首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We present the elemental and isotopic composition of noble gases in the bulk solar wind collected by the NASA Genesis sample return mission. He, Ne, and Ar were analyzed in diamond-like carbon on a silicon substrate (DOS) and 84,86Kr and 129,132Xe in silicon targets by UV laser ablation noble gas mass spectrometry. Solar wind noble gases are quantitatively retained in DOS and with exception of He also in Si as shown by a stepwise heating experiment on a flown DOS target and analyses on other bulk solar wind collector materials. Solar wind data presented here are absolutely calibrated and the error of the standard gas composition is included in stated uncertainties. The isotopic composition of the light noble gases in the bulk solar wind is as follows: 3He/4He: (4.64 ± 0.09) × 10−4, 20Ne/22Ne: 13.78 ± 0.03, 21Ne/22Ne: 0.0329 ± 0.0001, 36Ar/38Ar 5.47 ± 0.01. The elemental composition is: 4He/20Ne: 656 ± 5, and 20Ne/36Ar 42.1 ± 0.3. Genesis provided the first Kr and Xe data on the contemporary bulk solar wind. The preliminary isotope and elemental composition is: 86Kr/84Kr: 0.302 ± 0.003, 129Xe/132Xe: 1.05 ± 0.02, 36Ar/84Kr 2390 ± 150, and 84Kr/132Xe 9.5 ± 1.0. The 3He/4He and the 4He/20Ne ratios in the Genesis DOS target are the highest solar wind values measured in exposed natural and artificial targets. The isotopic composition of the other noble gases and the Kr/Xe ratio obtained in this work agree with data from lunar samples containing “young” (∼100 Ma) solar wind, indicating that solar wind composition has not changed within at least the last 100 Ma. Genesis could provide in many cases more precise data on solar wind composition than any previous experiment. Because of the controlled exposure conditions, Genesis data are also less prone to unrecognized systematic errors than, e.g., lunar sample analyses. The solar wind is the most authentic sample of the solar composition of noble gases, however, the derivation of solar noble gas abundances and isotopic composition using solar wind data requires a better understanding of fractionation processes acting upon solar wind formation.  相似文献   

2.
The noble gas isotopic composition and content data of 2 alkali basalts, 3 Iherzolite xenoliths and one clinopyroxene megacryst from the Kuandian region have confirmed the occurrence of a fractionation of noble gases during magmatism. Light noble gases such as He and Ne are high in mobility and appear to be incompatible as compared with heavy ones ( such as Kr and Xe). Therefore, light noble gases are abundant in volcanics, especially in the volcanics with bubbles; lherzolite xenoliths have relatively high heavy noble gases. The clinopyroxene megacryst has the lowest abundance of noble gases, probably due to its high P-T origin. Noble gas isotopic composition of the clinopyroxene megacryst reveals that the mantle source beneath the Kuandian area has an MORB-like reservoir with^3 He/^4He ratio of—10 Ra(Ra: atmospheric^3 He/^4He ratio) and^40 Ar/^36 Ar ratio of 345.6. The Iherzolite xenoliths possess moderate^3 He/^4He ratios of 2.59 -4.53 Ra, reflecting the loss of primary helium during rock deformation or metasomatism caused by enriched mantle fluids during the up-lifting. The alkali volcanics have very low^3 He/^4 He ratios(0.47—0.61 Ra),indicating a contribution of radiogenic^4 He, probably having resulted from crust contamination. Most of the samples have excess^21 Ne and^22 Ne as compared with atmospheric neon, but Kr and Xe isotopic compositions are indistinguishable from atmospheric values within uncertainties with only individual samples having excess^129Xe,^134Xeand^136 Xe.  相似文献   

