首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Adriatic Sea general circulation model coupled to a third generation wave model SWAN and a sediment transport model was implemented in the Adriatic Sea to study the dynamics of the sediment transport and resuspension in the northern Adriatic Sea (NAS) during the Bora event in January 2001. The bottom boundary layer (BBL) was resolved by the coupled model with high vertical resolution, and the mechanism of the wave–current interaction in the BBL was also represented in the model. The study found that, during the Bora event of 13–17 January 2001, large waves with significant wave height 2 m and period of 5 s were generated by strong winds in the northwestern shelf of the Adriatic where the direction of wave propagation was orthogonal to the current. The combined motion of the wave and current in the BBL increased the bottom stress over the western Adriatic shelf, resulting in stronger sediment resuspension there. Combining stronger bottom resuspension and strong upward vertical flux of resuspended sediments due to turbulent mixing, the model predicted that sediment concentration near the Po River was much higher than that predicted by the model run without wave forcing. The study also shows that wave–current interaction in the BBL reduced the western Adriatic Coastal Currents (WACCs) in the shallower north. It is concluded that wave forcing significantly changed the sediment distributions and increased the total horizontal fluxes over the western shelf. These results signified wave effect on sediment flux and distribution in the NAS, and suggested that waves cannot be neglected in the study of dynamics of sediment transport and resuspension in the shallow coastal seas. By including the tidal forcing in the coupled model, we also examined the effect of tides on the sediment transport dynamics in the NAS.  相似文献   

2.
Wave measurement and modeling in Chesapeake Bay   总被引:4,自引:0,他引:4  
Three recently measured wind and wave data sets in the northern part of Chesapeake Bay (CB) are presented. Two of the three data sets were collected in late 1995. The third one was collected in July of 1998. The analyzed wind and wave data show that waves were dominated by locally generated, fetch limited young wind seas. Significant wave heights were highly correlated to the local driving wind speeds and the response time of the waves to the winds was about 1 h. We also tested two very different numerical wave models, Simulation of WAves Nearshore (SWAN) and Great Lakes Environmental Research Laboratory (GLERL), to hind-cast the wave conditions against the data sets. Time series model–data comparisons made using SWAN and GLERL showed that both models behaved well in response to a suddenly changing wind. In general, both SWAN and GLERL over-predicted significant wave height; SWAN over-predicted more than GLERL did. SWAN had a larger scatter index and a smaller correlation coefficient for wave height than GLERL had. In addition, both models slightly under-predicted the peak period with a fairly large scatter and low correlation coefficient. SWAN predicted mean wave direction better than GLERL did. Directional wave spectral comparisons between SWAN predictions and the data support these statistical comparisons. The GLERL model was much more computationally efficient for wind wave forecasts in CB. SWAN and GLERL predicted different wave height field distributions for the same winds in deeper water areas of the Bay where data were not available, however. These differences are as yet unresolved.  相似文献   

3.
Source term balance in a severe storm in the Southern North Sea   总被引:1,自引:1,他引:0  
This paper presents the results of a wave hindcast of a severe storm in the Southern North Sea to verify recently developed deep and shallow water source terms. The work was carried out in the framework of the ONR funded NOPP project (Tolman et al. 2013) in which deep and shallow water source terms were developed for use in third-generation wave prediction models. These deep water source terms for whitecapping, wind input and nonlinear interactions were developed, implemented and tested primarily in the WAVEWATCH III model, whereas shallow water source terms for depth-limited wave breaking and triad interactions were developed, implemented and tested primarily in the SWAN wave model. So far, the new deep-water source terms for whitecapping were not fully tested in shallow environments. Similarly, the shallow water source terms were not yet tested in large inter-mediate depth areas like the North Sea. As a first step in assessing the performance of these newly developed source terms, the source term balance and the effect of different physical settings on the prediction of wave heights and wave periods in the relatively shallow North Sea was analysed. The December 2013 storm was hindcast with a SWAN model implementation for the North Sea. Spectral wave boundary conditions were obtained from an Atlantic Ocean WAVEWATCH III model implementation and the model was driven by hourly CFSR wind fields. In the southern part of the North Sea, current and water level effects were included. The hindcast was performed with five different settings for whitecapping, viz. three Komen type whitecapping formulations, the saturation-based whitecapping by Van der Westhuysen et al. (2007) and the recently developed ST6 whitecapping as described by Zieger et al. (2015). Results of the wave hindcast were compared with buoy measurements at location K13 collected by the Dutch Ministry of Transport and Public Works. An analysis was made of the source term balance at three locations, the deep water location North Cormorant, the inter-mediate depth location K13 and at location Wielingen, a shallow water location close to the Dutch coast. The results indicate that at deep water the source terms for wind input, whitecapping and nonlinear four-wave interactions are of the same magnitude. At the inter-mediate depth location K13, bottom friction plays a significant role, whereas at the shallow water location Wielingen also depth-limited wave breaking becomes important.  相似文献   

