首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfate-reducing bacteria (SRB) are ubiquitous in anoxic environments where they couple the oxidation of organic compounds to the production of hydrogen sulfide. This can be problematic for various industries including oil production where reservoir “souring” (the generation of H2S) requires corrective actions. Nitrate or nitrite injection into sour oil fields can promote SRB control by stimulating organotrophic nitrate- or nitrite-reducing bacteria (O-NRB) that out-compete SRB for electron donors (biocompetitive exclusion), and/or by lithotrophic nitrate- or nitrite-reducing sulfide oxidizing bacteria (NR-SOB) that remove H2S directly. Sulfur and oxygen isotope ratios of sulfide and sulfate were monitored in batch cultures and sulfidic bioreactors to evaluate mitigation of SRB activities by nitrate or nitrite injection. Sulfate reduction in batch cultures of Desulfovibrio sp. strain Lac15 indicated typical Rayleigh-type fractionation of sulfur isotopes during bacterial sulfate reduction (BSR) with lactate, whereas oxygen isotope ratios in unreacted sulfate remained constant. Sulfur isotope fractionation in batch cultures of the NR-SOB Thiomicrospira sp. strain CVO was minimal during the oxidation of sulfide to sulfate, which had δ18OSO4 values similar to that of the water-oxygen. Treating an up-flow bioreactor with increasing doses of nitrate to eliminate sulfide resulted in changes in sulfur isotope ratios of sulfate and sulfide but very little variation in oxygen isotope ratios of sulfate. These observations were similar to results obtained from SRB-only, but different from those of NR-SOB-only pure culture control experiments. This suggests that biocompetitive exclusion of SRB took place in the nitrate-injected bioreactor. In two replicate bioreactors treated with nitrite, less pronounced sulfur isotope fractionation and a slight decrease in δ18OSO4 were observed. This indicated that NR-SOB played a minor role during dosing with low nitrite and that biocompetitive exclusion was the major process. The results demonstrate that stable isotope data can contribute unique information for understanding complex microbial processes in nitrate- and sulfate-reducing systems, and offer important information for the management of H2S problems in oil reservoirs and elsewhere.  相似文献   

2.
A detailed experimental study was conducted to investigate mechanisms of pyrite oxidation by determining product yields and oxygen isotopic fractionation during reactions between powdered pyrite (FeS2) with aqueous hydrogen peroxide (H2O2). Sealed silica-tube experiments utilized aliquots of pyrite that were reacted with 0.2 M H2O2 for 7 to 14 days at 4 to 150 °C. No volatile sulfur species were detected in any experiment. The only gaseous product recovered was elemental oxygen inferred to result from decomposition of H2O2. Aqueous sulfate (Saq) was the only sulfur product recovered from solution. Solid hydrated ferric iron sulfates (i.e., water-soluble sulfate fraction, Sws) were recovered from all experiments. Ferric oxide (hematite) was detected only in high temperature experiments.Reactants were selected with large differences in initial δ18O values. The oxygen isotopic compositions of oxygen-bearing reactants and products were analyzed for each experiment. Subsequent isotopic mass-balances were used to identify sources of oxygen for reaction products and to implicate specific chemical reaction mechanisms. δ18O of water did not show detectable change during any experiment. δ18O of sulfate was similar for Saq and Sws and indicated that both H2O and H2O2 were sources of oxygen in sulfate. Low-temperature experiments suggest that H2O-derived oxygen was incorporated into sulfate via Fe3+ oxidation, whereas H2O2-derived oxygen was incorporated into sulfate via oxidation by hydroxyl radicals (HO). These two competing mechanisms for oxygen incorporation into sulfate express comparable influences at 25 °C. With increasing reaction temperatures from 4 to 100 °C, it appears that accelerated thermal decomposition and diminished residence time of H2O2 limit the oxygen transfer from H2O2 into sulfate and enhance the relative importance of H2O-derived oxygen for incorporation into sulfate. Notably, at temperatures between 100 and 150 °C there is a reversal in the lower temperature trend resulting in dominance of H2O2-derived oxygen over H2O-derived oxygen. At such high temperatures, complete thermal decomposition of H2O2 to water and molecular oxygen (O2) occurs within minutes in mineral-blank experiments and suggests little possibility for direct oxidation of pyrite by H2O2 above 100 °C. We hypothesize that a Fe-O2 mechanism is responsible for oxygenating pyrite to sulfate using O2 from the preceding thermal decomposition of H2O2.  相似文献   

