首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 299 毫秒
1.
The high-mass star-forming region IRAS 17333-3606 has been mapped in the 13CO (J = 2–1) and C18O (J = 2–1) lines in the submillimeter wavelength range using the APEX (Chile) radio telescope. The analysis of the low-velocity part of the molecular outflow has been carried out, and the main parameters of the outflow have been determined. We have used a novel approach for calculating parameters of the low-velocity part of bipolar molecular outflows in molecular clouds. The approach excludes the influence of the surrounding cloud on the parameters of the outflow. The mass of the low-velocity part is much greater than that of the high-velocity part of the molecular outflow, while their energies are comparable. The core of the young stellar object is significantly deformed by the impact of the bipolar outflow.  相似文献   

2.
We have imaged several known molecular (CO) outflows in H2 v=1-0 S(1) and wide-band K in order to identify the molecular shocks associated with the acceleration of ambient gas by outflows from young stars. We detected H2 line emission in all the flows we observed: L 1157, VLA 1623, NGC 6334I, NGC 2264G, L 1641N and Haro 4-255. A comparison of the H2 data with CO outflow maps strongly suggests that prompt entrainment near the head of a collimated jet probably is the dominant mechanism for producing the CO outflows in these sources.  相似文献   

3.
We present first results from the Near-infrared Integral Field Spectrograph (NIFS) located at Gemini North. For the active galaxies Cygnus A and Perseus A we observe rotationally-supported accretion disks and adduce the existence of massive central black holes and estimate their masses. In Cygnus A we also see remarkable high-excitation ionization cones dominated by photoionization from the central engine. In the T-Tauri stars HV Tau C and DG Tau we see highly-collimated bipolar outflows in the [Fe II] λ 1.644 micron line, surrounded by a slower molecular bipolar outflow seen in the H2 lines, in accordance with the model advocated by Pyo, T.-S., et al., Astrophys. J. 570, 724 (2002).  相似文献   

4.
A star formation region connected with SNO 41 is investigated. The observations of this region were carried out in the 12CO (1-0) line and in the 1.2-mm (with SIMBA) with the 15-m SEST mm telescope (Cerro La Silla, Chile). A blue shifted outflow is revealed from the 12CO(1-0) observations, while a bipolar outflow is apparent from the 1.2-mm SIMBA image. In CO it seems that a very faint dust envelope around SNO 41 probably exists, which is expanding with a velocity of ∼10.5 km/s. The distance to SNO 41 is estimated as ∼1500 pc. There are outflows also present in 2MASS images. A spiral jet has a condensation (resembling a HH object) at the end. Another jet has a discontinuity and a bow-shock-like structure on it. In 2MASS images there are also spots resembling HH objects. In this region there is also a rather luminous point source (IRAS 08546-4254), which has IR colors typical for an YSO connected with a water maser. The detection of a strong CS (2-1) line emission toward IRAS 08546-4254, with the same velocity as the CO line, shows the existence of a high density core of molecular gas associated to this source. A methanol maser is also associated with that IRAS source. The existence of CS line emission and a methanol maser (at 6.669 Ghz) is an indication of the presence of a very young massive star. It is not excluded that this IRAS source is the center of outflows mentioned above, because this source coincides with the center of the 1.2-mm SIMBA image and also with the place of origin of the jet with bow-shock-like structure. Published in Astrofizika, Vol. 50, No. 1, pp. 5–15 (February 2007).  相似文献   

