首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 276 毫秒
1.
Compositional dependence of apparent partition coefficient of iron and magnesium between coexisting garnet and clinopyroxene from Mt. Higasiakaisi is studied by means of a multicomponent regular solution model. It is shown that garnet and clinopyroxene solid solutions are positively non-ideal, and the non-ideal parameters according to the symmetric regular solution model are 2.58 kcal and 2.39 kcal, respectively, assuming the equilibration temperature of the mass to be 550° C.Notations a i h activity of component i in phase h - ij interaction parameter of component i and j in a solid solution - i activity coefficient of component i - X i mole fraction of component i - K partition coefficient of Fe and Mg between coexisting garnet and clinopyroxene - K apparent partition coefficient of Fe and Mg between coexisting garnet and clinopyroxene - G 0 difference in free energy of the partition reaction - H 0 difference in enthalpy of the partition reaction - S 0 difference in entropy of the partition reaction - R gas constant - G garnet - Alm almandine component - Py pyrope component - Gr grossular component - Sp spessartine component - CPx clinopyroxene - Hd hedenbergite component - Di diopside component - Jd jadeite component - Ts Tschermac's molecule component Deceased on April 17, 1974.  相似文献   

2.
Thirteen energy-dispersive x-ray diffraction spectra for -Fe2SiO4 (spinel) collected in situ at 400° C and pressures to 24 GPa constitute the basis for an elevated-temperature static compression isotherm for this important high-pressure phase. A Murnaghan regression of these molar volume measurements yields 177.3 (±17.4) GPa and 5.4(±2.5) for the 400° C, room pressure values of the isothermal bulk modulus (K P 0) and its first pressure derivative (K P 0), respectively. When compared to the room-Tdeterminations of K P 0 available in the literature, our 400° C K P 0 yields -4.1 (±6.2)×10-2 GPa/degree for the average value of (K/T) P 0 over the temperature interval 25° C<><400°>A five-parameter V(P, T) equation for -Fe2SiO4 based on simultaneous regression of our data combined with the elevated P-Tdata of Yagi et al. (1987) and the extrapolated thermal expansion values from Suzuki et al. (1979) yields isochores which have very little curvature [(2 T/P 2) v 0], in marked contrast to the isochores for fayalite (Plymate and Stout 1990) which exhibit pronounced negative curvature [(T/P 2) v <0]. along=" the=">-Fe2SiO4 reaction boundary VRvaries from a minimum of approximately 8.3% at approximately 450° C to approximately 8.9% at 1200° C. Extrapolation of the fayalite and -Fe2SiO4 V(P, T) relationships to the temperature and pressure of the 400 km discontinuity suggests a V R of approximately 8.4% at that depth, approximately 10% less than the 9.3% V R at ambient conditions.  相似文献   

3.
This paper describes the distribution of Fe and Ni between the octahedral and tetrahedral sites in pentlandite (Fe,Ni)9S8. The dependence of the distribution on pressure and temperature and the activation energy of the cation exchange reaction were determined through annealing experiments. Synthetic crystals were annealed at 433–723 K and pressures up to 4 GPa, and natural crystals were annealed at 423, 448 and 473 K in evacuated silica capillary tubes for various durations. The cation distributions in the synthetic crystals were determined with an X-ray powder method employing the anomalous dispersion effect of CuK. and FeK radiations, while those of natural crystals were calculated from the cell dimensions. The values of U, S and V for the Fe/Ni exchange reaction are –6818 J mol–1, 20.52 J K–1 mol–1, and 6.99 × 10–6 m3 mol–1, respectively. The dependence of the Fe/Ni distribution on pressure (Pa) and temperature (Kelvin) was determined as lnK = 2.47+8.20 × 102 T –1+8.41 x 10–7 T –1 P, where K = (Fe/Ni)octahedral /(Fe/Ni)tetrahedral. The activation energy of the cation exchange reaction was 185 kJ mol–1.  相似文献   