3.
Oxidation of pyrite by hydrogen peroxide (H2O2) at millimolar levels has been studied from 4 to 150 °C in order to evaluate isotopic effects potentially associated with radiolytic oxidation of pyrite. Gaseous, aqueous, and solid phases were collected and measured following sealed-tube experiments that lasted from 1 to 14 days. The dominant gaseous product was molecular oxygen. No volatile sulfur species were recovered from any experiment. Sulfate was the only aqueous sulfur species detected in solution, with sulfite and thiosulfate below the detection limits. X-ray diffraction patterns and images from scanning electron microscopy reveal solid residues composed primarily of hydrated ferric iron sulfates and sporadic ferric-ferrous iron sulfates. Hematite was detected only in solid residue produced during high temperature experiments. Elemental sulfur and/or polysulfides are inferred to be form on reacting pyrite surface based on extraction with organic solvents. Pyrite oxidation by H2O2 increases in rate with increasing H2O2concentration, pyrite surface area, and temperature. Rates measured in sealed-tube experiments at 25°C, for H2O2 concentration of 2 × 10−3 M are 8.8 × 10−9 M/m2/sec, which are higher than previous estimates. A combination of reactive oxygen species from H2O2 decomposition products and reactive iron species from pyrite dissolution is inferred to aggressively oxidize the receding pyrite surface. Competing oxidants with temperature-dependent oxidation efficiencies results in multiple reaction mechanisms for different temperatures and surface conditions. Sulfur isotope values of remaining pyrite were unchanged during the experiments, but showed distinct enrichment of 34S in produced sulfate and depletion in elemental sulfur. The Δsulfate-pyrite and Δelemental sulfur-pyrite was +0.5 to +1.5‰ and was −0.2 to −1‰, respectively. Isotope data from high-temperature experiments indicate an additional 34S-depleted sulfur fraction, with up to 4‰ depletion of 34S, in the hematite. Sulfur isotope trends were not influenced by H2O2 concentration, temperature, or reaction time. Results of this study indicate that radiolytically produced oxidants, such as hydrogen peroxide and hydroxyl radicals, could efficiently oxidize pyrite in an otherwise oxygen-limited environment. Although H2O2 is generally regarded as being of minor geochemical significance on Earth, the H2O2 molecule plays a pivotal role in Martian atmospheric and soil chemistry. Additional experimental and field studies are needed to characterize sulfur and oxygen isotope systematics during radiolytical oxidation of metallic sulfides and elemental sulfur.  相似文献   