5.
Wide-field mapping of Serpens in submillimetre continuum emission and CO J =2–1 line emission is here complemented by optical imaging in [S  ii ] λλ 6716, 6731 line emission. Analysis of the 450- and 850-μm continuum data shows at least 10 separate sources, along with fainter diffuse background emission and filaments extending to the south and east of the core. These filaments describe 'cavity-like' structures that may have been shaped by the numerous outflows in the region. The dust opacity index, β , derived for the identifiable compact sources is of the order of 1.0±0.2, with dust temperatures in excess of 20 K. This value of β is somewhat lower than for typical class I YSOs; we suggest that the Serpens sources may be 'warm', late class 0 or early class I objects.
With the combined CO and optical data we also examine, on large scales, the outflows driven by the embedded sources in Serpens. In addition to a number of new Herbig–Haro flows (here denoted HH 455–460), a number of high-velocity CO lobes are observed; these extend radially outwards from the cluster of submillimetre sources in the core. A close association between the optical and molecular flows is also identified. The data suggest that many of the submillimetre sources power outflows. Collectively, the outflows traced in CO support the widely recognized correlation between source bolometric luminosity and outflow power, and imply a dynamical age for the whole protostellar cluster of ∼3×104 yr. Notably, this is roughly equal to the proposed duration of the 'class 0' stage in protostellar evolution.  相似文献   

6.
The extra fine structure of the active region of H2O supermaser emission of Orion KL (angular resolution is 0.1 mas) is studied. A central body / accretion disk / bipolar outflow / bullets / envelope is discovered, that corresponds to the earliest stage of the small-mass star formation. The ejector – a compact bright source ≤0.05 AU, Tb ≈ 1017K. The bipolar outflow, vej ≈ 10km/s is a highly-collimated stream with a ration length/diameter~ 60, rotation period is ~ 0.5 yr, precession period ~ 10 yrs, precession angle ~ 33°. Precession forms a conical helix jet. The envelope amplified radio emission by about three orders of magnitude at velocity at v=7.65 km/s.  相似文献   

7.
We have searched for CO outflows in eight embedded IRAS sources located in the Taurus molecular cloud using the 45m telescope of Nobeyama Radio Observatory. We have detected CO wing emission in four of these sources. CO outflow associated with TMC1A (04365+2535) is strong and spatially compact (radius 0.04 pc). The dynamical timescale of 2.5 × 103 yr suggests this outflow is the youngest one in Taurus.We have combined our data with previously published survey data and have analyzed the physical properties of the outflow sources. We found that 12 out of 16 embedded sources ( 75 %) have CO outflows associated with them; this indicates that almost all stars experience a phase of molecular outflow in their embedded stage. The IRAS color of the outflow sources suggests that the outflows appear in considerably early phase of the evolution of YSOs, that is, as early as YSOs became observable with IRAS and that visible outflow sources are in a transient phase of evolution between embedded sources and visible T Tauri stars without outflow. Visible outflow sources are systematically more luminous than visible no-outflow sources, while embedded outflow sources have comparable luminosities with visible no-outflow sources. Such luminosity function suggests that the YSOs with outflow undergo mass accretion and increase their stellar mass as they progress from embedded sources to visible outflow sources. Typical mass accretion rate derived from the bolometric luminosity is 2 ×10–6 M yr –1. The timescale for mass accretion to acquire typical stellar mass, 0.5 – 0.8M , is 2.5 – 4 × 105 yr.  相似文献   

