首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
At least seven different types of ore bodies, with an ore stock of Ba, F, Fe, Pb, Zn, Cu and Sb occur in Paleozoic rocks (Lower-Middle Cambrian and Ordovician) in an ?15 km2 area north of the Narcao village (SW Sardinia, Italy). The ore bodies are related both to syngenetic accumulations, and later epigenetic recirculation of the primary ores. In the Lower Cambrian the area studied shows evidence of synsedimentary tectonic instability, probably related to carbonate shelf margin features. The Upper Cambrian is lacking and the transgressive Ordovician sediments cover large areas of the previously gently folded Cambrian rocks (Sardic phase of Caledonian orogenesis). The main Hercynian tectonic phases had a much stronger compressive folding that is mirrored in a sequence of tight folds and upthrusts. The geometric setting resulting from the tectonic frame of the Cambrian and Ordovician sediments must be taken into account to understand the distribution and the genesis of most of the ore bodies.  相似文献   

2.
In western Tasmania, Precambrian sedimentary sequences form the basement for narrow trough accumulations of Eocambrian and younger sequences. The main trough, the meridional Dundas Trough, is flanked to the west by the Rocky Cape region of Precambrian rocks within which major, apparently stratiform, exhalative magnetite-pyrite deposits are intercalated with metabasaltic volcanics and ultramafic bodies.The Eocambrian-Cambrian troughs apparently developed during extension of Precambrian continental crust. Early shallow-water deposition includes thick dolomite units in some troughs. Deepening of the troughs was accompanied by turbidite sedimentation, with minor limestone, and submarine basaltic volcanism with associated minor disseminated native copper. Ultramafic and related igneous rocks were tectonically emplaced in some troughs during a mild compressional phase. They contain only minor platinoids, copper-nickel sulphides and asbestos, but are source rocks for Tertiary secondary deposits of platinoids, chromite and lateritic nickel.In the Dundas Trough, Eocambrian-Early Cambrian rocks are separated by an inferred erosional surface from structurally conformable overlying Middle to Late Cambrian fossiliferous turbidite sequences. The structural conformity continues through overlying Ordovician to Early Devonian terrestrial and shallow-marine stable shelf deposits.A considerable pile of probable Middle Cambrian felsic volcanics accumulated between the sedimentary deposits of the Dundas Trough and the Tyennan region of Precambrian rocks to the east. A lava-dominated belt within the volcanics hosts major volcanogenic massive sulphide deposits, including those of the exhalative type, which in the south are enriched in copper, gold and silver, whereas in the north they are rich in zine, lead, copper, gold and silver. Cambrian movements along faults near the margin of the Tyennan region resulted in erosion of the mineralized volcanics, locally exposing sub-volcanic granitoids. Above the local unconformities occur unmineralized volcaniclastic sequences that pass conformably into Ordovician to Early Devonian shelf deposits. Ordovician limestone locally hosts stratabound disseminated and veined base metal sulphide deposits.Pre-Middle Devonian rocks of western Tasmania differ, for most part, from those in the northeast where deeper marine turbidite quartz-wacke sequences were deposited during the Ordovician and Early Devonian.The Eocambrian to Early Devonian rocks of Tasmania were extensively deformed in the mid-Devonian. The Precambrian regions of western Tasmania behaved as relatively competent blocks controlling early fold patterns. In northeastern Tasmania, folding is of similar age but resulted from movements inconsistent with those affecting rocks of equivalent age in western Tasmania.The final metallogenic event is associated with high-level granitoid masses emplaced throughout Tasmania during the Middle to Late Devonian. In northeastern Tasmania, extensive I-type granodiorite and S-type granite, with alkali-feldspar granites, are associated with mainly endogranitic stanniferous grelsens and wolframite ± cassiterite vein deposits. In contrast, scheelite-bearing skarns and cassiterite stannite pyrrhotite carbonate replacement deposits are dominant in western Tasmania, associated mainly with S-type granites. Several argentiferous lead-zinc vein deposits occur in haloes around tin-tungsten deposits. A number of gold deposits are apparently associated with I-type granodiorite, but some have uncertain genesis.The contrasting regions of western and northeastern Tasmania have probably been brought together by lateral movement along an inferred fracture. Flat-lying, Late Carboniferous and younger deposits rest on the older rocks, and the only known post-Devonian primary mineralization is gold associated with Creta ceous syenite.  相似文献   

