首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
刚体地球章动序列和非刚体地球章动的转换函数都和地球动力学扁率有关。IAU1980章动理论中采用了一个不一致的地球动力学扁率值,从而影响了章动振幅的计算。本文介绍了章动序列计算中地球动力学扁率的取值。由地球模型1066A或PREM得到的地球动力学扁率值比由岁差观测得到的约小1%,并且不可靠。当考虑体静力学平衡被破坏时新的地球物理模型,可得到与岁差常数相一致的地球动力学扁率值。地球动力学扁率值H=0.  相似文献   

2.
夏一飞  萧耐园 《天文学报》2000,41(3):300-305
讨论了非刚体地球受迫章动奥波策项与简正模表达式中倾斜模的关系。结果表明天球历书极章动中倾斜振项对应于角动量极的章动,在球历书极章动与角动量极的章动奥波策项之和。同时还给出了岁差速率与自转极的章动奥波策项间的数学关系。  相似文献   

3.
火星是类地行星,火星动力学的研究不仅具有科学意义,而且还具有实际应用价值。火星的空间探测获得了许多有关火星极运动的重要资料,它与理论值的比较是检验火星内部结构的重要手段,也是为改进火星岁差章动理论提供依据的有效途径。介绍了当前国际上有关火星的岁差和章动研究的进展,分别对刚体火星的章动序列、火星内部结构参数化模型的建立和火星自转的简正模作了描述,并进行了简单的讨论。  相似文献   

4.
全球动力学扁率(H)是研究地球自转与岁差的-个重要物理量.由对岁差的观测有Hobs=0.0032737≈1/305.5.该文依据内部场理论重新计算了流体静平衡态下的地球内部几何扁率剖面,结果与Denis(1989)的结果相吻合.该文还推导了三阶扁率精度下日的计算式,并计算出PREM地球模型的H理论值为HPREM=1/308.5,这与其他人的结果一样,与观测值之间存在1%的差别.为了研究这个差别的来源,该文将PREM模型中均一的上地壳层与海洋层替换为ECCO、GTOPO30和ETOPO5等真实的地球表层数据,结果表明替换后得到的H更加偏离观测值.此结果说明来自于地幔及更深处质量异常引起的正面影响可能要比先前预期的高,并为地壳均衡理论提供了间接的证据.  相似文献   

5.
基于经典的弹性地球自转动力学理论,建立了极移和章动的联合动力学方程。由此给出了弹性地球各种几何轴和物理轴(Tisserand轴、自转轴、瞬时形状轴、角动量轴、CEP和CIP轴)的极移、岁差章动的动力学方程,明确了各种轴的定义及其之间的理论关系。理论研究表明,联合动力学方程要比经典动力学方程综合性强易于理解,可同时求解极移和章动,特别是在文[1]理论中出现的倾斜模(TOM),在此只是作为了一个特解而存在。  相似文献   

6.
本文提出在由以河外星系为定标的恒星自行与恒星星表自行相比较求解岁差常数改正的方法中,同时考虑章动常数误差的影响,进而在求解岁差常数采用值的改正值的同时确定章动常数采用值的改正值。  相似文献   

7.
刚体地球章动理论   总被引:1,自引:0,他引:1  
黄天衣 《天文学进展》1996,14(2):114-120
介绍和比较最新的刚体地球章动理论,重点评述可能成为未来IAU章动系列基础的KS90理论,它考虑了力学因素,采用的历表和常数系统,对现行K77理论的改进,同时也指出了KS90应作了微小修正。  相似文献   

8.
由于行星不是严格的刚体,自转会使其形变为近似的扁球体,这种非球体性会对其本身的物理性质产生影响.从其对自由核章动和低阶本征模耦合影响两个方面进行了初步的讨论.首先,讨论了扁率对于自由核章动产生的影响;其次,土星的大扁率使其低阶的本征模强烈耦合,此时解的截断长度和不同模之间的能量比会使结果有着明显的不同.计算了在不同的截断下,低阶本征模周期的变化,同时初步讨论了不同本征模间能量的比例对本征模的影响.  相似文献   

9.
自转使地球产生形变,形变反过来又引起一些复杂的自转现象。它们有:希勃切斯在二千一百年前发现的岁差,布雷德利在二百三十年前发现的章动,以及二百一十年前就被预言但当时尚先观测的极移。本文讨论极移,必须把它与岁差和章动严格区别开来。地球是一个扁球体,包含极轴的每一个截面是一个椭圆;在赤道部分隆起,内部各等密度层都是一些扁球。太阳和月亮通常位于地球的赤道面之外,它们的引力使旋转着的地球产生一个陀螺  相似文献   