8.
The fine structure of the nucleus of the Seyfert galaxy NGC 1275 was investigated in 2005–2010 at a wavelength of 2 cm with a resolution as high as 50 μas. The structure consists of two parallel identical systems, eastern and western, spaced 0.5 pc apart in the plane of the sky. Each of them contains an ejector and a bipolar outflow. There are extended regions, lobes, at the extension of the bipolar outflows in the ?10° and 170° directions at distances of 5 pc northward and 6.5 pc southward of the active zone. The observed difference between the jet and counterjet sizes by a factor of ~3 and between the distances to the lobes by a factor of 0.8 is determined by the difference between their velocities and by the change of sign of the outflow acceleration in the period of silence. The high-velocity bipolar outflows are surrounded by three pairs of low-velocity components. The diameters of the low-velocity coaxial outflows and the third component are Ø1 ≈ 0.3 pc, Ø2 ≈ 0.8 pc, and Ø3 ≈ 1.4 pc at the detection limit. The outer low-velocity components of the outflows encompass both high-velocity outflows. The velocities of the outflows and their brightness temperatures increase exponentially as the center of the high-velocity outflows is approached. The brightness temperatures of the high-velocity outflows at the ejector exit are T b > 1012 K. The spectral line velocities in the nuclear region differ by ~600 km s?1 due to the velocity difference between the two systems. In the case of Keplerian motion, the revolution period is ~5 × 103 yr, and the mass of the central massive bodies, black holes, is M ≈ 107M. The fine structure suggests a vortical nature of the formation. In the case under consideration, two parallel vortices spaced ~0.5 pc apart and shifted by ~0.5 pc relative to each other were formed. The surrounding material inflows onto the disk of each system, is transferred in a spiral to the center, and is ejected in the ?10° and 170° directions as an excess angular momentum is accumulated. The interaction with the surrounding medium accelerates and collimates the rotating outflows. The residual material falls to the forming central massive body, a black hole, whose gravitational field stabilizes and accelerates the system formation process.  相似文献   

9.
Recent studies of the star formation region BBW 36 and associated molecular clouds are presented. The 12CO (1-0) observations, carried out with the 15-m SEST (Swedish-ESO) telescope (Cerro La Silla, Chile), revealed the existence of cloud a, connected with BBW 36 and of cloud b, having elongation in SE-NW direction. A red-shifted molecular outflow with velocity ∼+5 km/s (with respect to cloud a), having a direction parallel to the line of sight, was also observed. VLA observations showed the presence of a source VLA 2 at 3.6 cm with an elongation in the N-S direction. It is suggested that the VLA 2 source coincides with a dust disc (surrounding the object BBW 36). The star 3, which is one of the YSOs in the star-forming region BBW 36 and is connected with a bright comma-like nebula, can be the source of the molecular outflow. The star 3 has very high IR colors and is associated with an IRAS point source IRAS 07280-1829, which has IR colors, typical for an IRAS point source, connected with a water maser. On the 2MASS K image of BBW 36 we can see the existence of a bright nebula; a group of stars is embedded in that nebula, and among these stars there are stars with dust discs (or envelopes). On the 2MASS K image several spiral jets are also present, some of them with a condensation at the end. Published in Astrofizika, Vol. 51, No. 3, pp. 469–477 (August 2008).  相似文献   

10.
In an attempt to identify the molecular shocks associated with the entrainment of ambient gas by collimated stellar winds from young stars, we have imaged a number of known molecular outflows in H2 v=1-0 S(1) and wide-band K. In each flow, the observed H2 features are closely associated with peaks in the CO outflow maps. We therefore suggest that the H2 results from shocks associated with the acceleration or entrainment of ambient, molecular gas. This molecular material may be accelerated either in a bow shock at the head of the flow, or along the length of the flow through a turbulent mixing layer.  相似文献   

11.
Near-infrared images in H2 line emission and submillimetre maps in CO J  = 3–2 emission illustrate the remarkable association between a molecular bow shock and the redshifted molecular outflow lobe in W75N. The flow lobe fits perfectly into the wake of the bow, as one would expect if the lobe represented swept-up gas. Indeed, these observations strongly support the 'bow shock' entrainment scenario for molecular outflows driven by young stars.   The characteristics of the bow shock and CO outflow lobe are compared with those of numerical simulations of jet-driven flows. These models successfully reproduce the bulge and limb-brightening in the CO outflow, although the model H2 bow exhibits more structure extending back along the flow axis. We also find that the size of the flow, the high mass fraction in the flow at low outflow velocities (low γ values) and the high CO/H2 luminosity ratio indicate that the system is evolved. We also predict a correlation, in evolved systems, between outflow age and the CO/H2 luminosity ratio.  相似文献   