4.
Aqueous oxidation of sulfide minerals to sulfate is an integral part of the global sulfur and oxygen cycles. The current model for pyrite oxidation emphasizes the role of Fe2+-Fe3+ electron shuttling and repeated nucleophilic attack by water molecules on sulfur. Previous δ18O-labeled experiments show that a variable fraction (0-60%) of the oxygen in product sulfate is derived from dissolved O2, the other potential oxidant. This indicates that nucleophilic attack cannot continue all the way to sulfate and that a sulfoxyanion of intermediate oxidation state is released into solution. The observed variability in O2% may be due to the presence of competing oxidation pathways, variable experimental conditions (e.g. abiotic, biotic, or changing pH value), or uncertainties related to the multiple experiments needed to effectively use the δ18O label to differentiate sulfate-oxygen sources. To examine the role of O2 and Fe3+ in determining the final incorporation of O2 oxygen in sulfate produced during pyrite oxidation, we designed a set of aerated, abiotic, pH-buffered (pH = 2, 7, 9, 10, and 11), and triple-oxygen-isotope labeled solutions with and without Fe3+ addition. While abiotic and pH-buffered conditions help to eliminate variables, triple oxygen isotope labeling and Fe3+ addition help to determine the oxygen sources in sulfate and examine the role of Fe2+-Fe3+ electron shuttling during sulfide oxidation, respectively.Our results show that sulfate concentration increased linearly with time and the maximum concentration was achieved at pH 11. At pH 2, 7, and 9, sulfate production was slow but increased by 4× with the addition of Fe3+. Significant amounts of sulfite and thiosulfate were detected in pH ? 9 reactors, while concentrations were low or undetectable at pH 2 and 7. The triple oxygen isotope data show that at pH ? 9, product sulfate contained 21-24% air O2 signal, similar to pH 2 with Fe3+ addition. Sulfate from the pH 2 reactor without Fe3+ addition and the pH 7 reactors all showed 28-29% O2 signal. While the O2% in final sulfate apparently clusters around 25%, the measurable deviations (>experimental error) from the 25% in many reaction conditions suggest that (1) O2 does get incorporated into intermediate sulfoxyanions (thiosulfate and sulfite) and a fraction survives sulfite-water exchange (e.g. the pH 2 with no Fe3+ addition and both pH 7 reactors); and (2) direct O2 oxidation dominates while Fe3+ shuttling is still competitive in the sulfite-sulfate step (e.g. the pH 9, 10, and 11 and the pH 2 reactor with Fe3+ addition). Overall, the final sulfate-oxygen source ratio is determined by (1) rate competitions between direct O2 incorporation and Fe3+ shuttling during both the formation of sulfite from pyrite and from sulfite to final sulfate, and (2) rate competitions between sulfite and water oxygen exchange and the oxidation of sulfite to sulfate. Our results indicate that thiosulfate or sulfite is the intermediate species released into solution at all investigated pH and point to a set of dynamic and competing fractionation factors and rates, which control the oxygen isotope composition of sulfate derived from pyrite oxidation.  相似文献   

5.
Hydrogen defect saturation in natural pyroxene   总被引:1,自引:0,他引:1  
Dehydration via the redox reaction: OH? + Fe2+ ? O2? + Fe3+ + ½H2 is believed to be a commonly occurring process in pyroxenes and other nominally anhydrous minerals (NAMs) from the upper mantle and appears to be fast enough to allow significant dehydration during magma ascent. Nevertheless, the mobility of hydrogen incorporating defects is controlled by cation diffusion with approximately two orders of magnitude slower reaction kinetics than the iron redox reaction, and host defects have a much higher likelihood to be preserved than the hydrogen itself. Therefore, restoring hydrogen into the structure would be possible by driving the redox reaction backwards, as long as temperature and time are limited so as not to change the defect state of the crystal structure. Here we investigate the re-hydration capacity of megacryst and xenocryst ortho- and clinopyroxene by stepwise thermal annealing of crystallographically oriented samples in 1 atm H2. H concentration was measured by FTIR spectroscopy after each annealing step. Most samples show only a small increase in water content up to a presumed saturation level, after which further heat treatments in H2 resulted in a slight decrease in water contents. However, two of the studied samples, both fairly Fe rich megacrysts, are significantly rehydrated. Some samples or crystal sections exhibit a practically inert behavior, with minor fluctuations around initial water concentrations. Present results indicate that most mantle pyroxenes have not been substantially dehydrated during late stage magma processes, and that restoring water is possible in samples which have lost considerable amounts of water.  相似文献   