10.
关于天球参考报   总被引:2,自引:0,他引:2  
章动序列计算和地球定向参数测定需要一个中间的天球参考极作参照,1984年,采用IAU1980章动理论,选取天球历书极作为参考极,利用改善岁差章动模型和由天文测地新技术确定地球定向参数实现的天球历书极,其精度可达0.1mas,随着理论和观测精度的提高,在微角秒量级下,章动和极移模型中周日和半周日成分分应被考虑,地球定向参数的高频成分已被测定,因此天球历书极的原先定义不再适用,需要更改,叙述了不同天球参考极的概念,天球历书极的定义,评述了天球历书极目前实现及其缺陷,介绍了新的天球参考极-天球中间极的定义及其实现。  相似文献   

11.
New series of rigid Earth nutations for the angular momemtum axis, the rotation axis and the figure axis, named RDAN97, are computed using the torque approach. Besides the classical J2 terms coming from the Moon and the Sun, we also consider several additional effects: terms coming from J3 and J4 in the case of the Moon, direct and indirect planetary effects, lunar inequality, J2 tilt, planetary‐tilt, effects of the precession and nutations on the nutations, secular variations of the amplitudes, effects due to the triaxiality of the Earth, new additional out‐of‐phase terms coming from second order effect and relativistic effects. Finally, we obtain rigid Earth nutation series of 1529 terms in longitude and 984 terms in obliquity with a truncation level of 0.1 μ (microarcsecond) and 8 significant digits. The value of the dynamical flattening used in this theory is HD=(C-A)/C=0.0032737674 computed from the initial value pa=50′.2877/yr for the precession rate. These new rigid Earth nutation series are then compared with the most recent models (Hartmann et al., 1998; Souchay and Kinoshita, 1996, 1997; Bretagnon et al., 1997, 1998. We also compute a benchmark series (RDNN97) from the numerical ephemerides DE403/LE403 (Standish et al., 1995) in order to test our model. The comparison between our model (RDAN97) and the benchmark series (RDNN97) shows a maximum difference, in the time domain, of 69 μas in longitude and 29 μas in obliquity. In the frequency domain, the maximum differences are 6 μas in longitude and 4 μ as in obliquity which is below the level of precision of the most recent observations (0.2 mas in time domain (temporal resolution of 1 day) and 0.02 mas in frequency domain). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The luni-solar precession, derived by theoretical considerations from the precession of the equator, is one of the most important parameters for computing not only precession but also nutations, due to its relation to the dynamical flattening. In this paper, we review the numerical values of this parameter, from the geodynamical point of view as well as the astronomical point of view, from the observational point of view as well as from the theoretical point of view. In particular, we point out a difference of about 1 percent between the global Earth dynamical flattening derived from the astronomical observations and the values derived from the different geophysical computations. The nutation amplitudes depend on the Earth dynamical flattening and this dependence is amplified by a resonance at an important normal mode, the Tilt-Over-Mode (TOM). Since the astronomical point of view as well as the geophysical one are confronted, we also take the opportunity to make the link between the TOM and the expressions of the nutations of the different axes which, in turn, are related with one another by the Oppolzer terms. Both, the Oppolzer terms and the TOM originate from a reference frame tilt effect. In writing the link between the nutational motions of the different axes, and so, in writing the Oppolzer terms, we also make the link with the precessional motion.  相似文献   

13.
The IAU Working Group on Precession and the Equinox looked at several solutions for replacing the precession part of the IAU 2000A precession–nutation model, which is not consistent with dynamical theory. These comparisons show that the (Capitaine et al., Astron. Astrophys., 412, 2003a) precession theory, P03, is both consistent with dynamical theory and the solution most compatible with the IAU 2000A nutation model. Thus, the working group recommends the adoption of the P03 precession theory for use with the IAU 2000A nutation. The two greatest sources of uncertainty in the precession theory are the rate of change of the Earth’s dynamical flattening, ΔJ2, and the precession rates (i.e. the constants of integration used in deriving the precession). The combined uncertainties limit the accuracy in the precession theory to approximately 2 mas cent−2. Given that there are difficulties with the traditional angles used to parameterize the precession, zA, ζA, and θA, the working group has decided that the choice of parameters should be left to the user. We provide a consistent set of parameters that may be used with either the traditional rotation matrix, or those rotation matrices described in (Capitaine et al., Astron. Astrophys., 412, 2003a) and (Fukushima Astron. J., 126, 2003). We recommend that the ecliptic pole be explicitly defined by the mean orbital angular momentum vector of the Earth–Moon barycenter in the Barycentric Celestial Reference System (BCRS), and explicitly state that this definition is being used to avoid confusion with previous definitions of the ecliptic. Finally, we recommend that the terms precession of the equator and precession of the ecliptic replace the terms lunisolar precession and planetary precession, respectively.  相似文献   