4.
There is increasing observational evidence of nonlinear wave–wave interactions in space and astrophysical plasmas. We first review a number of theoretical models of nonlinear wave–wave interactions which our group has developed in the past years. We next describe a nonlinear three-mode truncated model of Alfvén waves, involving resonant interactions of one linearly unstable mode and two linearly damped modes. We construct a bifurcation diagram for this three-wave model and investigate the phenomenon of intermittent chaos. The theoretical results presented in this paper can improve our understanding of intermittent time series frequently observed in space and astrophysical plasmas.  相似文献   

5.
To provide coastal engineers and scientists with a quantitative evaluation of nearshore numerical wave models in reef environments, we review and compare three commonly used models with detailed laboratory observations. These models are the following: (1) SWASH (Simulating WAves till SHore) (Zijlema et al. 2011), a phase-resolving nonlinear shallow-water wave model with added nonhydrostatic terms; (2) SWAN (Simulating WAve Nearshore) (Booij et al. 1999), a phase-averaged spectral wave model; and (3) XBeach (Roelvink et al. 2009), a coupled phase-averaged spectral wave model (applied to modeling sea-swell waves) and a nonlinear shallow-water model (applied to modeling infragravity waves). A quantitative assessment was made of each model’s ability to predict sea-swell (SS) wave height, infragravity (IG) wave height, wave spectra, and wave setup ( \( \overline{\eta} \) ) at five locations across the laboratory fringing reef profile of Demirbilek et al. (2007). Simulations were performed with the “recommended” empirical coefficients as documented for each model, and then the key wave-breaking parameter for each model (α in SWASH and γ in both SWAN and XBeach) was optimized to most accurately reproduce the observations. SWASH, SWAN, and XBeach were found to be capable of predicting SS wave height variations across the steep fringing reef profile with reasonable accuracy using the default coefficients. Nevertheless, tuning of the key wave-breaking parameter improved the accuracy of each model’s predictions. SWASH and XBeach were also able to predict IG wave height and spectral transformation. Although SWAN was capable of modeling the SS wave height, in its current form, it was not capable of modeling the spectral transformation into lower frequencies, as evident in the underprediction of the low-frequency waves.  相似文献   

6.
Data assimilation technique (adjoint method) is applied to study the similarities and the differences between the Ekman (linear) and the Quadratic (nonlinear) bottom friction parameterizations for a two-dimensional tidal model. Two methods are used to treat the bottom friction coefficient (BFC). The first method assumes that the BFC is a constant in the entire computation domain, while the second applies the spatially varying BFCs. The adjoint expressions for the linear and the nonlinear parameterizations and the optimization formulae for the two BFC methods are derived based on the typical Largrangian multiplier method. By assimilating the model-generated ‘observations’, identical twin experiments are performed to test and validate the inversion ability of the presented methodology. Four experiments, which employ the linear parameterization, the nonlinear parameterizations, the constant BFC and the spatially varying BFC, are carried out to simulate the M2 tide in the Bohai Sea and the Yellow Sea by assimilating the TOPEX/Poseidon altimetry and tidal gauge data. After the assimilation, the misfit between model-produced and observed data is significantly decreased in the four experiments. The simulation results indicate that the nonlinear Quadratic parameterization is more accurate than the linear Ekman parameterization if the traditional constant BFC is used. However, when the spatially varying BFCs are used, the differences between the Ekman and the Quadratic approaches diminished, the reason of which is analyzed from the viewpoint of dissipation rate caused by bottom friction. Generally speaking, linear bottom friction parameterizations are often used in global tidal models. This study indicates that they are also applicable in regional ocean tidal models with the combination of spatially varying parameters and the adjoint method.  相似文献   

7.
太湖波浪数值模拟   总被引:8,自引:7,他引:1  
在太湖实际波浪观测的基础上,采用率定验证后的第三代动谱平衡方程,考虑实际水底地形、波浪折射、浅化、反射、破碎、湖流等条件下,对太湖波浪进行数值模拟,研究太湖波浪的主要影响因素.结果表明:SWAN模型可以较好地模拟风作用下太湖风浪的生成和传播过程,模型在太湖应用是合适的;波高、波长、波周期等波浪参数在太湖的分布与风速、风向、水深等因素密切相关;在相同风向、不同风速情况下,太湖波浪发展至稳定状态的时间不一样;在不同风向,相同风速持续作用下,有效波高达到稳定的时间差不多,变化趋势也比较相同.说明波浪的发展不光取决于风速的大小,还同风的持续吹的时间和风区长度有关.  相似文献   