6.
Sulfate reduction during seawater reaction with fayalite and with magnetite was rapid at 350°C, producing equilibrium assemblages of talc-pyrite-hematite-magnetite at low water/rock ratios and talc-pyrite-hematite-anhydrite at higher water/rock ratios. At 250°C, seawater reacting with fayalite produced detectable amounts of dissolved H2S, but extent of reaction of solid phases was minor after 150 days. At 200°C, dissolved H2S was not detected, even after 219 days, but mass balance calculations suggest a small amount of pyrite may have formed. Reaction stoichiometry indicates that sulfate reduction requires large amounts of H+, which, in subseafloor hydrothermal systems is provided by Mg metasomatism. Seawater contains sufficient Mg to supply all the H+ necessary for quantitative reduction of seawater sulfate.Systematics of sulfur isotopes in the 250 and 350°C experiments indicate that isotopic equilibrium is reached, and can be modeled as a Rayleigh distillation process. Isotopic composition of hydrothermally produced H2S in natural systems is strongly dependent upon the seawater/basalt ratio in the geothermal system, which controls the relative sulfide contributions from the two important sulfur sources, seawater sulfate and sulfide phases in basalt. Anhydrite precipitation during geothermal heating severely limits sulfate ingress into high temperature interaction zones. Quantitative sulfate reduction can thus be accomplished without producing strongly oxidized rocks and resultant sulfide sulfur isotope values represent a mixture of seawater and basaltic sulfur.  相似文献   

7.
Methods were developed for stabilizing SO2 in water and gas samples. The pararosaniline colorimetric method, and a gas Chromatographic method using a flame photometric detector specific for sulfur gases were used to assay SO2. Assays were also performed for sulfide, elemental sulfur and sulfate.A large number of acidic, neutral, and alkaline springs in Yellowstone National Park were sampled: SO2 was found in small amounts in most of them. The highest concentration detected in water was 0.5–0.6 μg/ml (expressed as sulfur). Sulfur dioxide was never detected in gases emanating from hot springs, or in fumaroles, although H2S was readily detected. Because of the high solubility of SO2 in water, and its low pK, it is unlikely that environmentally significant quantities are volatilized from geothermal systems of the low-temperature type characteristic of Yellowstone Park. Laboratory studies suggest that in acid waters, ferric iron is the primary oxidant, as H2S is not oxidized by O2 at low pH. At neutral or alkaline pH, O2 is the likely oxidant, because sulfide is oxidized by O2 at these pH values, and neutral and alkaline hot springs are always low in iron. Although bacteria capable of oxidizing sulfide and elemental sulfur are present in most of the springs sampled, it is concluded that the oxidation of reduced sulfur compounds to sulfur dioxide is primarily a chemical process, because of the rapidity with which it occurs and the lack of any evidence that bacteria produce sulfur dioxide.  相似文献   

8.
Why the atmosphere became oxygenated: A proposal   总被引:3,自引:0,他引:3  
The increase in the oxidation state of the atmosphere during Earth history is well documented, but not the reasons for this process. The course of atmospheric evolution has been dominated by the effects of photosynthesis and by the composition of volcanic gases. The H2/H2O ratio of volcanic gases has remained essentially constant during most of Earth history. It is here proposed that their CO2/H2O and SO2/H2O ratios have increased with time. A simple model for the degassing and the recycling of CO2, SO2, and H2O can account for many of the major steps in the oxygenation of the atmosphere.  相似文献   

9.
Previous geochemical and microbiological studies in the Cariaco Basin indicate intense elemental cycling and a dynamic microbial loop near the oxic-anoxic interface. We obtained detailed distributions of sulfur isotopes of total dissolved sulfide and sulfate as part of the on-going CARIACO time series project to explore the critical pathways at the level of individual sulfur species. Isotopic patterns of sulfate (δ34SSO4) and sulfide (δ34SH2S) were similar to trends observed in the Black Sea water column: δ34SH2S and δ34SSO4 were constant in the deep anoxic water (varying within 0.6‰ for sulfide and 0.3‰ for sulfate), with sulfide roughly 54‰ depleted in 34S relative to sulfate. Near the oxic-anoxic interface, however, the δ34SH2S value was ∼3‰ heavier than that in the deep water, which may reflect sulfide oxidation and/or a change in fractionation during in situ sulfide production through sulfate reduction (SR). δ34SH2S and Δ33SH2S data near the oxic-anoxic interface did not provide unequivocal evidence to support the important role of sulfur-intermediate disproportionation suggested by previous studies. Repeated observation of minimum δ34SSO4 values near the interface suggests ‘readdition’ of 34S-depleted sulfate during sulfide oxidation. A slight increase in δ34SSO4 values with depth extended over the water column may indicate a reservoir effect associated with removal of 34S-depleted sulfur during sulfide production through SR. Our δ34SH2S and Δ33SH2S data also do not show a clear role for sulfur-intermediate disproportionation in the deep anoxic water column. We interpret the large difference in δ34S between sulfate and sulfide as reflecting fractionations during SR in the Cariaco deep waters that are larger than those generally observed in culturing studies.  相似文献   

