics involved by making certain simplifying assumptions referring to the homogeneity of both the function g (x, y) (describing the boundary of Torb) and of the slope function γ(x, y) = fy/fx (representing the required family f (x, y) = c). We develop the method to treat the so formulated problem and we show that, even under these restrictive assumptions, an affirmative answer is guaranteed provided that two algebraic equations have in common at least one solution (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
2.6 mm carbon monoxide and 21 cm hydrogen line observations of the Galaxy define six directions where gas is seen tangentially along a spiral feature and four directions where extended structures cross theR=R 0 circle. These directions provide a geometrical framework for any spiral structure pattern. Also simple equations are derived to define the normalized radiusR/R 0 of gas with a particular radial velocity in terms of the observed tangential velocity of gas with the sameR/R 0=sinl T, without specific knowledge of (R), 0 orR 0.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

6.
In our preceding paper {see [L. Sh. Grigorian and S. Gottlöber, Astrofizika (in press)]} we investigated a self-gravitating system consisting of a scalar field and a linear tensor field ik= ki with minimal coupling and with allowance for the action of vacuum polarization effects. In the present paper we investigate the case of a nonlinear tensor field ik. The action S () of the field ik is determined by the difference Rikik, where Rik is the space-time Ricci tensor and Rik is the analogous quantity constructed using the metric ik=gik+ik induced by ik ( is a free parameter). Here S () coincides with the previously known expression for the action of a linear field ik. Equations of motion are derived for ik in curved space-time. The energy-momentum metric tensor, determining the contribution of ik to the gravitational field equations, is calculated.Translated from Astrofizika, Vol. 39, No. 1, pp. 135–144, January-March, 1996.  相似文献   

7.
We consider the inversion of a problem put by A. EINSTEIN and E. G. STRAUS , that is, we ask for restrictions on the scaling factor R(t) of the ROBERTSON WALKER metric and the functions H2(r') and A2(r') of a spherically symmetric and static vacuum metric, which are consequences of the requirement that the vacuum metric shall pass continuously differentiable into the ROBERTSON WALKER metric at a certain value rb of the comoving radial coordinate r.  相似文献   

8.
Chultem  Ts.  Yakovkin  N. A. 《Solar physics》1974,34(1):133-150
The statistical equilibrium equations for the continuum and first 10 levels of a hydrogen atom show that the radiation of a bright prominence (the brightness of the H line has attained 56 mÅ of the disc centre spectrum) is completely due to scattering of the Sun radiation. The basic unknowns are separated with certainty: electron concentration (n e = 3.0 × 1010 cm–3), effective thickness (l = 4.2 × 108 cm) and electron temperature (T e = 5000 K).Radiation of a very bright prominence (A (H) = 213 mÅ; T e = 7300 K; n e = 5.0 × 1011 cm–3; l = 1.3 × 107 cm) is on account of electron impacts (40%) and the Sun radiation scattering (60%).The parameters are shown to depend greatly on the prominence optical thickness in the lines of the first subordinate series of a hydrogen atom. In the course of determination all the parameters and 100 interconnected integral equations of the radiation diffusion have been thickness-averaged; the population of levels has been calculated by observations using the self-absorption factors.  相似文献   

9.
We derive upper limits to the radiation temperaturesT t(k) for emission near the fundamental and second harmonic of the electron plasma frequency in terms of the effective temperature for plasma wavesT l(k). We findT t(k)(c/(3)1/2 V e)3 T l(k) for emission near the fundamental which differs from the result of Melrose (1970b) by the factor in parentheses. This factor can exceed 4×104 in some plasmas. The conditions under which this limit could be reached are delinated. For emission near the second harmonicT t(k)T l(k) since the absorption coefficient in this case can only be positive.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

10.
Cosmological models are investigated within the framework of the bimetric theory of gravitation with a Lagrangian that is quadratic with respect to intensities g ik|l . It is shown that the theory predicts not only singular but also nonsingular solutions.  相似文献   

