首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The equation for calculation of the required accuracy of the perturbing bodies motion theories is obtained. The equation relates the accuracy required to take into account perturbing acceleration, acting on the perturbed body, with the accuracy of the motion theory of the perturbing body. The solutions for estimation of the required accuracy both for the inner and the external cases in the spherical coordinates are coincided. The solution for the calculation of the required accuracy for the general case (combining the inner and the external cases) in Cartesian coordinates is obtained. The special cases for the solution in Cartesian coordinates are studied. As an example, the estimations of the required accuracy of the motion theories of the solar system planets for some perturbed bodies (the near-Earth asteroid 4179 Toutatis, the main belt asteroid 208 Larcimosa, the trojan asteroid 588 Achilles, the centaur asteroid 5145 Pholus, the Kuiper belt asteroid 1995 QZ9, the comet Halley) are obtained. The conditions of the use of the obtained results are discussed.  相似文献   

2.
Stability of Surface Motion on a Rotating Ellipsoid   总被引:2,自引:0,他引:2  
The dynamical environment on the surface of a rotating, massive ellipsoid is studied, with applications to surface motion on an asteroid. The analysis is performed using a combination of classical dynamics and geometrical analysis. Due to the small sizes of most asteroids, their shapes tend to differ from the classical spheroids found for the planets. The tri-axial ellipsoid model provides a non-trivial approximation of the gravitational potential of an asteroid and is amenable to analytical computation. Using this model, we study some properties of motion on the surface of an asteroid. We find all the equilibrium points on the surface of a rotating ellipsoid and we show that the stability of these points is intimately tied to the conditions for a Jacobi or MacLaurin ellipsoid of equilibria. Using geometrical analysis we can define global constraints on motion as a function of shape, rotation rate, and density, we find that some asteroids should have accumulation of material at their ends, while others should have accumulation of surface material at their poles. This study has implications for motion of a rover on an asteroid, and for the distribution of natural material on asteroids, and for a spacecraft hovering over an asteroid.  相似文献   

3.
The nearest in time close approach of potentially hazardous asteroid (99942) Apophis with the Earth will take place on April 13, 2029, when the minimum distance of the asteroid from the Earth’s center will be as small as 38 000 km. Such a close approach will result in substantial transformation of the asteroid’s orbit. The value of the perturbations depends on the minimum distance between the bodies during the approach. Among possible transformations of the orbit are those which result in new dangerous approaches and even in probable Apophis collisions with the Earth starting from 2036. At present, at least four solutions are known for the Apophis orbit which were obtained using all radar and most of available optical observations. The procedures of assigning weights to conditional equations and the models of the asteroid’s motion have differed to some extent when finding these solutions. Of considerable interest is the comparison of the found orbital parameters with the estimates of their accuracy, since small distinctions in their values result in considerable distinctions in the forecast of Apophis’ motion after 2029 and beyond. It is shown in the paper that the estimates of the probability of an Apophis collision with the Earth in 2036 differ by some orders of magnitude, according to various solutions. The influence of factors which were disregarded in the models of motion even more increases the uncertainty in forecasting the motion after 2029. More accurate forecasting can be achieved as a result of additional optical and, to a greater extent, a series of radar observations in 2013 and then in 2020–2021, and/or as a result of processing radio signals of the transmitter delivered to the Apophis surface or to the orbit of its artificial satellite, as it was proposed in a number of papers.  相似文献   

4.
The secular effect of YORP torque on the rotational dynamics of an asteroid in non-principal axis rotation is studied. The general rotational equations of motion are derived and approximated with an illumination function expanded up to second order. The resulting equations of motion can be averaged over the fast rotation angles to yield secular equations for the angular momentum, dynamic inertia and obliquity. We study the properties of these secular equations and compare results to previous research. Finally, an application to several real asteroid shapes is made, in particular we study the predicted rotational dynamics of the asteroid Toutatis, which is known to be in a non-principal axis state.  相似文献   

5.
Electrostatic charging and motion of dust near the surface of an asteroid   总被引:1,自引:0,他引:1  
The electrostatic charging and motion of dust near the surface of an asteroid is analyzed. It is shown that, despite the weak gravity, strong electric fields are needed to lift charged dust particles from the surface. The mechanism of generation of such fields, and the results of calculations of the motion of particles with various diameters in the electric fields near the dark side of the asteroid surface, is discussed. It is noted that the dust particle motion should be the most pronounced, as happens in the case of the Moon, in a certain neighborhood of the terminator.  相似文献   