8.
Erosion due to waves is an important and actual problem for most coastal areas of the North Sea. The objective of this study was to estimate the impact of wave action on the coastline of Sylt Island. From a 2-year time series (November 1999 to October 2001) of hydrological and wave parameters generated with a coupled wave–current modelling system, a period comprising storm ‘Anatol’ (3–4 December 1999) is used to investigate the effects of waves on currents and water levels and the input of wave energy into the coastline. The wave-induced stress causes an increase of the current velocity of 1 m/s over sand and an additional drift along the coast of about 20 cm/s. This produces a water level increase of more than 20 cm in parts of the tidal basin. The model system also calculates the wave energy input into the coastline. Scenario runs for December 1999 with a water level increase of 50 cm and wind velocity increased by 10% show that the input of the wave energy into the west coast of Sylt Island increases by 30% compared to present conditions. With regard to the forecasted near-future (Woth et al., Ocean Dyn 56:3–15, 2006) increase of strong storm surges, the scenario results indicate an increased risk of coastal erosion in the surf zone of Sylt Island.  相似文献   

9.
A two-dimensional vertically integrated model of the North Sea is used to compute the distribution of M2 and M4 tidal elevations and currents over the region. Comparison of computed and observed elevations and currents in the area shows that the model can accurately reproduce the M2 tide in the North Sea, although there are difficulties with the M4 tide particularly in the northern North Sea.Comparison between model and a large number of observations collected in a shallow water region off the east coast of England, revealed that the model can accurately reproduce the tides even in near coastal regions, where model resolution problems can occur. Comparisons of computed and observed M2 tidal energy fluxes in this region, show that model and observations agree to within the order of 10% (the error associated with the necessary interpolation of the observations in order to compute the energy flux).The problem of computing energy dissipation in the area by subtracting the energy fluxes into and out of the region is shown to be ill-conditioned in that the energy dissipation in the area is comparable to the error in the energy flux. Consequently for the sea region considered here it is not meaningful to compare this energy budget with energy dissipation due to bottom friction.Energy dissipation for the whole of the North Sea is computed using the numerical model and the geographical distribution of dissipation due to bottom friction is given for the M2 tide.  相似文献   

10.
11.
Severe sea states in the North Sea present a challenge to wave forecasting systems and a threat to offshore installations such as oil and gas platforms and offshore wind farms. Here, we study the ability of a third-generation spectral wave model to reproduce winter sea states in the North Sea. Measured and modeled time series of integral wave parameters and directional wave spectra are compared for a 12-day period in the winter of 2013–2014 when successive severe storms moved across the North Atlantic and the North Sea. Records were obtained from a Doppler radar and wave buoys. The hindcast was performed with the WAVEWATCH III model (Tolman 2014) with high spectral resolution both in frequency and direction. A good general agreement was obtained for integrated parameters, but discrepancies were found to occur in spectral shapes.  相似文献   

12.
The main objective of this study is the characterization of the wave climate in the Southern Brazilian Shelf (SBS) based on a thorough review of existing field data and on numerical modeling experiments. A quantitative knowledge about the wave climate of this area is important to understand the mechanisms driving episodic mud bank attachments to the sandy shore, and the interaction of these banks with the flow and waves. The statistical analysis of existent data on the wave climate throughout the SBS indicates that the predominant wave directions are 100° and 160° (E–SE), with wave heights varying between 1 and 1.50 m. The wave period varies between 6 and 14 s, with predominance of mean wave period of 8 s (sea conditions) and 12 s (swell conditions). The spectral wave model SWAN version 40.41 [Booij, N., Haagsma, I.J.G., Holthuijsen, L.H., Kieftenburg, A.T.M.M., Ris, R.C., van der Westhuysen, A.J., Zijlema, M., 2004. SWAN Cycle III Version 40.41 Users Manual, Delft University of Technology, Delft, The Netherlands, p. 118, http://fluidmechanics.tudelft.nl/swan/index.htm] is used to simulate the wave climate for the region. Special attention is given to Cassino Beach, describing the wave climate observed during the Cassino Experiment, carried out in 2005. The verification of the standard SWAN model was carried out based on the comparison between numerical modeling results and available data of significant wave height, peak period, mean wave direction and energy density for the period relative to February of 1998. Results showed satisfactory model predictions of significant wave height and reasonably accurate predictions of peak spectral wave period and direction. The model performance is also considered satisfactory in the representation of the wave climate of the region when the wave spectrum has only one spectral peak, but presents limitations for bimodal wave spectrum. When two spectral peaks are observed, the SWAN model agrees with the spectral level observed in the low frequency, but underestimates the spectral level in the high-frequency band. When considering the presence of mud deposits in the area, model results predict that although the presence of mud attenuates most of the wave energy on the low frequency peak, it has a smaller effect in attenuating the wave energy on the high frequency peak.  相似文献   