10.
The fractionation of sulfur isotopes by the thermophilic chemolithoautotrophic Thermodesulfatator indicus was explored during sulfate reduction under excess and reduced hydrogen supply, and the full temperature range of growth (40-80 °C). Fractionation of sulfur isotopes measured under reduced H2 conditions in a fed-batch culture revealed high fractionations (24-37‰) compared to fractionations produced under excess H2 supply (1-6‰). Higher fractionations correlated with lower sulfate reduction rates. Such high fractionations have never been reported for growth on H2. For temperature-dependant fractionation experiments cell-specific rates of sulfate reduction increased with increasing temperatures to 70 °C after which sulfate-reduction rates rapidly decreased. Fractionations were relatively high at 40 °C and decreased with increasing temperature from 40-60 °C. Above 60 °C, fractionation trends switched and increased again with increasing temperatures. These temperature-dependant fractionation trends have not previously been reported for growth on H2 and are not predicted by a generally accepted fractionation model for sulfate reduction, where fractionations are controlled as a function of temperature, by the balance of the exchange of sulfate across the cell membrane, and enzymatic reduction rates of sulfate. Our results are reproduced with a model where fractionation is controlled by differences in the temperature response of enzyme reaction rates and the exchange of sulfate in and out of the cell.  相似文献   

11.
The concentration of hydrocarbons (saturated and aromatic) and synthetic chlorinated compounds (Chlordane, DDT, and PCBs) decreased with depth in sediment cores from mid-Narragansett Bay and reached background levels at different depths. These depths were in general agreement with those expected based on the chronological inputs of these materials to the Bay. Although the total hydrocarbons concentration decreased with depth, the biogenic n-alkanes (n-C25,27,29,31,33) showed a fairly constant concentration with depth as did the organic carbon content of these sediments. The n-alkane odd/even ratio increased with depth in the cores. Size fractionation (> 45 μm and < 45 to > 0.3 μm) of two core sections showed more hydrocarbons associated with the smaller size fraction in the surface section, while the lower section had approximately equal concentrations in both fractions. These trends suggest that over the time period covered by these cores the inputs of biogenic materials has remained relatively constant, while the input of anthropogenic hydrocarbons has increased dramatically during the last 100 yr. This increase is probably due to the expanded use of petroleum over this time period and subsequent chronic inputs to this estuarine environment.  相似文献   

12.
Water Content of Basalt Erupted on the ocean floor   总被引:1,自引:0,他引:1  
Deep sea pillow basalts dredged from the ocean floor show that vesicularity changes with composition as well as with depth. Alkalic basalts are more vesicular than tholeiitic basalts erupted at the same depth. The vesicularity data, when related to experimentally determined solubility of water in basalt, indicate that K-poor oceanic tholeiites originally contained about 0.25 percent water, Hawaiian tholeiites of intermediate K-content, about 0.5 percent water, and alkali-rich basalts, about 0.9 percent water. Analyses of fresh basalt pillows show a systematic increase of H2O+ as the rocks become more alkalic. K-poor oceanic tholeiites contain 0.06–0.42 percent H2O+, Hawaiian tholeiites, 0.31–0.60 percent H2O+, and alkali rich basalts 0.49–0.98 percent H2O+. The contents of K2O, P2O5, F, and Cl increase directly with an increase in H2O+ content such that at 1.0 weight percent H2O+, K2O is 1.58 percent, P2O5 is 0.55 percent, F is 0.07 percent, and Cl is 0.1 percent. The measured weight percent of deuterium on the rim of one Hawaiian pillow is –6.0 (relative to SMOW); this value, which is similar to other indications of magmatic water, suggests that no appreciable sea water was absorbed by the pillow during or subsequent to eruption on the ocean floor.Concentrations of volatile constituents in the alkali basalt melts relative to tholeiitic melts can be explained by varying degrees of partial melting of mantle material or by fractional crystallization of a magma batch.Publication authorized by the Director, U.S. Geological Survey.  相似文献   