3.
Deposition of stratabound Zn-Pb-Ba ores in the Lower Cambrian carbonates in South-west Sardinia show a distinct relation with the prominent tensional tectonics in the area. A part of the mineral deposits are syngenetic (sedimentary-exhalative), other massive sulfides and/or barite are early diagenetic. Other occurrences (MVT) are from early to late-diagenetic. They are mostly confined to matrix- and cementbreccias which might be dependent on the Cambrian tectonics. The Precambrian-Lower Cambrian (?) carbonates occupying the core of the Aracena anticline, at the boundary between the provinces of Huelva and Badajoz (South-west Spain), are also an important metallotect for Zn-Pb-Ag-Ba mineralization. The ores at Aracena are stratabound (to stratiform) (Sedex) and occur as disseminations or layers in a volcano-sedimentary sequence with carbonate intercalations. Both the carbonate intervals and the ores show evidence of synsedimentary tectonics, like slumpings, slump breccias and neptunian dykes. Their deposition most likely occurred in a subtidal environment controlled by faults. Apparently, in South-west Sardinia and in the Sierra de Aracena, both sedimentary evolution and ore deposition were strictly related, and conditioned by several pulses of tensional tectonics.  相似文献   

4.
Besshi-type volcanogenic Cu-Zn deposits in the Scandinavian Caledonides are hosted by Ordovician metabasalts and clastic sediments of the Storen, Fundsjo and Sulitjelma groups. The basalts are transitional between T-MORB and marginal basin tholeiites in composition and are characterised by Nd and Pb isotopic compositions which overlap the more radiogenic values of Lower Palaeozoic MORB. These features, along with the intercalation of the basalts with tuffs and continentally derived sediments, indicate an epicontinental rift or marginal basin origin, possibly analogous to the present Red Sea and Gulf of Aden rifts. This implies the development of a restricted ocean basin in the north of Iapetus between the Laurentian and Baltoscandian microcontinents during the Cambrian and Early Ordovician.  相似文献   

5.
In SW Sardinia syngenetic to syndiagenetic Pb-Zn ores occur in Cambrian carbonates, along the unconformity between the Cambrian and Ordovician, in Permo-Triassic karsts and in vein-type deposits related to late Hercynian granites, which also contact-metamorphosed some Cambrian deposits. In all types of deposits the leadisotope ratios show similarly high (=238U/204Pb) and high W (=232Th/204Pb) values indicating a crustal origin for the lead. Most of the Cambrian ores contain isotopically similar or identical leads, whereas in the younger deposits the isotope ratios vary and suggest that especially the lead of Permo-Triassic ores may consist to a large extent of remobilized Cambrian, possibly also Ordovician, ore lead plus a Hercynian component.The lead of three feldspar samples from Hercynian granites of the area also shows high and W values. Two of them are similar to the ore leads from a vein-type deposit and from contact-metamorphosed deposits. The third sample from the Capo Pecora granite contains a very unradiogenic lead that closely resembles many of the presumed Cambrian-Hercynian mixtures. Therefore, the possibility cannot be dismissed that at the time the Permo-Triassic ores were formed lead sources other than the already existing ores were present with the appropriate isotopic compositions.  相似文献   

6.
The principal copper deposits associated with Upper Creataceous — Laramian calc-alkaline volcano-plutonic complexes in the Bor district are classified as follows: Volcanogenic massive sulphide deposits are situated in andesitic volcanics, and are composed of pyrite and copper sulphides. Multistage deposition of mineral associations in this area was controlled mainly by secondary boiling of hydrothermal fluids rich in sulphur. Apart from cupriferous pyrite deposits, volcanogenic massive polymetallic deposits, containing a pyritic ZnCu+Pb association, have been found recently in hydrothermally altered dacite- and esite pyroclastics. Porphyry copper deposits are mainly situated in volcanic piles related to subvolcanic intrusions and/or hypabyssal plutons. Some porphyry copper deposits occur in the same structures with massive sulphide orebodies, lying above the porphyry copper system. Conglomerate-type ores consisting of clasts of massive sulphide in an andesitic pile have been discovered recently.  相似文献   

