首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The thermodynamic stability constants for the hydrolysis and formation of mercury (Hg2+) chloride complexes
have been used to calculate the activity coefficients for Hg(OH) n (2–n)+ and HgCl n (2–n)+ complexes using the Pitzer specific interaction model. These values have been used to determine the Pitzer parameters for the hydroxide and chloro complexes and C ML). The values of and have been determined for the neutral complexes (Hg(OH)2 and HgCl2). The resultant parameters yield calculated values for the measured values of log to  ±0.01 from I  =  0.1 to 3 m at 25°C. Since the activity coefficients of and are in reasonable agreement with the values for Pb(II), we have estimated the effect of temperature on the chloride constants for Hg(II) from 0 to 300°C and I = 0–6 m using the Pitzer parameters for complexes. The resulting parameters can be used to examine the speciation of Hg(II) with Cl in natural waters over a wide range of conditions.  相似文献   

2.
Opening and resetting temperatures in heating geochronological systems   总被引:2,自引:0,他引:2  
We present a theoretical model for diffusive daughter isotope loss in radiochronological systems with increasing temperature. It complements previous thermochronological models, which focused on cooling, and allows for testing opening and resetting of radiochronometers during heating. The opening and resetting temperatures are, respectively,
where R is the gas constant, E and D 0 are the activation energy and the pre-exponential factor of the Arrhenius law for diffusion of the daughter isotope, a the half-size of the system (radius for sphere and cylinder and half-thickness for plane sheet) and τ the heating time constant, related to the heating rate by
For opening and resetting thresholds corresponding to 1 and 99% loss of daughter isotope, respectively, the retention parameters for sphere, cylinder and plane sheet geometries are A op = 1.14 × 105, 5.07 × 104 and 1.27 × 104 and A rs = 2.40, 1.37 and 0.561. According to this model, the opening and resetting temperatures are significantly different for most radiochronometers and are, respectively, lower and higher than the closure temperature. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Dissolution Kinetics of Dolomite in Water at Elevated Temperatures   总被引:1,自引:0,他引:1  
Kinetic experiments of dolomite dissolution in water over a temperature range from 25 to 250°C were performed using a flow through packed bed reactor. Authors chose three different size fractions of dolomite samples: 18–35 mesh, 35–60 mesh, and 60–80 mesh. The dissolution rates of the three particle size samples of dolomite were measured. The dissolution rate values are changed with the variation of grain size of the sample. For the sample through 20–40 mesh, both the release rate of Ca and the release rate of Mg increase with increasing temperature until 200°C, then decrease with continued increasing temperature. Its maximum dissolution rate occurs at 200°C. The maximum dissolution rates for the sample through 40–60 mesh and 60–80 mesh happen at 100°C. Experimental results indicate that the dissolution of dolomite is incongruent in most cases. Dissolution of fresh dolomite was non-stoichiometric, the Ca/Mg ratio released to solution was greater than in the bulk solid, and the ratio increases with rising temperatures from 25 to 250°C. Observations on dolomite dissolution in water are presented as three parallel reactions, and each reaction occurs in consecutive steps as
where the second part is a slow reaction, and also the reaction could occur as follows:
The following rate equation was used to describe dolomite dissolution kinetics
where refers to one of each reaction among the above reactions; k ij is the rate constant for ith species in the jth reaction, a i stands for activity of ith aqueous species, n is the stoichimetric coefficience of ith species in the jth reaction, and define . The experiments prove that dissolved Ca is a strong inhibitor for dolomite dissolution (release of Ca) in most cases. Dissolved Mg was found to be an inhibitor for dolomite dissolution at low temperatures. But dissolution rates of dolomite increase with increasing the concentration of dissolved Mg in the temperature range of 200–250°C for 20–40 mesh sample, and in the temperature range of 100–250°C for 40–80 mesh sample, whereas the Mg2+ ion adsorption on dolomite surface becomes progressively the step controlling reaction. The following rate equation is suitable to dolomite dissolutions at high temperatures from 200 to 250°C.
where refers to dissolution rate (release of Ca), and are molar concentrations of dissolved Ca and Mg, k ad stands for adsorption reaction rate constant, K Mg refers to adsorption equilibrium constant. At 200°C for 40–60 mesh sample, the release rate of Ca can be described as:
  相似文献   

4.
Solubility experiments were conducted for the dissolution reaction of brucite, Mg(OH)2 (cr): Experiments were conducted from undersaturation in deionized (DI) water and 0.010–4.4 m NaCl solutions at 22.5°C. In addition, brucite solubility was measured from supersaturation in an experiment in which brucite was precipitated via dropwise addition of 0.10 m NaOH into a 0.10 m MgCl2 solution also at 22.5°C. The attainment of the reversal in equilibrium was demonstrated in this study. The solubility constant at 22.5°C at infinite dilution calculated from the experimental results from the direction of supersaturation by using the specific interaction theory (SIT) is: with a corresponding value of 17.0 ± 0.2 (2σ) when extrapolated to 25°C. The dimensionless standard chemical potential (μ°/RT) of brucite derived from the solubility data in 0.010 m to 4.4 m NaCl solutions from undersaturation extrapolated to 25°C is −335.76 ± 0.45 (2σ), with the corresponding Gibbs free energy of formation of brucite, , being −832.3 ± 1.1 (2σ) kJ mol−1. In combination with the auxiliary thermodynamic data, the is calculated to be 17.1 ± 0.2 (2σ), based on the above Gibbs free energy of formation for brucite. This study recommends an average value of 17.05 ± 0.2 in logarithmic unit as solubility constant of brucite at 25°C, according to the values from both supersaturation and undersaturation. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.  相似文献   