13.
《Applied Geochemistry》2001,16(7-8):947-961
During dry season baseflow conditions approximately 20% of the flow in Boulder Creek is comprised of acidic metals-bearing groundwater. Significant amounts of efflorescent salts accumulate around intermittent seeps and surface streams as a result of evaporation of acid rock drainage. Those salts include the Fe-sulfates — rhomboclase ((H3O)Fe3+(SO4)2·3H2O), ferricopiapite (Fe3+5(SO4)6O(OH)·20H2O), and bilinite (Fe2+Fe23+(SO4)4·22H2O); Al-sulfates — alunogen (Al2(SO4)3·17H2O) and kalinite (KAl(SO4)2·11H2O); and Ca- and Mg-sulfates — gypsum (CaSO4·2H2O), and hexahydrite (MgSO4·6H2O). The dissolution of evaporative sulfate salt accumulations during the first major storm of the wet season at Iron Mountain produces a characteristic hydrogeochemical response (so-called “rinse-out”) in surface waters that is subdued in later storms. Geochemical modeling shows that the solutes from relatively minor amounts of dissolved sulfate salts will maintain the pH of surface streams near 3.0 during a rainstorm. On a weight basis, Fe-sulfate salts are capable of producing more acidity than Al- or Mg-sulfate salts. The primary mechanism for the production of acidity from salts involves the hydrolysis of the dissolved dissolved metals, especially Fe3+. In addition to the lowering of pH values and providing dissolved Fe and Al to surface streams, the soluble salts appear to be a significant source of dissolved Cu, Zn, and other metals during the first significant storm of the season.  相似文献   

14.
Water is an important volatile component in andesitic eruptions and deep-seated andesitic magma chambers. We report an investigation of H2O speciation and diffusion by dehydrating haploandesitic melts containing ?2.5 wt.% water at 743-873 K and 100 MPa in cold-seal pressure vessels. FTIR microspectroscopy was utilized to measure species [molecular H2O (H2Om) and hydroxyl group (OH)] and total H2O (H2Ot) concentration profiles on the quenched glasses from the dehydration experiments. The equilibrium constant of the H2O speciation reaction H2Om+O?2OH, K = (XOH)2/(XH2OmXO) where X means mole fraction on a single oxygen basis, in this Fe-free andesite varies with temperature as ln K = 1.547-2453/T where T is in K. Comparison with previous speciation data on rhyolitic and dacitic melts indicates that, for a given water concentration, Fe-free andesitic melt contains more hydroxyl groups. Water diffusivity at the experimental conditions increases rapidly with H2O concentration, contrary to previous H2O diffusion data in an andesitic melt at 1608-1848 K. The diffusion profiles are consistent with the model that molecular H2O is the diffusion species. Based on the above speciation model, H2Om and H2Ot diffusivity (in m2/s) in haploandesite at 743-873 K, 100 MPa, and H2Ot ? 2.5 wt.% can be formulated as
  相似文献   