4.
An order parameter treatment of the phase transitions in leucite, KAlSi2O6, at approximately 950 and 920 K: (cubic) I41 acd(tetragonal) I41 a(tetragonal) is presented in terms of Landau theory and induced representation theory. The Al-Si order with decreasing temperature is taken as the primary order parameter to which other distortions (K+ ion displacements, strain components, etc.) couple linearly. The expected Al-Si ordering behavior and the associated K+ ion displacements for both transitions are derived and the resulting twin domain orientations are listed. The sequence of phase transitions results from a coupling of 3 + and 4 + representations. The Landau free energy for the five-dimensional reducible representation has been simplified to two components resulting in a linearquadratic coupling of the components. Possible phase diagrams are derived by free energy minimization. The cubic tetragonal transition is first-order, whereas the tetragonal-tetragonal transition may be second order. A tricritical point exists at which the first-order transition changes to second-order.  相似文献   

5.
We show the steps followed for obtaining the principal reflectances of an absorbing uniaxial mineral, ilmenite, by use of the inference method derived from statistical reflectance parameters of the sample. The values obtained in air, at 580 nm, with this method are: R =19.6±0.3 and R =17.8±0.3.  相似文献   

6.
The transition from P213(T 4) to P212121(D 2 4 ) in the langbeinite K2Cd2(SO4)3 has been analyzed using group theoretical methods and previously published structural data above and below the transition. We find that because the transition is strongly first-order, the primary-order parameter has relatively large values at the transition temperature, and higher order terms which involve the order parameter, the strain, and the coupling of the two must be included in the Landau expansion for the free energy. Complex displacements occur at the transition for all atoms of the unit cell, but these displacements can be resolved into contributions which can be shown from symmetry considerations to transform as the 2 3 irrep of P2 1 3(T 4) as well as contributions from symmetry-preserving displacements which transform under the irrep 1. Therefore, the transition is not a simple one and involves sulfate rotations and cadmium and potassium ion displacements.  相似文献   

7.
Electron paramagnetic resonance (EPR) spectra of CO 3 3– molecule-ions stabilized by Sc3+ in natural calcite were identified and studied at X-band frequencies and room temperature. The principal values of the g-tensor (g xx= 1.9997, g yy = 2.0030, g zz = 1.9972) and the direction cosines of the g and A tensors for CO 3 3– -Sc3+ center were found to be close to that for the well-known CO 3 3– -Y3+ center. A quantitative comparison of different impurity contents in calcite samples and analysis of the intensities of forbidden transitions were used to identify Sc3+. An estimation of the unpaired electron spin density on the nuclei of paramagnetic centers confirms that both centers, CO 3 3– -Sc3+ and CO 3 3– -Y3+, have the same nature.  相似文献   

8.
A new potassium uranyl selenate compound K(UO2)(SeO4)(OH)(H2O) has been synthesized for the first time using the technique of evaporation from water solution. Its crystal structure has been solved by direct methods (monoclinic, P21/c,a = 8.0413(9) Å, b = 8.0362(9) Å, c = 11.6032(14) Å, β = 106.925(2)°, V = 717.34(14) Å3) and refined to R 1 = 0.0319 (wR 2 = 0.0824) for 1285 reflections with |F 0| > 4σ F . The structure consists of [(UO2(SeO4)(OH)(H2O)]? chains extending along axis b. In the chains, the uranyl pentagonal bipyramids are linked via bridged hydroxyl anions and tetrahedral oxoanions [SeO4]2?. Potassium ions are situated between these chains. No chains of that type have been observed in uranyl compounds earlier, but they had been detected in the structures of butlerite, parabutlerite, uklonskovite, fibroferrite, and a number of synthetic compounds.  相似文献   