6.
The utilization of chaotic dynamics approaches allowed the identification of many modes of motion in resonant asteroidal dynamics. As these dynamical systems are not integrable, the motion modes are not separated and one orbit may transit from one mode to another. In some cases, as in the \31 resonance, these transitions may lead, in a relatively short time scale, to eccentricities so high that the asteroid may approach the Sun and be destroyed. In the \21 and \32 resonances these transitions are much slower and only indirect estimations of the time which is needed for a generic asteroid to leave the resonance are possible. It may reach hundreds of million years in the more robust regions of the \21 resonance and a time of the order of billions of years in those of the \32 resonance. These values are consistent with the observed depletion of the \21 resonance (only a few asteroids known while almost 60 asteroids are known in the \32 resonance).  相似文献   

7.
Currently, there is some positive probability of a collision of the asteroid Apophis with the Earth in 2036. In this study, the problem of preventing the collision by correcting the asteroid’s orbit is examined. The characteristics of the impulsive correction are investigated, as well as the ways of its implementation by kinetic and nuclear impacts. Impulsive and weak effects are compared. Weak effects leading to slow changes in the asteroid’s orbit are considered to be more usable because of the potentially higher accuracy of this correction. The characteristics of the gravitational effect of the asteroid by a special spacecraft (SC) kept by its control jet engines at a certain point near the asteroid and gravitationally perturbing the motion of Apophis are analyzed. The change in the perigee radius of the Apophis orbit in 2036 and the SC mass consumption are examined as functions of the effect duration, the SC mass, its distance to the asteroid, the start time of the correction, and the velocity of the SC engine exhaust jet.  相似文献   

8.
The present paper reviews the Nekhoroshev theorem from the point of view of physicists and astronomers. We point out that Nekhoroshev result is strictly connected with the existence of a specific structure of the phase space, the existence of which can be checked with several numerical tools. This is true also for a degenerate system such as the one describing the motion of an asteroid in the so called main belt. The main difference is that in some parts of the belt, the Nekhoroshev result cannot apply a priori. Mean motion resonances of order smaller than the logarithm of the mass of Jupiter and first order secular resonances must be excluded. In the remaining parts, conversely, the Nekhoroshev theorem can be proved, provided someparameters, such as the masses, the eccentricities and the inclinations of the planets are small enough. At the light of this result, a massive campaign of numerical integrations of real and fictitious asteroids should allow to understand which is the real dynamical structure of the asteroid belt.  相似文献   

9.
The restricted problem of the motion of a point of negligible mass (asteroid) in anN-planetary system is considered. It is assumed that all the planets move about the central body (Sun) along circular orbits in the same plane and the mean motions of the asteroid and the planets are incommensurable. The asteroid orbit evolution is described as a first approximation by secular equations with the perturbing function averaged by the mean longitudes of the asteroid and the planets. For small values of the asteroid orbit eccentricity an expression for the secular part of the perturbing function has been obtained. This expression holds for the arbitrary values of the asteroid orbit semiaxis which are different from those of the planet orbit radii. The stability of the asteroid circular orbits in a linear approximation with respect to the eccentricity is studied. The critical inclinations for a Solar system model are calculated.  相似文献   

10.
Many asteroids with a semimajor axis close to that of Mars have been discovered in the last several years. Potentially some of these could be in 1:1 resonance with Mars, much as are the classic Trojan asteroids with Jupiter, and its lesser-known horseshoe companions with Earth. In the 1990s, two Trojan companions of Mars, 5261 Eureka and 1998 VF31, were discovered, librating about the L5 Lagrange point, 60° behind Mars in its orbit. Although several other potential Mars Trojans have been identified, our orbital calculations show only one other known asteroid, 1999 UJ7, to be a Trojan, associated with the L4 Lagrange point, 60° ahead of Mars in its orbit. We further find that asteroid 36017 (1999 ND43) is a horseshoe librator, alternating with periods of Trojan motion. This asteroid makes repeated close approaches to Earth and has a chaotic orbit whose behavior can be confidently predicted for less than 3000 years. We identify two objects, 2001 HW15 and 2000 TG2, within the resonant region capable of undergoing what we designate “circulation transition”, in which objects can pass between circulation outside the orbit of Mars and circulation inside it, or vice versa. The eccentricity of the orbit of Mars appears to play an important role in circulation transition and in horseshoe motion. Based on the orbits and on spectroscopic data, the Trojan asteroids of Mars may be primordial bodies, while some co-orbital bodies may be in a temporary state of motion.  相似文献   