13.
The MECO hydrodynamic model (MECO Technical Report No. OMR-118/120, CSIRO Marine Research, 1998) was adapted for the Torres Strait–Gulf of Papua region at 0.05° resolution. Validation of the hydrodynamic model was carried out against observed current meter data and calculated tidal sea levels. Dispersal pathways of sediments derived from the Fly River, and from a resuspension event along the northern Great Barrier Reef were investigated using an Eulerian approach. Sediment input into Torres Strait is found to be greater during the Trade season by approximately 10%. Wave data were also obtained, and together with hydrodynamic model output, sediment mobility due to currents, waves and wave–current interactions was considered for both the Trade and Monsoon seasons. Sediment mobility in the Gulf of Papua is dominated by wave motion, whereas Torres Strait is a mixed environment of waves and tidal currents.  相似文献   

14.
Monitoring and modeling of the distribution of suspended particulate matter (SPM) is an important task, especially in coastal environments. Several SPM models have been developed for the North Sea. However, due to waves in shallow water and strong tidal currents in the southern part of the North Sea, this is still a challenging task. In general there is a lack of measurements to determine initial distributions of SPM in the bottom sediment and essential model parameters, e.g., appropriate exchange coefficients. In many satellite-borne ocean color images of the North Sea a plume is visible, which is caused by the scattering of light at SPM in the upper ocean layer. The intensity and length of the plume depends on the wave and current climate. It is well known that the SPM plume is especially obvious shortly after strong storm events. In this paper a quasi-3-D and a 3-D SPM transport model are presented. Utilizing the synergy of satellite-borne ocean color data with numerical models, the vertical exchange coefficients due to currents and waves are derived. This results in models that for the first time are able to reproduce the temporal and spatial evolution of the plume intensity. The SPM models consist of several modules to compute ocean dynamics, the vertical and horizontal exchange of SPM in the water column, and exchange processes with the seabed such as erosion, sedimentation, and resuspension. In the bottom layer, bioturbation via benthos and diffusion processes is taken into account.Responsible Editor: Jörg-Olaf Wolff  相似文献   

15.
The impact of a non-rigid seafloor on the wave climate at Cassino Beach, Brazil, May–June 2005 is studied using field measurements and a numerical wave model. The measurements consist of wave data at four locations; rheology and mud thickness from grab samples; and an estimate of the horizontal distribution of mud based on echo-soundings. The dissipation of waves by a non-rigid bottom is represented in the wave model by treating the mud layer as a viscous fluid. Applied for 431 time periods, the model without this type of dissipation has a strong tendency to overpredict nearshore wave energy, except during a period of large storm waves. Two model variations which include this dissipation have a modest tendency to underpredict the nearshore wave energy. An inversion methodology is developed and applied to infer an alternate mud distribution which, when used with the wave model, yields the observed waveheights.  相似文献   

16.
The response of the tidal system in the southern North Sea to morphodynamic changes was investigated in a modelling study using fine resolution bathymetric observations available for 1982–2011. The Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM) was set up for the different sets of bathymetries. One set of bathymetry was compiled from a large number of bathymetric measurements over many years, while the other two reflected bathymetry state in the area of Wadden Sea during 2000 and 2011, respectively. The temporal and spatial evolution of bathymetry was dominated by migration of tidal channels. The M4 tide showed larger sensitivity to bathymetric change in the Wadden Sea than the M2 tide, whereas the structure of the latter remained rather robust. The largest change of the tidal wave due to the differences in bathymetries was located off the North Frisian Wadden Sea. Traces of changes were also found far away from the regions of their origin because the tidal waves in the North Sea propagate the local disturbances basin-wide. This illustrated an efficient physical mechanism of teleconnectivity, i.e. effecting the local responses to the larger-scale or remote change of ocean bottom caused by erosion and deposition. The tidal distortion resulting from the relatively small bathymetric changes was substantial, particularly in the coastal zone. This is a manifestation of the nonlinear tidal transformation in shallow oceans and is crucial for the sediment transport and the morphodynamic feedback, because of the altered tidal asymmetry.  相似文献   