9.
Summary The new mineral orschallite, Ca3(SO3)2SO4 · 12H2O, was found at the Hannebacher Ley near Hannebach, Eifel, Germany. Crystal structure analysis of the mineral, chemical analysis and water determination on synthetic material gave the composition Ca3(SO3)2SO4 · 12H2O. The mineral crystallizes in space group with a = 11.350(1), c = 28.321(2) Å, V = 3159.7 Å3, Z = 6, Dc = 1.87 Mg/m3, Dm = 1.90(3) Mg/m3. It is uniaxial positive with the optical constants = 1.4941, = 1.4960(4). The strongest lines in the powder pattern are (d-value (Å), I, hkl) 5.73, 100, 1 0 4/8.11, 80, 0 1 2/2.69, 80, 3 0 6/3.63, 60, 1 1 6/3.28, 40, 3 0 0. Refinement of the crystal structure led to a weighted residual of Rw = 0.043 for 600 observed reflections with I > 2(I) and 52 variable parameters.
Orschallit, Ca3(SO3)2SO4 · 12H2O, ein neues Kalzium-Sulfat-Sulfat-Hydrat-Mineral
Zusammenfassung Das neue Mineral Orschallit, Ca3(SO3)2SO4 · 12H2O, wurde in der Hannebacher Ley bei Hannebach, Eifel, Deutschland gefunden. Eine Analyse der Kristallstruktur an einem Einkristall des natürlichen Materials, chemische Analyse und Wasserbestimmung an synthetischem Material ergaben die Zusammensetzung Ca3(SO3)2SO4 · 12H2O. Das Mineral kristallisiert in der Raumgruppe mit a = 11.350(1), c = 28.321(2) Å, V = 3159.7 Å3, Z = 6, Dc = 1.87 Mg/m3, Dm = 1.90(3) Mg/m3. Es ist optisch einachsig mit den optischen Konstanten = 1.4941, = 1.4960(4). Die stärksten Linien des Pulver-diagramms liegen bei (d-Wert (Å), I, hkl) 5.73, 100, 1 0 4/8.11, 80, 0 1 2/2.69, 80, 3 0 6/3.63, 60; 1 1 6/3.28, 40, 3 0 0. Die Verfeinerung der Kristallstruktur ergab einen gewichteten Residualwert Rw = 0.043 für 600 beobachtete Reflexe mit I > 2(I) und 52 variable Parameter.


With 5 Figures  相似文献   

10.
Al-Si ordering in Sr-feldspar has been followed by isothermal annealing, starting from a disordered metastable configuration. Ordering could not be followed by changes in the spontaneous strain as cell parameters did not show significant changes with thermal treatment from 0.016 h to 452 h at T=1350° C, while, on the contrary, significant changes in IR spectra are observed. A single crystal obtained from melt (Q od 0) has been progressively heated up to 678 h at T=1350° C and the relevant structural refinements enabled to monitor changes in degree of Al-Si order up to Qod = 0.86. In isothermal treatment for Sr-feldspar it is observed a significantly lower Q od than in anorthite after the same annealing time. TEM observation has shown in Sr-feldspar, also for shortest annealing, b type reflections, while in anorthite, in the same conditions, e type reflections have been observed (Carpenter 1991a). In the first stages of ordering b APDs sized 100 Å (at T=1350° C, 0.33 h) have been observed in Sr-feldspar; APD coarsening occurs with an activation energy of 120±7 kcal mol-1, not significantly different from anorthite. The ordering process seems to be a slower process in Sr-feldspar than in anorthite, even though data from longer annealing suggest that the Q od close to the equilibrium is the same in Sr and Ca-feldspar (Q od = 0.86 at T=1350° C).  相似文献   

11.
The behaviour of synthetic Mg-ferrite (MgFe2O4) has been investigated at high pressure (in situ high-pressure synchrotron radiation powder diffraction at ESRF) and at high temperature (in situ high-temperature X-ray powder diffraction) conditions. The elastic properties determined by the third-order Birch–Murnaghan equation of state result in K0=181.5(± 1.3) GPa, K=6.32(± 0.14) and K= –0.0638 GPa–1. The symmetry-independent coordinate of oxygen does not show significant sensitivity to pressure, and the structure shrinking is mainly attributable to the shortening of the cell edge (homogeneous strain). The lattice parameter thermal expansion is described by a0+a1*(T–298)+a2/(T–298)2, where a0=9.1(1) 10–6 K–1, a1=4.9(2) 10–9 K–2 and a2= 5.1(5) 10–2 K. The high-temperature cation-ordering reaction which MgFe-spinel undergoes has been interpreted by the ONeill model, whose parameters are = 22.2(± 1.8) kJ mol–1 and =–17.6(± 1.2) kJ mol–1. The elastic and thermal properties measured have then been used to model the phase diagram of MgFe2O4, which shows that the high-pressure transition from spinel to orthorombic CaMn2O4-like structure at T < 1700 K is preceded by a decomposition into MgO and Fe2O3.  相似文献   