3.
Mineral-melt partition coefficients of all noble gases (min/meltDi) have been obtained for olivine (ol) and clinopyroxene (cpx) by UV laser ablation (213 nm) of individual crystals grown from melts at 0.1 GPa mixed noble gas pressure. Experimental techniques were developed to grow crystals virtually free of melt and fluid inclusions since both have been found to cause profound problems in previous work. This is a particularly important issue for the analysis of noble gases in crystals that have very low partition coefficients relative to coexisting melt and fluid phases. The preferred partitioning values obtained for the ol-melt system for He, Ne, Ar, Kr, and Xe are 0.00017(13), 0.00007(7), 0.0011(6), 0.00026(16), and , respectively. The respective cpx-melt partition coefficients are 0.0002(2), 0.00041(35), 0.0011(7), 0.0002(2), and . The data confirm the incompatible behaviour of noble gases for both olivine and clinopyroxene but unlike other trace elements these values show little variation for a wide range of atomic radius. The lack of dependence of partitioning on atomic radius is, however, consistent with the partitioning behaviour of other trace elements which have been found to exhibit progressively lower dependence of min/meltDi on radius as the charge decreases. As all noble gases appear to exhibit similar min/meltDi values we deduce that noble gases are not significantly fractionated from each other by olivine and clinopyroxene during melting and fractional crystallisation. Although incompatible, the partitioning values for noble gases also suggest that significant amounts of primordial noble gases may well have been retained in the mantle despite intensive melting processes. The implication of our data is that high primordial/radiogenic noble gas ratios (3He/4He, 22Ne/21Ne, and 36Ar/40Ar) characteristic of plume basalt sources can be achieved by recycling a previously melted (depleted) mantle source rather than reflecting an isolated, non-degassed primordial mantle region.  相似文献   

4.
中国天然气中稀有气体丰度和同位素组成   总被引:4,自引:0,他引:4  
中国天然气中稀有气体丰度和同位素组成徐胜(中国科学院兰州地质研究所,兰州730000)关键词中国天然气、稀有气体丰度和同位素、稀有气体来源稀有气体在地质作用过程中的丰度和同位素组成变化几乎不受复杂化学反应的影响,而主要取决于溶解、吸附、吸着和核反应等...  相似文献   

5.
The San Juan Basin natural gas field, located in northwestern New Mexico and southwestern Colorado in the USA, is a case-type coalbed methane system. Groundwater is thought to play a key role in both biogenic methane generation and the CO2 sequestration potential of coalbed systems. We show here how noble gases can be used to construct a physical model that describes the interaction between the groundwater system and the produced gas. We collected 28 gas samples from producing wells in the artesian overpressured high production region of the basin together with 8 gas samples from the underpressured low production zone as a control. Stable isotope and major species determination clearly characterize the gas in the high production region as dominantly biogenic in origin, and the underpressured low producing region as having a significant admix of thermogenic coal gas. 3He/4He ratios increase from 0.0836Ra at the basin margin to 0.318Ra towards the center, indicating a clear but small mantle He signature in all gases. Coherent fractionation of water-derived 20Ne/36Ar and crustal 4He/40Ar* are explained by a simple Rayleigh fractionation model of open system groundwater degassing. Low 20Ne concentrations compared to the model predicted values are accounted for by dilution of the groundwater-associated gas by desorbed coalbed methane. This Rayleigh fractionation and dilution model together with the gas production history allows us to quantify the amount of water involved in gas production at each well. The quantified water volumes in both underpressured and overpressured zones range from 1.7 × 103 m3 to 4.2 × 105 m3, with no clear distinction between over- and underpressured production zones. These results conclusively show that the volume of groundwater seen by coal does not play a role in determining the volume of methane produced by secondary biodegradation of these coalbeds. There is no requirement of continuous groundwater flow for renewing the microbes or nutrient components. We furthermore observe strong mass related isotopic fractionation of 20Ne/22Ne and 38Ar/36Ar isotopic ratios. This can be explained by a noble gas concentration gradient in the groundwater during gas production, which causes diffusive partial re-equilibration of the noble gas isotopes. It is important for the study of other systems in which extensive groundwater degassing may have occurred to recognize that severe isotopic fractionation of air-derived noble gases can occur when such concentration gradients are established during gas production. Excess air-derived Xe and Kr in our samples are shown to be related to the diluting coalbed methane and can only be accounted for if Xe and Kr are preferentially and volumetrically trapped within the coal matrix and released during biodegradation to form CH4.  相似文献   