7.
Cambrian and Ordovician-Middle Devonian sequences of two successive Early Palaeozoic basins of the Barrandian unconformably overlie Cadomian basement in the Bohemian Massif NW interior (Teplá-Barrandian unit) which is the easternmost peri-Gondwanan remnant within the Variscides. Correlation of stratigraphy and geochemistry of the Early Palaeozoic siliciclastic rocks elucidated sediment provenances. Sandstones of the Middle Cambrian Píbram-Jince Basin were derived from a Cadomian Neoproterozoic island arc. The source area of the Ordovician shallow-marine siliciclastics of the successor Prague Basin is a dissected Cadomian orogen. Late Cambrian acid volcanics of the Barrandian and Cambrian (meta)granitoids emplaced in the W part of the Teplá-Barrandian Cadomian basement are also discernible in these sediments. Old sedimentary component increased during the Ordovician. Early Llandovery siliciclastic rocks show characteristics of an abruptly weakened supply of terrigenous material and an elevated proportion of synsedimentary basic volcanics as a result of Silurian transgression. Emsian siliciclastics (intercalated in the Late Silurian to Early Devonian limestone suite) presumably comprise an addition of coeval basic/ultrabasic volcaniclastics. Middle Devonian flysch-like siliciclastics indicate reappearance of Cadomian source near the Barrandian during early Variscan convergences of Armorican microplates that preceeded accretion of the Teplá-Barrandian unit within the Bohemian Massif terrane mosaic.Dr. Patoka deceased in July 2004.  相似文献   

8.
In western Victoria, a widespread stratiform style of gold enrichment in Palaeozoic black mudstone and chert—clearly different from the classic mesothermal quartz vein deposits of the Victorian goldfields—has been confirmed by whole-rock geochemistry and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). This enrichment pre-dates compaction, deformation and low-grade metamorphism of the sedimentary host-rocks, and therefore possibly developed diagenetically during slow deposition of the thin carbonaceous black mudstone beds and the thinner layers of chert. These paired strata have been documented at many locations in three regional outcrop areas of chevron-folded Cambrian and Lower Ordovician metasediments in the Stawell and Bendigo Zones, where they are interbedded with quartz-rich turbidites. The layers were named ‘indicators’ by the early miners, who found locally rich nuggety gold deposits at intersections between these layers and mesothermal quartz veins. Gold is present in euhedral pyrite crystals in both black shale and chert. LA-ICPMS analysis of individual pyrite crystals in the indicator beds shows that pyrite is enriched in Au, As, Sb, Se, Te and Bi. The Au content of pyrite varies from 0.03 to 2.69 ppm with a mean of 0.58 ppm and shows a positive correlation with As, which varies from 1000 to 6000 ppm. Many pyrite crystals show enrichment of gold in their cores and depletion in their rims, confirming the likely syngenetic or syndiagenetic accumulation of gold during pyrite formation in the sediments. Prior to regional metamorphism, folding and faulting, the many indicator strata in the outcrop areas were parts of an extensive marine sequence of Late Cambrian and Early Ordovician age. The former primary source of this mineralisation is considered to have been one or more contemporaneously exhalative submarine hydrothermal systems. Thus, the older Palaeozoic sediments of the western Lachlan Fold Belt were significantly enriched in syngenetic gold in the Early Palaeozoic, at least 40 million years before emplacement of the quartz – gold vein deposits of the goldfields.  相似文献   