12.
The volume of fluid and amount of heat involved in a portion of a metamorphic event around three synmetamorphic granitic stocks has been quantitatively estimated using mineral composition and modal data from carbonate rocks. Values of volumetric fluid-rock ratios range, with respect to a reference zoisite isograd, from 0.001 to 0.434. Amounts of heat involved range from –25 to 134 cal/cm3 rock. Contours of constant fluid-rock ratio and of constant amount of heat are generally concentric about the granitic stocks indicating that the stocks are foci of high heat and fluid fluxes during metamorphism. In addition, contours of fluid-rock ratios and amount of heat outline NE-SW-trending channelways of high fluid and heat fluxes that alternate with regions of lower fluid and heat fluxes. The NE-SW-trending vertical bedding and schistosity in the area — of premetamorphic origin — probably constrained fluid and heat transfer to occur preferentially in NE-SW directions. Large values of heat involved in metamorphism are strongly correlated with large fluid-rock ratios, suggesting that fluids are an important carrier of heat during metamorphism. Configurations of mapped isograds in the area mimic the patterns of contours of constant fluid-rock ratio and of heat content, indicating that configurations of isograds may contain useful information about regional patterns of heat and fluid transfer during metamorphism.Notation T Last temperature recorded by metacarbonate rocks (°C) - P Lithostatic pressure (bars) - Pi Partial pressure of component i (bars) - of last fluid in equilibrium with carbonate rocks during metamorphism - R 1.987 cal/bar-degree - K s Activity constant for an assemblage of solid mineral phases - In Natural logarithm - c v Volumetric heat capacity (cal/cm3-degree) - Q Heat added to or subtracted from a rock during metamorphism in the zoisite zone (kcal/100 cm3 rock; cal/cm3 rock) - Q{ibrxn} Heat added to or subtracted from a rock due to mineral reactions during metamorphism in the zoisite zone (kcal/100 cm3 rock; cal/cm3 rock) - Std. Dev. Standard Deviation - Average of fluid in equilibrium with carbonate rocks during their metamorphism in the zoisite zone - of fluid in equilibrium with carbonate rocks at the zoisite isograd - T Temperature at the zoisite isograd (°C) - X i,j Mole fraction of component i in phase j - H i Molar enthalpy of reaction i at 0 bars pressure - ¯V i Change of molar volume due to reaction ii - i Measure of progress of reaction i - V Change in rock volume due to fluid-rock reactions - iV Initial rock volume before metamorphism within the zoisite zone - ¯V s,i Change in molar volume of solid minerals due to reaction i Component notation an CaAl2Si2O8 Phase notation Pl Plagioclase - Am Amphibole - Cc Calcite - Qz Quartz - Di Diopside - Zo Zoisite - Ga Garnet - Bi Biotite - Kf Microcline - Mu Muscovite  相似文献   

13.
This study examines the links between 31P solidstate NMR studies of aluminum phosphate minerals and their crystallographic structures. We found that 31P isotropic chemical shift values, iso, carry little information about mineral structures. There seems to be no relation between the chemical shift anisotropy, =3311 (33>22> 11), and indicies of phosphate-tetrahedra distortion. 31P1H heteronuclear magnetic dipole interactions, on the other hand, carry important information about hydrous phosphate mineral structures, information that should prove to be quite valuable in studies of phosphate adsorbed on mineral surfaces. This interaction can be measured through a variety of qualitative and quantitative experiments. It appears that spin diffusion is so rapid that subtle differences in hydrogen-bonding environments cannot be resolved.  相似文献   

14.
Structural parameters and thermodynamic properties of strontianite — witherite solid solutions have been studied by X-ray powder diffraction, heat flux Calvet calorimetry and cation-exchange equilibria technique. X-ray study of the synthetic samples have shown linear and quadratic (for c-parameter) composition dependencies of the lattice constants in the carbonate solid solution. The thermodynamic energy parameters demonstrate the non-ideal character of strontianite — witherite solid solutions. Enthalpies of solution of the samples have been measured in 2PbO*B2O3 at 973 K. The new data on the enthalpy of formation H f,298.15 0 of SrCO3 and BaCO3 were obtained: -1231.4±3.2 and -1209.9±5.8 kJ*mol-1 respectively. The enthalpy of mixing of the solid solution was found to be positive and asymmetric with maximum at XBa (carbonate)=0.35. The composition dependence of the enthalpy of mixing may be described by two — parametric Margules model equation: H mix=X BaX Sr[(4.40±3.91)X Ba+(28.13±3.91)X Sr] kJmol–1 Cation-exchange reactions between carbonates and aqueous SrCl2-BaCl2 supercritical solutions (fluids) were carried out at 973 and 1073 K and 2 kbar. Calculated Margules model parameters of the excess free energy are: for orthorhombic carbonate solid solutions W Sr=W Ba=11.51±0.40 kJmol–1 (973 K) and W Sr=W Ba=12.09±0.95 kJmol (1073 K) for trigonal carbonate solid solutions W Sr=W Ba=13.55±0.40 kJmol (1073 K).  相似文献   