6.
通过对宽甸新生代碱性玄武岩、地幔包体及辉石巨晶的稀有气体同位素组成的分析,认为不同岩性稀有气体含量的差异反映了岩浆作用过程中轻、重稀有气体的分馏特性,较轻的稀有气体(He、Ne)比较重的稀有气体(Kr、xe)具有更高的活动性和不相容性;该地区上地幔源区具有典型的MORB型源区特征,以辉石巨晶为代表;地幔包体的^3He/^4He值较低,可能是地幔流体交代作用造成的;大陆碱性玄武岩具有与大洋玄武岩截然不同的He同位素组成,反映了大陆区地幔岩浆上升过程中受到了陆壳物质混染。地幔源区^40Ar/^36Ar值为350左右,二辉橄榄岩和碱性火山岩的^40Ar/^36Ar值比大气略高,可能有大气组分的混合。部分样品中有^21Ne、^22Ne、^129Xe、^134Xe和^136Xe相对于大气的过剩现象,是核成因造成的。  相似文献   

7.
This work reports the results of noble gas (Ne, Ar, Kr, Xe) analyses of accidental mantle xenoliths from San Carlos, Arizona. Except for the addition of radiogenic 40Ar and mass fractionation effects, the isotopic structures of these gases are indistinguishable from atmospheric composition. The absence of 129Xe excesses in these rocks may reflect indirect mixing of atmospheric gases with the source region of the xenoliths. The dominant influence on the noble gas abundances in the San Carlos xenoliths appears to have been diffusive gas loss, which may have occurred in a mantle metamorphic event or during contact with the host basanite magma. Evidence is presented for the partitioning of significant amounts of the heavy noble gases into fluid inclusions in the xenolith minerals; the proportion of each gas in the inclusions increases with increasing atomic weight of the gas, possibly reflecting solubility effects. The noble gases are present in greater concentration in pyroxenes than in olivine, similar to the behavior of other incompatible elements.  相似文献   

8.
We present new He-Ne data for geothermal fluids and He-Ne-Ar data for basalts from throughout the Icelandic neovolcanic zones and older parts of the Icelandic crust. Geothermal fluids, subglacial glasses, and mafic phenocrysts are characterized by a wide range in helium isotope ratios (3He/4He) encompassing typical MORB-like ratios through values as high as 36.8 RA (where RA = air 3He/4He). Although neon in geothermal fluids is dominated by an atmospheric component, samples from the northwest peninsula show a small excess of nucleogenic 21Ne, likely produced in-situ and released to circulating fluids. In contrast, geothermal fluids from the neovolcanic zones show evidence of a contribution of mantle-derived neon, as indicated by 20Ne enrichments up to 3% compared to air. The neon isotope composition of subglacial glasses reveals that mantle neon is derived from both depleted MORB-mantle and a primordial, ‘solar’ mantle component. However, binary mixing between these two endmembers can account for the He-Ne isotope characteristics of the basalts only if the 3He/22Ne ratio of the primordial mantle endmember is lower than in the MORB component. Indeed, the helium to neon elemental ratios (4He/21Ne∗ and 3He/22Nes where 21Ne∗ = nucleogenic 21Ne and 22Nes = ‘solar’-derived 22Ne) of the majority of Icelandic subglacial glasses are lower than theoretical values for Earth’s mantle, as observed previously for other OIB samples. Helium may be depleted relative to neon in high-3He/4He ratio parental melts due to either more compatible behavior during low-degree partial melting or more extensive diffusive loss relative to the heavier noble gases. However, Icelandic glasses show higher 4He/40Ar∗ (40Ar∗ = radiogenic Ar) values for a given 4He/21Ne∗ value compared to the majority of other OIB samples: this observation is consistent with extensive open-system equilibrium degassing, likely promoted by lower confining pressures during subglacial eruptions of Icelandic lavas. Taken together, the He-Ne-Ar systematics of Icelandic subglacial glasses are imprinted with the overlapping effects of helium depletion in the high-3He/4He ratio parental melt, binary mixing of two distinct mantle components, degassing fractionation and interaction with atmospheric noble gases. However, it is still possible to discern differences in the noble gas characteristics of the Icelandic mantle source beneath the neovolcanic zones, with MORB-like He-Ne isotope features prevalent in the Northern Rift Zone and a sharp transition to more primitive ‘solar-like’ characteristics in central and southern Iceland.  相似文献   