9.
The oldest non-metamorphic sediments of northern Chile (21?–27?S) are of Early Ordovician age. The partly strong volcanic influence in the clastic series of the Pre-Cordillera and the Puna might be connected with the extensive Ordovician magmatism on the eastern side of the Argentinian Puna. The geochemical character of the tholeiitic intercalations in the pelites and turbidites of the »Complejo Igneo-Sedimentario del Cordon de Lila« (C.I.S.L.) in the Pre-Andean Depression indicates a ?Lower Ordovician extensional regime in this area. A positive area (»Arco Puneño«) encompassing the whole width of the present-day western Central Andes developed during the subsequent orogenic phase (»Fase Oclóyica«), resulting in the absence of Silurian strata in Northern Chile. During the Devonian/Carboniferous, two areas of marine facies can be distinguished. In the Coastal Cordillera thick flysch sediments were deposited longitudinally in a N-S striking trough. In the east, in what is now the Pre-Andean Depression and High Cordillera, thick sandstone series accumulated on the western shelf of the Arco Puneno. Carboniferous tectonic movements led to the formation of a shallow marine platform in the west on which clastic sediments, limestones and volcanics were deposited during the Upper Carboniferous-Permian. Simultaneously, extensive volcanism developed in the Pre- and High Cordillera accompanied by predominantly terrestrial sedimentation. A general westward migration of the orogenic zones took place along with repeated phases of rifting and accretion in the Central Andes during the Paleozoic. Eastward directed erosive subduction prevailed since the breakup of Pangea.  相似文献   

10.
Current evidence suggests that most of Victoria is underlain by a relatively thick (20 km +) basement of sialic composition of assumed Proterozoic age. This basement is nowhere exposed and its structural relationship with exposed Palaeozoic rocks is conjectural. This uncertainty has resulted in both ensimatic and ensialic tectonic models being proposed for Victoria during the Cambrian.Mineralization associated with Cambrian igneous activity shows a variety of styles from minor orthomagmatic chromite deposits, through Au and Cu deposits of syngenetic or epigenetic origin, to Fe---Mn, Ba occurrences of exhalative volcanogenic affiliation.Cambrian volcanism and associated sedimentation was followed by the deposition of dominantly quartz-rich turbidites with interbedded shale and siliceous units. Subsequent to the epi-Ordovician Benambran Orogeny, late Silurian crustal extension caused several rifts to open along roughly orthogonal NW and NE aligned fractures. Within these fault-bounded depressions, thick acid volcanic sequences were deposited in close association with shallow-marine sediments. Mineralization in these Upper Silurian rocks comprises polymetallic base-metal sulphide lenses and minor disseminations, at least some of which are of exhalative volcanogenic affiliation.The Silurian rifts were obliterated and their rocks strongly deformed during the Bindian (Bowning) deformation during late Silurian to early Devonian time. This in turn was followed by another episode of crustal extension and rifting, during which the formation of a broad meridional trough marks the Buchan Rift. A very thick sequence of largely subaerial bimodal volcanics is overlain by shelf limestone and mudstone. A variety of minor base metal, barite, manganese, and iron mineralization is hosted by these volcanics and shelf sediments.The mid-Devonian Tabberabberan Orogeny was followed in the Late Devonian by bimodal volcanism and granite intrusion, and “red-bed”-type non-marine sedimentation. In Central Victoria, thick bimodal volcanics were erupted into a series of cauldron subsidences and intruded by comagmatic granites. Bimodal volcanism also occurred in the Mount Howitt Province farther east, but was followed by deposition of extensive fluviatile and lacustrine sediments (mainly mudstone, sandstone, and minor conglomerate). In the Mansfield Basin, these contain minor sedimentary copper occurrences.There are four distinct episodes of granite emplacement in Victoria, namely Late Cambrian -Early Ordovician (Delamerian) in the Glenelg Zone; Early Silurian (Benambran) in the Highlands Zone; Early Devonian (Bindian) in the Grampians, Ararat-Bendigo, Highlands, and Mallacoota Zones; and Middle Devonian-Carboniferous (post Tabberabberan) in the Ararat- Bendigo, Melbourne, Howqua, and Highlands Zones. Data for the Delamerian granitoids are sketchy, but in the remaining groups S-type granitoids predominate with the exception of eastern Victoria, east of the Yalmy Fault (I-S line), where only I- and A-type granitoids occur. A variety of Sn, Mo, W deposits and prospects are associated with the Benambran and younger intrusive phases.Victoria is a major gold province which has produced nearly 2.5 × 106 kg gold. Primary gold occurs in a number of geological settings including veins and disseminations spatially associated with mafic Cambrian volcanism, vein deposits in turbiditic sequences of central and eastern Victoria, veins associated with mafic and intermediate intrusives of Mid to Late Devonian age, and minor amounts associated with a variety of granitoids and porphyry dykes.  相似文献   