15.
The electrochemical reduction of xanthoconite, proustite, pyrostilpnite, and pyrargyrite was studied by abrasive stripping voltammetry, a technique which is based upon a preliminary mechanical transfer of trace amounts of the mineral onto the surface of a paraffin impregnated graphite electrode. Because the electrochemical reduction proceeds near to reversibility and is very similar for each pair of minerals, the peak potentials in differential pulse voltammetry can be used to calculate the standard enthalpy of phase transformation of xanthoconite to proustite and of pyrostilpnite to pyrargyrite: T H (xanth proust) O = 35.46 ± 14.15 kJ/mol and T H (pyrostilp pyrarg) O = 38.85 ± 6.60 kJ/mol. These values are not accessible otherwise until now.  相似文献   

16.
We have performed a detailed Mössbauer study of synthetic annites on the (OH, F)-join. Recently developed data treatment and spectral analysis methods were used to extract true intrinsic Fe2+ quadrupole splitting distributions (QSDs) that represent the most information that can be resolved from the spectra. The overall room temperature (RT) QSDs can be consistently interpreted in terms of four QSD contributions (or populations) centered at: QSHH2.55 mm/s for Fe2+O4(OH)2 octahedra (cis and trans not resolved), QSHF 2.35 mm/s for Fe2+O4(OH)F octahedra (cis and trans not resolved), QScFF2.15 mm/s for cis-Fe2+O4F2 octahedra, and QStFF 1.5 mm/s for trans-Fe2+O4F2 octahedra. Each such contribution has a width ( 0.2 mm/s) caused by distortions of the octahedra. Minor contributions due to Fe2+O5(OH) and Fe2+O5F octahedra probably also contribute to the overall Fe2+ QSDs. The ferric iron spectral components were also characterized. Here, two distinct types of octahedral Fe3+ contributions are seen and interpreted as being due mainly to Fe3+O5OH and Fe3+O5F octahedra, respectively. Tetrahedral Fe3+ is seen only in the OH-annite end-member and the total Fe3+ content drops significantly on addition of F. On leave from: Department of Materials Physics, University of Science and Technology Beijing, 100083 Beijing, China  相似文献   

17.
Summary Nickenichite is a new mineral found close to the village of Nickenich at the Nickenicher Sattel, Eifel, Germany. The chemical composition is NaxCayCuz(Mg, Fe, Al)3(AsO4)3, x 0.8, y 0.4, 0.4 and was derived by means of electron microprobe analyses and by a crystal structure investigation. The latter was determined from single-crystal X-ray data:a = 11.882(4)Å,b = 12.760(4)Å,c = 6.647(2)Å, = 112.81(2)°, space group C2/c,Z = 4;R = 0.053 andR w = 0.033 from 984 observed data and 102 free variables. Nickenichite is structurally related to the minerals o'danielite and johillerite. The two crystallographically different octahedrally coordinated cation positionsMe = (Mg, Fe, Al) have averageMe-O distances of 2.108 Å and 2.056 Å, octahedra share edges to form zig-zag chains in ; the chains are interconnected by AsO4 tetrahedra. In addition the compound is characterized by partially occupied Na[4+4], Ca[6+2] and Cu[4] positions.
Nickenichit, ein neues Arsenat aus der Eifel, Deutschland
Zusammenfassung Nickenichit ist ein neues Mineral, das nahe dem Ort Nickenich, am Nickenicher Sattel, Eifel, Deutschland, gefunden wurde. Die chemische Formel ist NaxCayCuz, (Mg, Fe, Al)3(AsO4)3, x 0,8, y 0,4, z 0,4 und wurde mittels Elektronenstrahl-Mikrosondenanalysen und einer Kristallstrukturuntersuchung ermittelt. Letztere wurde mit Einkristall-Röntgendaten durchgeführt:a = 11,882(4) Å,b = 12,760(4) Å,c = 6,647(2) Å, = 112,81(2)°, Raumgruppe C2/c,Z = 4;R = 0,053 undR w = 0,033 für 984 beobachtete Daten und 102 freie Variable. Nickenichit zeigt enge strukturelle Beziehungen zu den Mineralen O'Danielit und Johillerit. Die zwei kristallographisch verschiedenen oktaedrisch koordinierten KationpositionenMe = (Mg, Fe, Al) haben mittlereMe-O-Abstände von 2,108 Å und 2,056 Å, die Oktaeder werden über Kanten zu zick-zack-artigen Ketten in verknüpft, diese werden untereinander über AsO4-Tetraeder vernetzt. Des weiteren ist die Verbindung durch partiell besetzte Na[4+4]-, Ca[6+2]- und Cu[4]-Positionen charakterisiert.