17.
With the launch of the TIMED satellite in December 2001, continuous temperature and wind data sets amenable to MLT tidal analyses became available. The wind measuring instrument, the TIMED Doppler Interferometer (TIDI), is operating since early 2002. Its day- and nighttime capability allows to derive tidal winds over a range of MLT altitudes. This paper presents climatologies (June 2002–June 2005) of monthly mean amplitudes and phases for six nonmigrating semidiurnal tidal components between 85 and 105 km altitude and between 45°S and 45°N latitude (westward propagating wave numbers 4, 3, 1; the standing oscillation s0; and eastward propagating wave numbers 1, 2) in the zonal and meridional wind directions.Amplitude errors are 15–20% (accuracy) and 0.8 m/s (precision). The phase error is 2 h. The TIDI analysis agrees well with 1991–1994 UARS results at 95 km. During boreal winter, amplitudes of a single component can reach 10 m/s at latitudes equatorward of 45°. Aggregate effects of nonmigrating tides can easily reach or exceed the amplitude of the migrating tide. Comparisons with the global scale wave model (GSWM) and the thermosphere–ionosphere–mesosphere–electrodynamics general circulation model (TIME-GCM) are partly inconclusive but they suggest that wave–wave interaction and latent heat release in the tropical troposphere both play an important role in forcing the semidiurnal westward 1, westward 3, and standing components. Latent heat release is the leading source of the eastward propagating components.  相似文献   

18.
The results of simulated tidal current field, wave field and storm-induced current field are employed to interpret the depositional dynamic mechanism of formation and evolution of the radial sand ridges on the Yellow Sea door. The anticlockwise rotary tidal wave to the south of Shandong Peninsula meets the following progressive tidal wave from the South Yellow Sea, forming a radial current field outside Jianggang. This current field provides a necessary dynamic condition for the formation and existence of the radial sand ridges on the Yellow Sea seafloor. The results of simulated “old current field (holocene)” show that there existed a convergent-divergent tidal zone just outside the palaeo-Yangtze River estuary where a palaeo-underwater accumulation was developed. The calculated results from wave models indicate that the wave impact on the topography, under the condition of high water level and strong winds, is significant. The storm current induced by typhoons landing in the Yangtze River estuary and turning away to the sea can have an obvious influence, too, on the sand ridges. The depmitional dynamic mechanism of formation and evolution of the radial sand ridges on the Yellow Sea seafloor is “tidal current-induced formation—storm-induced chang—tidal current-induced recovery”. Project supported by the National Natural Science Foundation of China (Grant No. 49236120).  相似文献   

19.
The “wave turbopause” is defined as the mesospheric altitude level where the temperature fluctuation field indicates a substantial increase in wave amplitudes in the vertical direction.The turbopause altitude is analyzed on the basis of four years of SABER data (2002–2005, Version 1.06). Substantial seasonal and latitudinal variations are found, with some interannual variability also present. Seasonal changes are annual at high latitudes, semi-annual at low latitudes, and a mixture of both at middle latitudes. Southern hemisphere data are similar as in the North if shifted by half a year. Latitudinal variations show a minimum in the tropics and two relative maxima at middle latitudes.The “wave turbopause” is found near to zero-wind lines or low-wind zones (zonal wind). It is compared to rocket and other measurements, and interesting similarities are obtained. The wave turbopause can also be found in the HAMMONIA GCM. A preliminary analysis shows results similar to those of the SABER measurements.  相似文献   

20.
A modified version of the 3D finite-element hydrostatic model QUODDY-4 is used to quantify the changes in the dynamics and energetics of the M 2 surface tide in the North European Basin, induced by the spatial variability in bottom roughness. This version differs from the original one, as it introduces a module providing evaluation of the drag coefficient in the bottom boundary layer (BBL) and by accounting for the equilibrium tide. The drag coefficient is found from the resistance laws for an oscillatory rotating turbulent BBL over hydrodynamically rough and incompletely rough underlying surfaces, describing how the wave friction factor as well as other resistance characteristics depend on the dimensionless similarity parameters for the BBL. It is shown that the influence of the spatial variability in bottom roughness is responsible for some specific changes in the tidal amplitudes, phases, and the maximum tidal velocities. These changes are within the model noise, while the changes in the averaged (over a tidal cycle) horizontal wave transport and the averaged dissipation of barotropic tidal energy may be of the same orders of magnitude as are the above energetic characteristics as such. Thus, contrary to present views, ignoring the spatial variability in bottom roughness at least in the North European Basin is only partially correct: it is valid for the tidal dynamics, but is liable to break down for the tidal energetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号