9.
新疆坡北镁铁-超镁铁质杂岩体由一个辉长岩体以及二十多个超镁铁质侵入体组成,其中坡一超镁铁质岩体稀有气体同位素组成揭示存在地幔柱的贡献。坡北杂岩体西端的坡一、坡四、坡十和坡十四等几个超镁铁质岩体的稀有气体同位素对比分析结果表明,岩浆矿物的3He/4He值(0.26~2.79Ra)分布于地壳与地幔值之间,较高的20Ne/22Ne和较低的21Ne/22Ne值分布于Ne质量分馏线(MFL)和L-K线之间,40Ar/36Ar=295~598。3He/4He与40Ar/36Ar比值揭示坡北杂岩体西端不同超镁铁质岩体形成过程中地幔(柱)、地壳和大气组分的贡献不同,岩体成因也可能不同。其中,坡一岩体具有地幔柱作用的贡献,其他三个岩体的岩石圈地幔及地壳流体组分的贡献较大。岩浆地幔源区由深部地幔柱物质叠加俯冲流体交代的岩石圈地幔物质所组成,大气与地壳物质组分可能由俯冲再循环洋壳带入到岩浆地幔源区以及围岩物质的混入。  相似文献   

10.
Solar-type helium (He) and neon (Ne) in the Earths mantle were suggested to be the result of solar-wind loaded extraterrestrial dust that accumulated in deep-sea sediments and was subducted into the Earths mantle. To obtain additional constraints on this hypothesis, we analysed He, Ne and argon (Ar) in high pressure–low temperature metamorphic rocks representing equivalents of former pelagic clays and cherts from Andros (Cyclades, Greece) and Laytonville (California, USA). While the metasediments contain significant amounts of 4He, 21Ne and 40Ar due to U, Th and K decay, no solar-type primordial noble gases were observed. Most of these were obviously lost during metamorphism preceding 30 km subduction depth. We also analysed magnetic fines from two Pacific ODP drillcore samples, which contain solar-type He and Ne dominated by solar energetic particles (SEP). The existing noble gas isotope data of deep-sea floor magnetic fines and interplanetary dust particles demonstrate that a considerable fraction of the extraterrestrial dust reaching the Earth has lost solar wind (SW) ions implanted at low energies, leading to a preferential occurrence of deeply implanted SEP He and Ne, fractionated He/Ne ratios and measurable traces of spallogenic isotopes. This effect is most probably caused by larger particles, as these suffer more severe atmospheric entry heating and surface ablation. Only sufficiently fine-grained dust may retain the original unfractionated solar composition that is characteristic for the Earths mantle He and Ne. Hence, in addition to the problem of metamorphic loss of solar noble gases during subduction, the isotopic and elemental fractionation during atmospheric entry heating is a further restriction for possible subduction hypotheses.  相似文献   