11.
Stability of Binary Asteroids   总被引:1,自引:0,他引:1  
D.J. Scheeres 《Icarus》2002,159(2):271-283
The stability and final outcome of a strongly interacting binary asteroid system is considered. We discuss the implications of the system transferring energy and angular momentum between rotational and translational motion while conserving the total system energy and angular momentum. Using these results we can develop a set of sufficient conditions for stability against escape and impact. These allow us to delineate several classes of final outcomes for a binary asteroid system, each of which may have implications for asteroid observations. The effects of energy dissipation on an asteroid binary system are also considered and are shown to be able to change the stability of the system against escape and impact. An example computation for the near-Earth asteroid binary 1996 FG3 is given along with a series of numerical explorations of an evolving binary system consisting of an ellipsoid and a sphere of equal mass.  相似文献   

12.
We consider dynamics of a Sun–Jupiter–Asteroid system, and, under some simplifying assumptions, show the existence of instabilities in the motions of an asteroid. In particular, we show that an asteroid whose initial orbit is far from the orbit of Mars can be gradually perturbed into one that crosses Mars’ orbit. Properly formulated, the motion of the asteroid can be described as a Hamiltonian system with two degrees of freedom, with the dynamics restricted to a “large” open region of the phase space reduced to an exact area preserving map. Instabilities arise in regions where the map has no invariant curves. The method of MacKay and Percival is used to explicitly rule out the existence of these curves, and results of Mather abstractly guarantee the existence of diffusing orbits. We emphasize that finding such diffusing orbits numerically is quite difficult, and is outside the scope of this paper.  相似文献   

13.
Near-Earth Asteroids (NEAs) are Solar system special class objects attracting the attention of astronomical community especially during several of the last decades. To some extent the NEAs have an advantage over the minor planets of the main belt: due to close and regular approaches to the Earth the radar observations of NEAs can be obtained for the greater number of objects than for those of the main belt of the minor planets. In this paper the use of all available radar observations together with optical ones resulting in the combined data analysis solution is discussed for different problems such as the asteroid orbits and catalog orientation parameters determination. In particular the problem of the motion of the dynamical equinox in the Hipparcos reference system is considered. About 13000 radar and optical observations of 24 NEAs and main belt minor planets have been used to obtain the precise asteroid orbits, FK5 catalogue orientation parameters and the motion of the dynamical equinox from 1750 till 2000 in the Hipparcos system.  相似文献   

14.
The purpose of this paper is the presentation of an integrator for the average motion of an asteroid in mean motion commensurability with Jupiter. The program is valid for any (p+q)/p mean motion commensurability (except whenq=0) and uses a double precision version of DE (Shampine and Gordon 1975) as propagator. The averaged equations of motion of the asteroid are evaluated in a non-singular way for any value of the eccentricities and the inclinations and the orbit of Jupiter is described by the most important terms in Longstop 1B (Nobiliet al. 1989). This integrator can be considered as an extension of the well known Schubart Averaging (Schubart 1978) in which Jupiter is moving on a fixed ellipse.  相似文献   

15.
We present a 3-D symplectic mapping model that is valid at the 2:1 mean motion resonance in the asteroid motion, in the Sun-Jupiter-asteroid model. This model is used to study the dynamics inside this resonance and several features of the system have been made clear. The introduction of the third dimension, through the inclination of the asteroid orbit, plays an important role in the evolution of the asteroid and the appearance of chaotic motion. Also, the existence of the secondary resonances is clearly shown and their role in the appearance of chaotic motion and the slow diffusion of the elements of the orbit is demonstrated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Modeling of migrating grains on asteroid’s surface   总被引:1,自引:0,他引:1  
  相似文献   