12.
We present the results of 12CO(1-0) and 12CO(2-1) observations on UGC 1347 obtained with BIMA and the IRAM 30 m telescope. UGC 1347 is a member of the Abell 262 cluster. In Abell 262, a nearby spiral rich cluster, the signs of galaxy interaction and therefore the mechanisms which play an important role in galaxy evolution within clusters can be studied with high spatial resolution. Aside from its bright central region, UGC 1347 features a second prominent source at the southern tip of the bar, which has been identified as region with recent enhanced star formation. The CO observations prove the existence of reservoirs of cold molecular gas at the positions of both bright regions.  相似文献   

13.
Based on a SO and C18O survey of dense molecular-cloud cores in regions of massive star formation (selected by the presence of H2O maser emission), we estimate the frequency of occurrence of high-velocity outflows in these regions and their parameters. The presence of extended SO-line wings (compared to C18O) is considered to be indicative of outflows. We estimate the outflow parameters (mass, momentum, and kinetic energy) from optically thin C18O lines, which increases the reliability of these estimates. According to this approach, high-velocity outflows were detected in ~40% of the observed objects, which is a lower limit on the frequency of their occurrence. There is a clear correlation between the outflow mass, momentum, and kinetic energy, on the one hand, and the bolometric luminosity of the associated infrared sources, on the other hand. The slope of the correlations is close to unity. Their comparison with similar correlations of the mass-loss rate, force, and mechanical luminosity with the bolometric luminosity shows that the spread in outflow dynamical age is small and that this age has no systematic correlation with the infrared luminosity. The mean outflow dynamical age that can be obtained from this comparison is ~7×1013 yr.  相似文献   

14.
The results of a survey searching for outflows using near-infrared imaging are presented. Targets were chosen from a compiled list of massive young stellar objects associated with methanol masers in linear distributions. Presently, it is a widely held belief that these methanol masers are found in (and delineate) circumstellar accretion discs around massive stars. If this scenario is correct, one way to test the disc hypothesis is to search for outflows perpendicular to the methanol maser distributions. The main objective of the survey was to obtain wide-field near-infrared images of the sites of linearly distributed methanol masers using a narrow-band 2.12-μm filter. This filter is centred on the  H2 v = 1–0 S(1)  line; a shock diagnostic that has been shown to successfully trace CO outflows from young stellar objects. 28 sources in total were imaged of which 18 sources display H2 emission. Of these, only two sources showed emission found to be dominantly perpendicular to the methanol maser distribution. Surprisingly, the H2 emission in these fields is not distributed randomly, but instead the majority of sources are found to have H2 emission dominantly parallel to their distribution of methanol masers. These results seriously question the hypothesis that methanol masers exist in circumstellar discs. The possibility that linearly distributed methanol masers are instead directly associated with outflows is discussed.  相似文献   

15.
12CO J=2-1 maps of L379 IRS1 show a molecular outflow seen almost end-on while C18O J=2-1 emission covers a smaller central region, tracing virially bound material deeper within the cloud. Continuum maps at 450, 800 and 1100µm all trace an identical double peaked arc west of IRS1 and VLA NH3 (1,1) & (2,2) integrated intensity maps reveal the same double-peaked structure. An identical velocity gradient is seen in12CO,13CO, C18O and NH3 (1,1) & (2,2) following the arc-like structure of the continuum emission.  相似文献   

16.
There is no generally accepted evolutionary scheme for high mass star formation yet. A simple approach to address this problem is to cover several of the known stages during the formation of massive stars in the same cloud and then investigate their properties trying to construct an evolutionary sequence. Here we present such a project conducted with complementary APEX and ATCA observations. These observations show a compact and bright single hot core in the G327.3-0.6 region on a 0.03 pc scale with a mass of 500 M and 0.5–1.5 105 L. Additionally a clumpy filament is seen in N2H+. Together with cm continuum observations, the data reveal like pearls on a string several stages of massive star formation, with likely the youngest stages hiding in the cold N2H+ cores analysed with a multilevel study of the APEX and ATCA observations.  相似文献   