11.
The Sulagiri meteorite fell in India on 12 September 2008,LL6 chondrite class is the largest among all the Indian meteorites.Isotopic compositions of noble gases(He,Ne,Ar,Kr and Xe) and nitrogen in the Sulagiri meteorite and cosmic ray exposure history are discussed.Low cosmogenic(~(22)Ne/~(21)Ne)_c ratio is consistent with irradiation in a large body.Cosmogenic noble gases indicate that Sulagiri has a 4πcosmic-ray exposure(CRE) age of 27.9 ± 3.4 Ma and is a member of the peak of CRE age distribution of IX chondrites.Radiogenic ~4He and ~(40)Ar concentrations in Sulagiri yields the radiogenic ages as 2.29 and4.56 Ca,indicating the loss of He from the meteorite.Xenon and krypton are mixture of Q and spallogenic components.  相似文献   

12.
The abundances and isotopic compositions of Helium and Argon have been analyzed in a suite of fresh spinel peridotite xenoliths in Cenozoic basalts from the eastern North China Craton (NCC) by step-wise heating experiments, to investigate the nature of noble gas reservoirs in the subcontinental lithospheric mantle beneath this region. The xenoliths include one harzburgite collected from Hebi in the interior of the NCC, two lherzolites from Hannuoba at the northern margin of the craton, and three lherzolites from Shanwang and Nushan on the eastern margin. 3He/4He ratios in most of the xenoliths are similar to those of mid-ocean ridge basalts (MORB) or slightly lower (2–10.5 Ra, where Ra is the 3He/4He ratio of the atmosphere), suggesting mixing of MORB-like and radiogenic components. One olivine separate from Nushan has a helium value of 25.3 Ra, probably suggesting cosmogenic 3He addition. The 40Ar/36Ar ratios vary from atmospheric value (296) to 1625, significantly lower than the MORB value. Available data of the peridotite xenoliths indicate the He and Ar isotopic systematics of the mantle reservoirs beneath the NCC can be interpreted as mixtures of at least three end-members including MORB-like, radiogenic and atmospheric components. We suggest that the MORB-like noble gases were derived from the underlying asthenosphere during mantle upwelling, whereas the radiogenic and recycled components probably were incorporated into the lithospheric mantle during circum-craton subduction of oceanic crust. Available data suggest that the MORB-like fluids are better preserved in the interior of the NCC, whereas the radiogenic ones are more prevalent at the margins. The Paleo-Asian ocean subduction system probably was responsible for the enriched and recycled noble gas signatures on the northern margin of the craton, while the Pacific subduction system could account for the observed He–Ar isotopic signatures beneath the eastern part. Therefore, integration of helium and argon isotopes reflects heterogeneous metasomatism in the lithospheric mantle and demonstrates the critical importance of lithospheric mantle modification related to both circum-craton subduction of oceanic crust and asthenospheric upwelling beneath the eastern NCC.  相似文献   

13.
Atmospheric Ne, Ar, Kr and Xe are observed in fluids occurring in deep basins. Modifications of their abundance patterns reveal modes of recharge and brine formation, phase separations during boiling, and association of natural gas with water or oil. Radiogenic 4He and 40Ar serve as age indicators of entrapped fluids, effective over a significant portion of the geological time scale. Simultaneous application of δ13C, atmospheric noble gases and radiogenic 4He and 40Ar, is recommended to identify: (a) recent bacterial natural gas formation, not accompanied by oil, and (b) natural gas formed along with oil in a mature source rock.  相似文献   

14.
对华南前寒武系变质岩浆杂岩稀有气体He、Ne、Ar和Xe的系统研究表明:扬子克拉通基底为含高3He的下地壳"原始岩石层",(3He/4He)×10-6比值为2.8~4.6;而华夏板块基底变质岩浆杂岩则是在缺乏3He、低(3He/4He)×10-8比值(3.15~17.7)的构造环境下形成的大陆中-上地壳变质岩浆杂岩层,反映出两者基底性质迥然不同。华南中-新生代爆破岩筒He同位素组成相反,相对稳定的扬子克拉通(3He/4He)×10-8比值仅0.18~4.22,而郯庐-四会-吴川断裂以东,中-新生代活动地块(太平洋构造域)(3He/4He)×10-8比值高达3.7~20.5。He同位素表明郯庐-四会-吴川断裂带为切割深至地幔的边界深大断裂,是扬子克拉通与华夏板块间的边界且控制了燕山期火山-侵入岩浆向西扩展。Ar同位素组成表明华南大陆中-新生代地幔形成接近"均一"的地幔组份。136Xe/130Xe-129Xe/130Xe相关组份表明它们具有地幔柱岩石同位素组成特征。  相似文献   