11.
Our knowledge of the Appalachians has grown very satisfoctorily during the last ten years. Folding took place at least twice: 1. In the Ordovician the basement including the crystalline axis as far as the Blue Ridge became consolidated. This region became highland and furnished the material for upper Ordovician to Carboniferous sediments. This has been established by three methods: first, facies examinations; second,Pettijohn and his students found that sediments were transported from East to West during the upper Ordovician, Silurian, Devonian, and Carboniferous periods; and finallyHopson has summarized absolute age determinations which show that the basement, (Cambrian, and lower Ordovician rocks included) were consolidated and uplifted about 440 million years ago. Thus, in the first period of folding the Blue Ridge Zone, which is the western margin of the basement complex, was uplifted and crowded westward. Cambrian and Ordovician sediments which cover the basement as a thin layer were folded simultaneously. Folding intensity decreases from East to West and regional cleavage and lineation disappear at the “tectonite Front”. 2. The upper part of the Paleozoic column was folded during Appalachian orogeny presumably near the surface and with little or no influence by the basement. Maybe both the Foreland and the folded Appalachians “crept” over the basement forming sharply marked anticlinal axes and broad synclinal troughs. However,Cooper supposes that the basement took part through vertical movements and in this way was partly responsible for sedimentation and possibly also for structures. In the Maryland profile lateral reduction is less than further south where folds grade into nappe-like overthrusts and the foothill folds disappear below great horizontal thrusts.  相似文献   

12.
北山及邻区各微地块上分布有震旦纪—早寒武世沉积岩系,寒武系底部发育含磷层,震旦系中见大致可对比的冰碛岩(3层),暗示各微地块当时可能是一个统一大陆块的组成部分。下寒武统双鹰山组薄层状大理岩、灰岩为浅海或滨海相环境产物;中上寒武统西双鹰山组青灰色硅质岩夹有薄层状灰岩,为深海相化学沉积产物,意味着早寒武世为北山古生代洋盆开启时限下限。泥盆纪三个井组不整合于寒武、奥陶纪之上,三个井组显示前陆盆地特征,花岗岩"线-面-点"产出形态可能代表俯冲-碰撞-碰撞后造山期地质记录。因此,早泥盆世为北山古生代洋盆闭合时限上限。  相似文献   

13.
The recently discovered Salgadinho copper deposit, 7 km NNE of S. Luis, Portugal is located in the southernmost linear belt of outcropping low metamorphic grade deformed Palaeozoic rocks (Famennian) in the SW part of the Iberian Pyrite Belt. The stratabound replacement pyrite-chalcopyrite mineralisation is present in variably altered felsic pyroclastic rocks which are overlain by pyritic graphitic shales and tuffs which have undergone alteration in the lowermost 5m. The altered pyroclastic rocks are characterised by pale green celadonitic fluoro-muscovite and, in the most intense zone of alteration, quartz, ankerite, and ore minerals are present (pyrite, chalcopyrite, sphalerite, tetrahedrite, galena, bournonite). No exhalative Cu-Zn or Zn-Pb ore has been discovered associated with the submarine volcanic stratabound Cu-rich alteration zone. Alteration of feldspars and groundmass has involved a net loss from the system and gains in Fe2+, F, H2O, Mg, Fe3+, Ca, Mn, P, Ti, S, Cu, Zn, Pb, As, Sb, Ag and Au at the expense of Si, K, Al and Na. The great enrichment of F in the altered rocks, the association of zonal alteration facies with coarse grained pyroclastic masses and the intimate association of pale green celadonitic fluoro-muscovite with mineralisation at Salgadinho and most other deposits of the Iberian Pyrite Belt represents a powerful exploration guide for submarine exhalative ores.Text of paper presented at the 26th I.G.C., Paris, July 1980  相似文献   