With 2 Figures  相似文献   

18.
Spatial factor analysis (SFA) is a multivariate method that determines linear combinations of variables with maximum autocorrelation at a given lag. This is achieved by deriving estimates of auto-/cross-correlations of the variables and calculating the corresponding eigenvectors of the covariance quotient matrix. A two-point spatial factor analysis model derives factors by the formation of transition matrixU comparing auto-/cross-correlations at lag 0,R 0, with those at a specified lag d,R d, expressed asU d=R 0 –1 Rd. The matrixU d can be decomposed into its spectral components which represent the spatial factors. The technique has been extended to include three points of reference. Spatial factors can be derived from the relationship:
  相似文献   

19.
An internal variable model for the creep of rocksalt   总被引:3,自引:0,他引:3  
Summary The creep strain rate of rocksalt, like that of other ductile crystalline materials, can be described by a power law equation of the type ( ) n , where the active stress is the difference between the total deviatoric applied stress and an internal stress i . In this paper, the origin and the nature of this internal stress, which develops during inelastic deformation of the material, are discussed. It is shown that this internal stress can serve as an internal (or state) variable in the constitutive model of rocksalt, which reflects the microstructure evolution of the material under the competitive action of hardening and recovery mechanisms.An analysis of experimental data, both our own and those taken from the literature, demonstrates that such a law is able to correctly reproduce rocksalt creep test results in the steady-state domain. The proposed model is in accordance with the macroscopic and microscopic behavior of salt, and with direct measurements of the internal stresses made by others on this material.  相似文献   

20.
Relaxation times (T1) and lineshapes were examined as a function of temperature through the - transition for 29Si in a single crystal of amethyst, and for 29Si and 17O in cristobalite powders. For single crystal quartz, the three 29Si peaks observed at room temperature, representing each of the three differently oriented SiO4 tetrahedra in the unit cell, coalesce with increasing temperature such that at the - transition only one peak is observed. 29Si T1's decrease with increasing temperature up to the transition, above which they remain constant. Although these results are not uniquely interpretable, hopping between the Dauphiné twin related configurations, 1 and 2, may be the fluctuations responsible for both effects. This exchange becomes observable up to 150° C below the transition, and persists above the transition, resulting in -quartz being a time and space average of 1 and 2. 29Si T1's for isotopically enriched powdered cristobalite show much the same behavior as observed for quartz. In addition, 17O T1's decrease slowly up to the - transition at which point there is an abrupt 1.5 order of magnitude drop. Fitting of static powder 17O spectra for cristobalite gives an asymmetry parameter () of 0.125 at room T, which decreases to <0.040 at=" the=" transition=" temperature.=" the=" electric=" field=" gradient=" (efg)=" and=" chemical=" shift=" anisotropy=" (csa),=" however,=" remain=" the=" same,=" suggesting=" that=" the=" decrease=" in="> is caused by a dynamical rotation of the tetrahedra below the transition. Thus, the mechanisms of the - phase transitions in quartz and cristobalite are similar: there appears to be some fluctuation of the tetrahedra between twin-related orientations below the transition temperature, and the -phase is characterized by a dynamical average of the twin domains on a unit cell scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号