15.
Carbon and noble gas isotope analyses are reported for bubbling gas samples from the Tengchong volcanic geothermal area near the Indo-Eurasian suture zone. All samples contain a resolvable component of mantle-derived 3He. Occurrence of mantle-derived 3He coincides with surface volcanism. However, 3He occurs over a larger geographic areathan do surface volcanics. δ13C values for CO2 and CH4 vary from -33.4‰ to 1.6 ‰ and from -52.8‰ to -2.8‰, respectively. He and C isotope systematics indicate that CO2 and CH4 in the CO2-rich gases originated predominantly from magmatic component mixed with crustal CO2 produced from carbonate. However, breakdown of organic matter and near-surface processes accounts for the CH4 and CO2 in N2-rich gases. 3He/4He ratio distribution pattern suggests that mantle-derived He and heat sources of high-temperature system in central Tengchong originate from a hidden magma reservoir at subsurface. CO2-rich gases with the highest 3He/4He ratio (5.2 Ra) may be representative of the  相似文献   

16.
The interpretation of noble gas concentrations in groundwater with respect to recharge temperature and fractionated excess gas leads to different results on paleo-climatic conditions and on residence times depending on the choice of the gas partitioning model. Two fractionation models for the gas excess are in use, one assuming partial re-equilibration of groundwater supersaturated by excess air (PR-model, Stute et al., 1995), the other assuming closed-system equilibration of groundwater with entrapped air (CE-model, Aeschbach-Hertig et al., 2000). In the example of the Continental Terminal aquifers in Niger, PR- and CE- model are both consistent with the data on elemental noble gas concentrations (Ne, Ar, Kr, and Xe). Only by including the isotope ratio 20Ne/22Ne it can be demonstrated that the PR-model has to be rejected and the CE-model should be applied to the data. In dating applications 3He of atmospheric origin (3Heatm) required to calculate 3H-3He water ages is commonly estimated from the Ne excess presuming that gas excess is unfractionated air (UA-model). Including in addition to the Ne concentration the 20Ne/22Ne ratio and the concentration of Ar enables a rigorous distinction between PR-, CE- and UA-model and a reliable determination of 3Heatm and of 3H-3He water ages.  相似文献   

17.
《Applied Geochemistry》1998,13(4):441-449
Noble gas elemental and isotopic compositions have been measured as well as the abundance of C and its isotopic ratios in 11 glasses from submarine pillow basalts collected from the Mariana Trough. The 3He/4He ratios of 8.22 and 8.51 Ratm of samples dredged from the central Mariana Trough (∼18°N) agree well with that of the Mid-Ocean Ridge Basalt (MORB) glasses (8.4±0.3 Ratm), whereas a mean ratio of 8.06±0.35 Ratm in samples from the northern Mariana Trough (∼20°N) is slightly lower than those of MORB. One sample shows apparent excess of 20Ne and 21Ne relative to atmospheric Ne, suggesting incorporation of solar-type Ne in the magma source. There is a positive correlation between 3He/4He and 40Ar/36Ar ratios, which may be explained by mixing between MORB-type and atmospheric noble gases. Excess 129Xe is observed in the sample which also shows 20Ne and 21Ne excesses. Observed δ13C values of ∼20°N samples vary from −3.76‰ to −2.80‰, and appear higher than those of MORB, and the corresponding CO2/3He ratios are higher than those of MARA samples at ∼18°N, suggesting C contribution from the subducted slab.  相似文献   