15.
Oxygen isotope exchange rate between dissolved sulfate and water was experimentally determined at 100, 200 and 300°C. The isotope exchange rate is strongly dependent on temperature and pH of the solution. Combining the temperature and pH dependence of the reaction rate, the exchange reaction was estimated to be first-order with respect to sulfate. The logarithm of apparent rate constant of exchange reaction at a given temperature is a function of the pH calculated at the experimental temperatures. From the pH dependence of the apparent rate constant, it was deduced that the isotope exchange reaction between dissolved sulfate and water proceeds through collision between H2SO04 and H2O at low pH, and between HSO?4 and H2O at intermediate pH. The isotope exchange rate obtained indicates that oxygen isotope geothermometry utilizing the studied isotope exchange is suitable for temperature estimation of geothermal reservoirs. The extrapolated half-life of this reaction to oceanic temperature is about 109 years, implying that exchange between oceanic sulfate and water cannot control the oxygen isotope ratio of oceanic sulfates.  相似文献   

16.
The East Pacific Rise (EPR) at 9°50'N hosts a hydrothermal vent field (Bio9) where the change in fluid chemistry is believed to have caused the demise of a tubeworm colony. We test this hypothesis and expand on it by providing a thermodynamic perspective in calculating free energies for a range of catabolic reactions from published compositional data. The energy calculations show that there was excess H2S in the fluids and that oxygen was the limiting reactant from 1991 to 1997. Energy levels are generally high, although they declined in that time span. In 1997, sulfide availability decreased substantially and H2S was the limiting reactant. Energy availability dropped by a factor of 10 to 20 from what it had been between 1991 and 1995. The perishing of the tubeworm colonies began in 1995 and coincided with the timing of energy decrease for sulfide oxidizers. In the same time interval, energy availability for iron oxidizers increased by a factor of 6 to 8, and, in 1997, there was 25 times more energy per transferred electron in iron oxidation than in sulfide oxidation. This change coincides with a massive spread of red staining (putative colonization by Fe-oxidizing bacteria) between 1995 and 1997. For a different cluster of vents from the EPR 9°50'N area (Tube Worm Pillar), thermodynamic modeling is used to examine changes in subseafloor catabolic metabolism between 1992 and 2000. These reactions are deduced from deviations in diffuse fluid compositions from conservative behavior of redox-sensitive species. We show that hydrogen is significantly reduced relative to values expected from conservative mixing. While H2 concentrations of the hydrothermal endmember fluids were constant between 1992 and 1995, the affinities for hydrogenotrophic reactions in the diffuse fluids decreased by a factor of 15 and then remained constant between 1995 and 2000. Previously, these fluids have been shown to support subseafloor methanogenesis. Our calculation results corroborate these findings and indicate that the 1992-1995 period was one of active growth of hydrogenotrophic communities, while the system was more or less at steady state between 1995 and 2000.  相似文献   

17.
Monthly variations of lightning activity over typical land and oceanic regions of India were examined using satellite data (OTD) for a 5-year period (1995–1999). It is noted that the nature of variation between surface air maximum temperature (T max), thunderstorm days (Thn), and lightning flash count over ER and WR showed remarkable correspondence and sensitivity with each other on monthly time scale. As we move out of winter season and enter the monsoon season, via pre-monsoon season, the WR undergoes cooling relative to the ER in the range 0.1–1.2°C. As a result, WR experiences reduction of thunder days and lowering in flash count. This decrease in T max, Thn, and flash count over WR may also be associated with relatively small values of T θw and CAPE in comparison with similar values over ER during the monsoon season. Our observation of associated reduction in Thn and lightning count per 1°C cooling in surface air maximum temperature suggests reduction of ∼3.5 thunderstorms per station and 73 flashes. Comparison of lightning flashes between pairs of coastal, oceanic, arid-zone, hilly, and island stations reveals distinct relationship between climate regime and intensity of lightning activity. We may conclude the results of this study by saying that the overhead lightning activity is a clear reflection of the status of the underlying ground-earth properties. A close and continuous monitoring of lightning activity may be considered as a need of present day scientific studies.  相似文献   