14.
This paper presents the reflections of the Working Group of which the tasks were to examine the non-rigid Earth nutation theory. To this aim, six different levels have been identified: Level 1 concerns the input model (giving profiles of the Earth's density and theological properties) for the calculation of the Earth's transfer function of Level 2; Level 2 concerns the integration inside the Earth in order to obtain the Earth's transfer function for the nutations at different frequencies; Level 3 concerns the rigid Earth nutations; Level 4 examines the convolution (products in the frequency domain) between the Earth's nutation transfer function obtained in Level 2, and the rigid Earth nutation (obtained in Level 3). This is for an Earth without ocean and atmosphere; Level 5 concerns the effects of the atmosphere and the oceans on the precession, obliquity rate, and nutations; Level 6 concerns the comparison with the VLBI observations, of the theoretical results obtained in Level 4, corrected for the effects obtained in Level 5.Each level is discussed at the state of the art of the developments.  相似文献   

15.
In this paper, two factors — the redistribution of the density and the variation in the angular velocity of the Earth rotation, that affect the adopted value of the flattening for equidensity surface within the Earth, are discussed. The computational results show that the contribution of the redistribution of the density in the Earth interior (especially in the core) on the change of the flattening at the core-mantle boundary (CMB) is marginal, and that the calculated value of the flattening at the CMB can be in good agreement with the VLBI observed value so long as the fact that the angular velocity of the Earth rotation has undergone the tidal evolution is taken into account. As a result, this paper presents a set of recommended values of the dynamical parameters of the Earth (see Table III) for computing Earth's forced nutation series.  相似文献   

16.
Thej=2 lunar ephemeris is based on a flattening of the Earth which is slightly different from the 1964 IAU recommended value. The total effects of Earth-oblateness on the analytical lunar theory are determined, and the corrections, which are about 0.02 in lunar longitude and latitude, are derived.  相似文献   

17.
IAU 1976天文常数系统中的基础常数   总被引:2,自引:2,他引:0  
对IAU1976天文常数系统中的基础常数的测定方法进行了评述,指出十个基础常数已发生了许多变化,光速已成为常数,地球赤道半径可用于大地水准面的重力势代替,黄经总岁差需进行修改,章动常数已不能称为基础常数,其它常数也都有了新的测定结果,IAU1976天文常数系统已跟上不天文学的发展,并存在很大的缺陷,必须进行修订和改进,天文常数的测定方法和理论研究都在迅速发展之中,我们应当关心这个领域的研究。  相似文献   

18.
Under perturbations from outer bodies, the Earth experiences changes of its angular momentum axis, figure axis and rotational axis. In the theory of the rigid Earth, in addition to the precession and nutation of the angular momentum axis given by the Poisson terms, both the figure axis and the rotational axis suffer forced deviation from the angular momentum axis. This deviation is expressed by the so-called Oppolzer terms describing separation of the averaged figure axis, called CIP (Celestial Intermediate Pole) or CEP (Celestial Ephemeris Pole), and the mathematically defined rotational axis, from the angular momentum axis. The CIP is the rotational axis in a frame subject to both precession and nutation, while the mathematical rotational axis is that in the inertial (non-rotating) frame. We investigate, kinematically, the origin of the separation between these two axes—both for the rigid Earth and an elastic Earth. In the case of an elastic Earth perturbed by the same outer bodies, there appear further deviations of the figure and rotational axes from the angular momentum axis. These deviations, though similar to the Oppolzer terms in the rigid Earth, are produced by quite a different physical mechanism. Analysing this mechanism, we derive an expression for the Oppolzer-like terms in an elastic Earth. From this expression we demonstrate that, under a certain approximation (in neglect of the motion of the perturbing outer bodies), the sum of the direct and convective perturbations of the spin axis coincides with the direct perturbation of the figure axis. This equality, which is approximate, gets violated when the motion of the outer bodies is taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号