17.
《New Astronomy》2007,12(2):111-116
Near-infrared observations indicate that three H2 outflows and their driving sources are present in the globule IC 1396 W, where the existence of molecular outflows has also been suggested by some authors. We made the first CO(1-0) map of IC 1396 W, and found that its CO molecular cloud may consist of three physically distinct components with different velocities. We detected neither molecular outflows nor the dense cores associated with candidate driving sources. One possible reason is that CO(1-0) and its isotopes cannot trace high density gas, and another is that the beam of our observation is too large to observe them. The CO cloud may be one part of the natal molecular cloud of IC 1396 W, in the process of disrupting and blowing away. The CO cloud seems to be in the foreground of the H2 outflows.  相似文献   

18.
This is a study of the compact nebulae cn1 and cn2 situated in the extended, bright nebula S235. 12CO observations reveal the presence of blue and red outflows (i.e., a bipolar outflow) from the molecular cloud in which these nebulae are embedded. cn1 and cn2 are shown to be coupled to IR clusters of young stars, some of which have dust disks or envelopes (these are so-called young stellar objects, YSOs), with the YSOs grouped around the center of the clusters. cn1 is coupled to the infrared point source IRAS05377 + 3548, whose IR colors are close to those of T Tau stars. A chain of objects emerging from S235 (which clearly implies they are coupled in terms of evolution) is studied. These are the compact nebulae S235 A, B, and C, and the Herbig-Haro objects GGD5 and GGD6. A group of IR stars associated with GGD6 is also studied.  相似文献   

19.
We have performed millimeter- and submilli- meter-wave survey observations using the Nobeyama millimeter array (NMA) and the Atacama Submillimeter Telescope Experiment (ASTE) in one of the nearest intermediate-mass (IM) star-forming regions: Orion Molecular Cloud-2/3 (OMC-2/3). Using the high-resolution capabilities offered by the NMA (∼several arcsec), we observed dust continuum and H13CO+(1–0) emission in 12 pre- and proto-stellar candidates identified previously in single-dish millimeter observations. We unveiled the evolutionary changes with variations of the morphology and velocity structure of the dense envelopes traced by the H13CO+(1–0) emission. Furthermore, using the high-sensitivity capabilities offered by the ASTE, we searched for large-scale molecular outflows associated with these pre- and proto-stellar candidates observed with the NMA. As a result of the CO(3–2) observations, we detected six molecular outflows associated with the dense gas envelopes traced by H13CO+(1–0) and 3.3 mm continuum emission. The estimated CO outflow momentum increases with the evolutionary sequence from early to late type of the protostellar cores. We also found that the 24 μm flux increases as the dense gas evolutionary sequence. We propose that the enhancement of the 24 μm flux is caused by the growth of the cavity (i.e. the CO outflow destroys the envelope) as the evolutionary sequence. Our results show that the dissipation of the dense gas envelope plays an essential role in the evolution of the IM protostars. The extremely high-sensitivity and high-angular resolution offered by ALMA will reveal unprecedented details of the inner ∼50 AU of these protostars, which will provide us a break through in the classic scenario of IM star/disk formation.  相似文献   

20.
We have compared the results of a number of published class I methanol maser surveys with the catalogue of high-mass outflow candidates identified from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire survey (known as extended green objects or EGOs). We find class I methanol masers associated with approximately two-thirds of EGOs. Although the association between outflows and class I methanol masers has long been postulated on the basis of detailed studies of a small number of sources, this result demonstrates the relationship for the first time on a statistical basis. Despite the publication of a number of searches for class I methanol masers, a close physical association with another astrophysical object which could be targeted for the search is still lacking. The close association between class I methanol masers and EGOs therefore provides a large catalogue of candidate sources, most of which have not previously been searched for class I methanol masers. Interstellar masers and outflows have both been proposed to trace an evolutionary sequence for high-mass star formation, therefore a better understanding of the relationship between class I methanol masers and outflow offers the potential for comparison and amalgamation of these two evolutionary sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号