18.
Oxygen fugacity (fO2) in the Earth’s mantle has a bearing on the problems of the chemical differentiation of the Earth’s materials and formation of the chemical and phase state of its shells. This paper addresses some problems concerning changes in the redox state of the upper mantle over geologic time and through its depth and the possible influence of fO2 stratification in the interiors on geochemical processes. Among these problems are the formation of fluids enriched in H2O, CO2, CH4,and H2; the possible influence of reduced fluid migration from mantle zones with low fO2 values on reactions in the lithosphere; and the formation of films of silicate liquids with high H2O and CO2 contents, which could be responsible for metasomatic transformations in rocks. The formation of a metallic core and accompanying large-scale melting of the silicate part of the Earth are the early mechanisms of the chemical differentiation of the mantle that must have had an effect on the redox state and the composition of volatile components in planetary materials. The molten metallic and silicate phases were prone to gravitational migration, which affected the formation of the metallic core. Volatile components had to be simultaneously formed in the zones of large-scale melting of the early Earth. The composition of these volatiles was largely controlled by the interaction of hydrogen and carbon, the two major gas-forming elements in the mantle, with melt under low fO2 values. A remarkable feature is that, despite fairly low fO2 values imposed by the presence of a metallic phase, both reduced (CH4 and H2) and oxidized species of hydrogen and carbon (H2O, OH? and CO 3 ?2 ) are stable in the melt. This peculiarity of carbon and hydrogen dissolution in reduced melts may be crucial for the elucidation of mechanisms for the formation of initial amounts of CO2 and H2O connected with incipient melting in the reduced mantle.  相似文献   

19.
Loss of metals from pelites during regional metamorphism   总被引:3,自引:0,他引:3  
In aluminous metapelites the ratio H2O+/K2O decreases with increasing metamorphic grade and degree of reaction. This ratio is a very practical indicator for the progress of the mineral reconstitution during progressive metamorphism. With decreasing values of the ratio H2O+/ K2O the Cu concentration and the following element ratios also decrease either continuously or in stepwise fashion: Tl/K2O, Ba/K2O, Pb/K2O, Bi/K2O, Hg/K2O, Sr/Na2O, Zn/(Fe2++Mg), Cd/(Fe2++Mg); Rb/K2O remains approximately constant. In the aluminous metapelites of the Damara Orogen in Namibia the following losses occur between the biotite isograd and anatexis: 61% Cu, 20% Tl, 34% Ba, 59% Pb, 86% Bi, 46% Hg, 30% Sr, 25% Zn, 31% Cd. Thus the potential of regional metamorphism to form hydrothermal deposits in the low grade environment should not be neglected.  相似文献   

20.
The sulfur isotopic composition of carbonate associated sulfate (CAS) has been used to investigate the geochemistry of ancient seawater sulfate. However, few studies have quantified the reliability of δ34S of CAS as a seawater sulfate proxy, especially with respect to later diagenetic overprinting. Pyrite, which typically has depleted δ34S values due to authigenic fractionation associated with bacterial sulfate reduction, is a common constituent of marine sedimentary rocks. The oxidation of pyrite, whether during diagenesis or sample preparation, could thus adversely influence the sulfur isotopic composition of CAS. Here, we report the results of CAS extractions using HCl and acetic acid with samples spiked with varying amounts of pyrite. The results show a very strong linear relationship between the abundance of fine-grained pyrite added to the sample and the resultant abundance and δ34S value of CAS. This data represents the first unequivocal evidence that pyrite is oxidized during the CAS extraction process. Our mixing models indicate that in samples with much less than 1 wt.% pyrite and relatively high δ34Spyrite values, the isotopic offset imparted by oxidation of pyrite should be much less than ? 4‰. A wealth of literature exists on the oxidation of pyrite by Fe3+ and we believe this mechanism drives the oxidation of pyrite during CAS extraction, during which the oxygen used to form sulfate is taken from H2O, not O2. Consequently, extracting CAS under anaerobic conditions would only slow, but not halt, the oxidation of pyrite. Future studies of CAS should attempt to quantify pyrite abundance and isotopic composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号