11.
The spectral energy distributions between λ 3700 Å and λ 8100 Å of the binary systems COU1289 and COU1291 have been measured with the Carl‐Zeiss‐Jena 1 m telescope of the Special Astrophysical Observatory. Their B, V, R magnitudes and BV colour indices were computed and compared with earlier investigations. Model atmospheres of both systems were constructed using a grid of Kurucz blanketed models, their spectral energy distributions in the continuous spectrum were computed and compared with the observational ones. The model atmosphere parameters for the components of COU1289 were derived as: T aeff = 7100 K, T beff = 6300 K, log g a = 4.22, log g b = 4.22, R a = 1.50 R, R b = 1.40 R, and for the components of COU1291 as: T aeff = 6400 K, T beff = 6100 K, log g a = 4.20, log g b = 4.35, R a = 1.47 R, R b = 1.12 R. The spectral types of both components of the system COU1289 were concluded as F1 and F7, and of the system COU1291 as F6 and F9. Finally the formation and evolution of the systems were discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Cosmology with the gravitational and cosmological constants generalized as coupling scalars in Einsteins theory is considered. A general method of solving the field equations is given. Exact solution for Zeldovich fluid satisfying G=G 0(R/R 0) n is given.  相似文献   

13.
In a stationary axisymmetric vacuum gravitational field, the conformal structure of the 3-space is determined by the symmetric, trace free and divergence-less tensor Yir. Using the Killing vector Ki of the axisymmetry, the conformal potential U can be defined by U,i = εijkKjYkrKr. Conversely, the tensor Yik is given algebraically in terms of the gradient U,i of the conformal potential. An attempt is made here to re-formulate the field equations Rλμ = 0 in terms of the conformal potential. Introducing the Ernst potential as a complex coordinate, the cylindrical radius can be eliminated from the field equations.  相似文献   

14.
We consider cosmology with the gravitational and cosmological constants generalized as coupling scalars in Einstein’s theory. A general method of solving the field equations is given. We study here the exact solutions for negative pressure models satisfying G=G 0(R/R 0) n .  相似文献   

15.
Pulsation of the Sun with a period of P0 ≈ 160 min discovered about two decades ago, is still waiting explanation. In view of the hypothesis about its cosmological origin, and attempting to find signature of this P0 periodicity among other (short-period variable) stars, the pulsation frequencies of δ Sct stars are subjected to specific analysis. With a confidence level ≈ 3.8σ it is found that the frequency v0 = P0−1 ≈ 104 m̈Hz, within the error limits, appears indeed to be the most “resonant” one for the total sample of 318 pulsating stars of δ Sct type (the most commensurable, or “synchronizing”, period for all these stars occurs to be 162 ± 4 min). We conjecture that a) the P0 oscillation might be connected with periodic fluctuations of gravity field (metrics), and b) the primary excitation mechanism of pulsations of δ Sct stars, reffected by this “ubiquitous” P0 resonance, must be attributed perhaps to superfast rotation of their inner cores (their rates tend to be in near-resonance with the “universal” v0 frequency). The arguments are given favouring a cosmoogical nature of the P0 oscillation.  相似文献   

16.
We address gravitation and inertia in the framework of a general gauge principle (GGP) which accounts for the gravitation gauge group G R generated by a hidden local internal symmetry implemented on the flat space. Following the method of phenomenological Lagrangians, we connect the group G R to a non-linear realization of the Lie group of the distortion G D of the local internal properties of six-dimensional flat space, M 6, which is assumed as a toy model underlying four-dimensional Minkowski space. We study the geometrical structure of the space of parameters and derive the Maurer–Cartan’s structure equations. We treat distortion fields as Goldstone fields, to which the metric and connection are related, and we infer the group invariants and calculate the conserved currents. The agreement between the proposed gravitational theory and available observational verifications is satisfactory. Unlike the GR, this theory is free of fictitious forces, which prompts us to address separately the inertia from a novel view point. We construct a relativistic field theory of inertia, which treats inertia as a distortion of local internal properties of flat space M 2 conducted under the distortion inertial fields. We derive the relativistic law of inertia (RLI) and calculate the inertial force acting on the photon in a gravitating system. In spite of the totally different and independent physical sources of gravitation and inertia, the RLI furnishes a justification for the introduction of the Principle of Equivalence. Particular attention is given to the realization of the group G R by the hidden local internal symmetry of the abelian group U loc=U(1) Y ×diag[SU(2)], implemented on the space M 6. This group has two generators, the third component T 3 of isospin and the hypercharge Y, implying Q d =T 3+Y/2, where Q d is the distortion charge operator assigning the number −1 to particles, but +1 to anti-particles. This entails two neutral gauge bosons that coupled to T 3 and Y. We address the rearrangement of the vacuum state in gravity resulting from these ideas. The neutral complex Higgs scalar breaks the vacuum symmetry leaving the gravitation subgroup intact. The resulting massive distortion field component may cause an additional change of properties of the spacetime continuum at huge energies above the threshold value.  相似文献   