18.
The noble gases (He, Ne, Ar, Kr and Xe) are powerful geochemical tracers because they have distinctive isotopic compositions in the atmosphere, crust and mantle. This study illustrates how noble gases can be used to trace fluid origins in high-temperature metamorphic and mineralising environments; and at the same time provides new information on the composition of noble gases in deeper parts of the crust than have been sampled previously.We report data for H2O and CO2 fluid inclusions trapped at greenschist to amphibolite facies metamorphic conditions associated with three different styles of mineralisation and alteration in the Proterozoic Mt Isa Inlier of Australia. Sulphide fluid inclusions are dominated by crustal 4He. However, co-variations in fluid inclusion 20Ne/22Ne, 21Ne/22Ne, 40Ar/36Ar and 136Xe/130Xe indicate noble gases were derived from three or more reservoirs. In most cases, the fluid inclusions elemental noble gas ratios (e.g. Ne/Xe) are close to the ranges expected in sedimentary and crystalline rocks. However, the elemental ratios have been modified in some of the samples providing evidence for independent pulses of CO2, and interaction of CO2 with high-salinity aqueous fluids.Compositional variation is attributed to mixing of: (i) magmatic fluids (or deeply sourced metamorphic fluids) characterised by basement-derived noble gases with 20Ne/22Ne ∼ 8.4, 21Ne/22Ne ∼ 0.4, 40Ar/36Ar ∼ 40,000 and 136Xe/130Xe ∼ 8; (ii) basinal-metamorphic fluids with a narrow range of compositions including near-atmospheric values and (iii) noble gases derived from the meta-sedimentary host-rocks with 20Ne/22Ne ∼ 8-9.8, 21Ne/22Ne < 0.1, 40Ar/36Ar < 2500 and 136Xe/130Xe ∼ 2.2.These data provide the strongest geochemical evidence available for the involvement of fluids from two distinct geochemical reservoirs in Mt Isa’s largest ore deposits. In addition the data show how noble gases in fluid inclusions can provide information on fluid origins, the composition of the crust’s major lithologies, fluid-rock interactions and fluid-fluid mixing or immiscibility processes.  相似文献   

19.
The concentration and the isotopic ratios of noble gases He, Ne, Ar, Kr and Xe were measured in porewater trapped in shallow sediments of the estuary of the St-Lawrence River, Québec, Canada. The gases are atmospheric in origin but most samples have gas concentrations 1.7-28 times higher than those expected in solution in water at equilibrium with the atmosphere. Elemental fractionation of heavier noble gases Kr and Xe compared to Ar strongly suggests that noble gases were adsorbed on sediments or organic matter and then desorbed into porewaters due to depressurization, as collected samples were brought to the surface. Atmospheric Ar in porewater is used as a reference to measure the N2-fluxes at the water-sediment interface. Ignoring the Ar enrichments observed in porewater could lead to a severe underestimation of the denitrification rate in oceans and estuaries.  相似文献   

20.
文章利用黄铁矿流体包裹体惰性气体同位素,探讨了广西栗木锡铌钽矿田成矿流体的来源.黄铁矿流体包裹体的3He/4He比值为0.14~0.97 Ra,远远低于地幔流体的比值,接近饱和大气水的比值,并与地壳流体的比值处在相同的数量级上;40 Ar/36 Ar比值为555.98~ 855.11,平均705.55,显然偏离大气氩的同位素组成;40Ar*/4He比值为0.08~0.27,平均值为0.153,接近地壳值;20Ne/22 Ne=9.671~9.748和21Ne/22 Ne=0.0306~ 0.0330,具有饱和大气水的Ne同位素比值特征.结果表明,广西栗木锡铌钽矿田老虎头、牛栏岭和金竹源3个矿床的成矿流体是大气水和地壳流体的混合流体;水溪庙矿床的成矿流体也主要是大气水和地壳流体的混合流体,但可能有少量地幔流体的加入.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号