17.
The strongly perturbed dynamical environment near asteroids has been a great challenge for the mission design. Besides the non-spherical gravity, solar radiation pressure, and solar tide, the orbital motion actually suffers from another perturbation caused by the gravitational orbit–attitude coupling of the spacecraft. This gravitational orbit–attitude coupling perturbation (GOACP) has its origin in the fact that the gravity acting on a non-spherical extended body, the real case of the spacecraft, is actually different from that acting on a point mass, the approximation of the spacecraft in the orbital dynamics. We intend to take into account GOACP besides the non-spherical gravity to improve the previous close-proximity orbital dynamics. GOACP depends on the spacecraft attitude, which is assumed to be controlled ideally with respect to the asteroid in this study. Then, we focus on the orbital motion perturbed by the non-spherical gravity and GOACP with the given attitude. This new orbital model can be called the attitude-restricted orbital dynamics, where restricted means that the orbital motion is studied as a restricted problem at a given attitude. In the present paper, equilibrium points of the attitude-restricted orbital dynamics in the second degree and order gravity field of a uniformly rotating asteroid are investigated. Two kinds of equilibria are obtained: on and off the asteroid equatorial principal axis. These equilibria are different from and more diverse than those in the classical orbital dynamics without GOACP. In the case of a large spacecraft, the off-axis equilibrium points can exist at an arbitrary longitude in the equatorial plane. These results are useful for close-proximity operations, such as the asteroid body-fixed hovering.  相似文献   

18.
In this work, periodic attitudes and bifurcations of periodic families are investigated for a rigid spacecraft moving on a stationary orbit around a uniformly rotating asteroid. Under the second degree and order gravity field of an asteroid, the dynamical model of attitude motion is formulated by truncating the integrals of inertia of the spacecraft at the second order. In this dynamical system, the equilibrium attitude has zero Euler angles. The linearised equations of attitude motion are utilised to study the stability of equilibrium attitude. It is found that there are three fundamental types of periodic attitude motions around a stable equilibrium attitude point. We explicitly present the linear solutions around a stable equilibrium attitude, which can be used to provide the initial guesses for computing the true periodic attitudes in the complete model. By means of a numerical approach, three fundamental families of periodic attitudes are studied, and their characteristic curves, distribution of eigenvalues, stability curves and stability distributions are determined. Interestingly, along the characteristic curves of the fundamental families, some critical points are found to exist, and these points correspond to tangent and period-doubling bifurcations. By means of a numerical approach, the bifurcated families of periodic attitudes are identified. The natural and bifurcated families constitute networks of periodic attitude families.  相似文献   

19.
Earlier work indicates a comparatively rapid chaotic evolution of the orbits of some Hilda asteroids that move at the border of the domain occupied by the characteristic parameters of the objects at the 3/2 mean motion resonance. A simple Jupiter–Saturn model of the forces leads to numerical results on some of these cases and allows a search for additional resonances that can contribute to the chaotic evolution. In this context the importance of the secondary resonances that depend on the period of revolution of the argument of perihelion is pointed out. Among the studied additional resonances there are three-body resonances with arguments that depend on the mean longitudes of Jupiter, Saturn, and asteroid, but on slowly circulating angular elements of the asteroid as well, and the frequency of these arguments is close to a rational ratio with respect to the frequency of the libration due to the basic resonance.  相似文献   

20.
The system of two gravitational centers with variable separation between components one of which (the primary) loses its mass onto another (the secondary) is investigated under condition of total mass and angular momentum conservation. When the primary/secondary mass ratio becomes about that of Jupiter/Sun the small bodies ejected with the gaseous matter through the inner Lagrange point from the Roche lobe of the primary form a ring similar to the asteroid belt of the solar system. The formation of ring structure is calculated by numerical integration of Newtonian equations of N-body problem in orbital plane of the gravitational centers. The results are compared with the planar subsystem of the asteroid belt. The presence of the main gaps in the distribution of their mean motions at 2/1, 3/1, 5/2 and some other commensurabilities with the primary mean motion is found. More fine details of the belt structure are obtained, e.g. the gap asymmetry and a qualitative agreement with the eccentricity distribution. Within the scope of the same model the external part of the ring is investigated all the pairwise interactions being included. The clustering of bodies near 3/2 commensurability isolated from the main belt by the wide gap centered at 5/3 commensurability is obtained. It is supposed that the ring structure and the interplanetary spacing law for the terrestrial planets are due to the same mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号