17.
Aschwanden  Markus J.  Alexander  David 《Solar physics》2001,204(1-2):91-120
We present an analysis of the evolution of the thermal flare plasma during the 14 July 2000, 10 UT, Bastille Day flare event, using spacecraft data from Yohkoh/HXT, Yohkoh/SXT, GOES, and TRACE. The spatial structure of this double-ribbon flare consists of a curved arcade with some 100 post-flare loops which brighten up in a sequential manner from highly-sheared low-lying to less-sheared higher-lying bipolar loops. We reconstruct an instrument-combined, average differential emission measure distribution dEM(T)/dT that ranges from T=1 MK to 40 MK and peaks at T 0=10.9 MK. We find that the time profiles of the different instrument fluxes peak sequentially over 7 minutes with decreasing temperatures from T≈30 MK to 1 MK, indicating the systematic cooling of the flare plasma. From these temperature-dependent relative peak times t peak(T) we reconstruct the average plasma cooling function T(t) for loops observed near the flare peak time, and find that their temperature decrease is initially controlled by conductive cooling during the first 188 s, T(t)∼[1+(tcond)]−2/7, and then by radiative cooling during the next 592 s, T(t)∼[1−(trad)]3/5. From the radiative cooling phase we infer an average electron density of n e=4.2×1011 cm−3, which implies a filling factor near 100% for the brightest observed 23 loops with diameters of ∼1.8 Mm that appear simultaneously over the flare peak time and are fully resolved with TRACE. We reproduce the time delays and fluxes of the observed time profiles near the flare peak self-consistently with a forward-fitting method of a fully analytical model. The total integrated thermal energy of this flare amounts to E thermal=2.6×1031 erg. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1014257826116  相似文献   

18.
We introduce a new approach for investigating the weak field limit of vacuum field equations in f(R) gravity and we find the weak field limit of f(R)=R+μ 4/R gravity. Furthermore, we study the strong gravity regime in R+μ 4/R model of f(R) gravity. We show the existence of strong gravitational field in vacuum for such model. We find out in the limit μ→0, the weak field limit and the strong gravitational field can be regarded as a perturbed Schwarzschild metric.  相似文献   

19.
We investigate the late-time dynamics of a four-dimensional universe based on modified scalar field gravity in which the standard Einstein-Hilbert action R is replaced by f(φ)R+f(R) where f(φ)=φ 2 and f(R)=AR 2+BR μν R μν,(A,B)∈ℝ. We discussed two independent cases: in the first model, the scalar field potential is quartic and for this special form it was shown that the universe is dominated by dark energy with equation of state parameter w≈−0.2 and is accelerated in time with a scale factor evolving like a(t)∝t 5/3 and B+3A≈0.036. When, B+3A→∞ which corresponds for the purely quadratic theory, the scale factor evolves like a(t)∝t 1/2 whereas when B+3A→0 which corresponds for the purely scalar tensor theory we found when a(t)∝t 1.98. In the second model, we choose an exponential potential and we conjecture that the scalar curvature and the Hubble parameter vary respectively like R=hH[(f)\dot]/f,h ? \mathbbRR=\eta H\dot{\phi}/\phi,\eta\in\mathbb{R} and H=g[(f)\dot]c,(g,c) ? \mathbbRH=\gamma\dot{\phi}^{\chi},(\gamma,\chi)\in\mathbb{R}. It was shown that for some special values of  χ, the universe is free from the initial singularity, accelerated in time, dominated by dark or phantom energy whereas the model is independent of the quadratic gravity corrections. Additional consequences are discussed.  相似文献   

20.
A spatially homogeneous and anisotropic Bianchi type-VI0 space-time filled with perfect fluid in general relativity and also in the framework of f(R,T) gravity proposed by Harko et al. (in arXiv:1104.2669 [gr-qc], 2011) has been studied with an appropriate choice of the function f(R,T). The field equations have been solved by using the anisotropy feature of the universe in Bianchi type-VI0 space time. Some important features of the models, thus obtained, have been discussed. We noticed that the involvement of new function f(R,T) doesn’t affect the geometry of the space-time but slightly changes the matter distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号