14.
华南扬子地块是我国古热水沉积成矿作用最为发育的地区之一,其热水沉积特性最早引起我国学者的关注。华南下寒武统黑色岩系中赋存多个与热水沉积成矿作用相关的大型、超大型重晶石矿床与N i-Mo-U-V多金属富集层。进一步研究分布在华南扬子地块黑色岩系中的金属、非金属矿床成因及其地球化学特征,对认识华南乃至全球晚震旦—早寒武世生物与环境演化有着十分重要的意义。本文对华南下寒武统镍-钼富集层矿石进行电子探针研究,识别出黄铜矿、黝铜矿等铜的独立矿物;闪锌矿等锌的独立矿物;方铅矿、白铅矿等铅的独立矿物。研究表明,在镍-钼矿石中这些矿物的发现为镍-钼矿层是热水沉积作用产物提供了直接的矿物学证据。  相似文献   

15.
New data on the ages of detrital zircons from folded basement rocks and cover sediments of the Severnaya Zemlya archipelago and Izvestiy TSIK islands have been obtained. The basement age is defined as Cambrian (pre-Ordovician). The Ordovician and Silurian sandstones were mainly formed by erosion of the basement rocks. The Devonian sandstones were formed by debris sourced from the Caledonian orogen. The Carboniferous–Early Permian molasse was formed simultaneously with the erosion of the Carboniferous granitoids and weathering of the Ordovician volcanic arc rocks and the Cambrian basement. The North Kara basin was formed in the Ordovician as a back-arc basin. It experienced its main compression deformations at the boundary of the Devonian and Carboniferous and in the Carboniferous.  相似文献   

16.
The eastern Lachlan Orogen in southeastern Australia is noted for its major porphyry–epithermal–skarn copper–gold deposits of late Ordovician age. Whilst many small quartz vein-hosted or orogenic lode-type gold deposits are known in the region, the discovery of the Wyoming gold deposits has demonstrated the potential for significant lode-type mineralisation hosted within the same Ordovician volcanic stratigraphy. Outcrop in the Wyoming area is limited, with the Ordovician sequence largely obscured by clay-rich cover of probable Quaternary to Cretaceous age with depths up to 50 m. Regional aeromagnetic data define a north–south trending linear belt interpreted to represent the Ordovician andesitic volcanic rock sequence within probable Ordo-Silurian pelitic metasedimentary rocks. Drilling through the cover sequence in 2001 to follow up the trend of historically reported mineralisation discovered extensive alteration and gold mineralisation within an andesitic feldspar porphyry intrusion and adjacent volcaniclastic sandstones and siltstones. Subsequent detailed resource definition drilling has identified a substantial mineralised body associated with sericite–carbonate–albite–quartz–(±chlorite ± pyrite ± arsenopyrite) alteration. The Wyoming deposits appear to have formed as the result of a rheological contrast between the porphyry host and the surrounding volcaniclastic rocks, with the porphyry showing brittle fracture and the metasedimentary rocks ductile deformation. The mineralisation at Wyoming bears many petrological and structural similarities to orogenic lode-style gold deposits. Although the timing of alteration and mineralisation in the Wyoming deposits remain problematic, a relationship with possible early to middle Devonian deformation is considered likely.  相似文献   

17.
The most southerly exposed Lower Palaeozoic strata in Ireland occur on the southwest coast of County Waterford along a 2.5 km long coastal section at Muggort's Bay where they are surrounded by Devonian rocks. Five formations can be distinguished which, in ascending order, are: the Ballycurreen, Carrickbrean, Rathnameenagh, Moanbrack and Killinoorin formations. The total thickness of the succession is over 1800 m. No macrofossils are present, but the lithologies are largely fine‐grained turbidites and subordinate volcanic rocks which closely resemble the Ribband Group seen elsewhere in southeast Ireland and have previously therefore been classified with it. Palynological analysis was undertaken on 25 samples collected from Muggort's Bay, of which eight were productive. Diagnostic microfossils, comprising acritarchs, chitinozoans and scolecodonts, indicate an Early to Middle Ordovician age for both the Rathnameenagh and the Moanbrack formations. These ages confirm that the strata are part of the Ribband Group which elsewhere has been biostratigraphically dated as ranging from Mid‐Cambrian to Mid‐Ordovician. Reworked mid‐Middle Cambrian acritarchs occur in the Moanbrack Formation and reworked late Middle to early Late Cambrian acritarchs in the Rathnameenagh Formation. Despite generally poor preservation of the organic matter, some 20 acritarch species have been distinguished. Among these, three species belong to the herein revised genus Retisphaeridium for which an emended diagnosis is proposed together with two new combinations, Retisphaeridium capsulatum (Jankauskas, 1976 ) Vanguestaine nov. comb. and Retisphaeridium pusillum (Moczydlowska, 1998 ) Vanguestaine nov. comb. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
In the Seeberg area (Karawanken/Austria) intermediate to acidic pyroclastic rocks of Palaeozoic age are found. These rocks are partly of upper Ordovician age and partly as yet undated. 12 complete chemical analyses of these tuffs and their corresponding modal mineral content are presented. The tuffs differ chemically from the average composition of intermediate to acidic volcanic rocks by their lower alkali and higher H2O and CO2 values. It is assumed that the originally glassy parts of the tuffs took up H2O and CO2 and lost alkalies and possibly also SiO2 during diagenesis and tectonic stress. In addition, two other complete chemical analyses of a basic dyke which cuts across Devonian limestones are given. The dyke has a spilitic mineral content which is of secondary origin. The petrographic character of the analysed tuffs is discussed in comparison with Palaeozoic and Tertiary to recent trachytes, alkali rhyolites and rhyolites.  相似文献   

19.
New 40Ar/39Ar data from sedimentary rock-hosted orogenic gold deposits in northeastern Tasmania constrain most ore formation to between 395 Ma and 385 Ma. These 385–395 Ma ages for the formation of orogenic gold agree well with an inferred Early to Middle Devonian timing for peak deformation and folding across much of northeastern Tasmania. Data from micas within alteration halos in some deposits give dates of ~420–430 Ma; these dates confirm the occurrence of an earlier Silurian phase of deformation and suggest that at least some of the mineralisation was possibly generated during this event. Gold mineralisation hosted by Middle Devonian post-tectonic granites may be genetically related to magmatism following orogeny, but these deposits formed virtually synchronously with peak deformation-related systems. Early to Middle Devonian deformation in northeastern Tasmania also reactivated older structures in western Tasmania, and the formation of quartz vein-hosted gold mineralisation there. Based on geological, structural, tectonic and metallogenetic similarities, northeastern Tasmania is interpreted as a lateral equivalent of the turbidite-dominated fold-thrust belt of the western Lachlan Orogen. However, unlike Victoria, where the sedimentary rock sequence developed on oceanic crust, northeastern Tasmania was probably underlain by thinned Proterozoic crust, either as part of a promontory along the Gondwana margin or as a microcontinental fragment. This may have protected the Palaeozoic succession from large-scale, pre-Devonian orogeny, with collision not beginning until the Middle Devonian. These variations in the structural and tectonic evolution, and the timing of deformation and ore formation can explain the difference in contained gold, and the distribution and number of major orogenic gold deposits within the Palaeozoic of northeastern Tasmania.Electronic supplementary material Supplementary material is available for this article at  相似文献   

20.
A geochemical soil survey was made over outcropping Cambrian and Lower Devonian formations in the Belgian Ardennes. About 300 soil samples were collected in an area of 2.5 × 1.1 km2.Analysis of rock samples from scarce, but stratigraphically well-known outcrops show that the Cambrian rocks are richer in copper than those of the Lower and Upper Gedinnian (Lower Devonian). The Upper Gedinnian rocks are more nickeliferous than the other horizons.In the well-drained soils, copper and lead distributions permit precise location of the boundary between Cambrian and Lower Gedinnian formations. The nickel distribution seems to be a good stratigraphic indicator for distinguishing Upper from Lower Gedinnian. Zinc distribution seems unrelated to underlying bedrock geology.Regression analysis confirms that the content of Cu, Pb and Ni is essentially a function of lithostratigraphy. However, the distribution of these elements is more influenced by pedological factors in the poorly drained soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号