5.
The temperature-sensitive Fe,Mg exchange equilibrium,
  相似文献   

6.
In the course of a thorough study of the influences of the second coordination sphere on the crystal field parameters of the 3d N -ions and the character of 3d N –O bonds in oxygen based minerals, 19 natural Cr3+-bearing (Mg,Ca)-garnets from upper mantle rocks were analysed and studied by electronic absorption spectroscopy, EAS. The garnets had compositions with populations of the [8] X-sites by 0.881 ± 0.053 (Ca + Mg) and changing Ca-fractions in the range 0.020 ≤ w Ca[8] ≤ 0.745, while the [6] Y-site fraction was constant with x Cr3+ [6] = 0.335 ± 0.023. The garnets had colours from deeply violet-red for low Ca-contents (up to x Ca = 0.28), grey with 0.28 ≤ x Ca ≤ 0.4 and green with 0.4 ≤ x Ca. The crystal field parameter of octahedral Cr3+ 10Dq decreases strongly on increasing Ca-fraction from 17,850 cm−1 at x Ca[8] = 0.020 to 16,580 cm−1 at x Ca[8] = 0.745. The data could be fit with two model which do statistically not differ: (1) two linear functions with a discontinuity close to x Ca[8] ≈ 0.3,
(2) one continuous second order function,
The behaviour of the crystal field parameter 10Dq and band widths on changing Ca-contents favour the first model, which is interpreted tentatively by different influences of Ca in the structure above and below x Ca[8] ≈ 0.3. The covalency of the Cr–O bond as reflected in the behaviour of the nephelauxetic ratio decreases on increasing Ca-contents.  相似文献   

7.
Titanite and rutile are a common mineral pair in eclogites, and many equilibria involving these phases are potentially useful in estimating pressures of metamorphism. We have reversed one such reaction,
  相似文献   

8.
The diffusion of water in a peralkaline and a peraluminous rhyolitic melt was investigated at temperatures of 714–1,493 K and pressures of 100 and 500 MPa. At temperatures below 923 K dehydration experiments were performed on glasses containing about 2 wt% H2O t in cold seal pressure vessels. At high temperatures diffusion couples of water-poor (<0.5 wt% H2O t ) and water-rich (~2 wt% H2O t ) melts were run in an internally heated gas pressure vessel. Argon was the pressure medium in both cases. Concentration profiles of hydrous species (OH groups and H2O molecules) were measured along the diffusion direction using near-infrared (NIR) microspectroscopy. The bulk water diffusivity () was derived from profiles of total water () using a modified Boltzmann-Matano method as well as using fittings assuming a functional relationship between and Both methods consistently indicate that is proportional to in this range of water contents for both bulk compositions, in agreement with previous work on metaluminous rhyolite. The water diffusivity in the peraluminous melts agrees very well with data for metaluminous rhyolites implying that an excess of Al2O3 with respect to alkalis does not affect water diffusion. On the other hand, water diffusion is faster by roughly a factor of two in the peralkaline melt compared to the metaluminous melt. The following expression for the water diffusivity in the peralkaline rhyolite as a function of temperature and pressure was obtained by least-squares fitting:
where is the water diffusivity at 1 wt% H2O t in m2/s, T is the temperature in K and P is the pressure in MPa. The above equation reproduces the experimental data (14 runs in total) with a standard fit error of 0.15 log units. It can be employed to model degassing of peralkaline melts at water contents up to 2 wt%.  相似文献   

9.
Fractionation of yttrium (Y) and the rare earth elements (REEs) begins in riverine systems and continues in estuaries and the ocean. Models of yttrium and rare earth (YREE) distributions in seawater must therefore consider the fractionation of these elements in both marine and riverine systems. In this work we develop a coupled riverine/marine fractionation model for dissolved rare earths and yttrium, and apply this model to calculations of marine YREE fractionation for a simple two-box (riverine/marine) geochemical system. Shale-normalized YREE concentrations in seawater can be expressed in terms of fractionation factors ( ij ) appropriate to riverine environments ( ) and seawater ( ):
where and are input-normalized total metal concentrations in seawater and is the ratio of total dissolved Y in riverwater before and after commencement of riverine metal scavenging processes. The fractionation factors ( ij ) are calculated relative to the reference element, yttrium, and reflect a balance between solution and surface complexation of the rare earths and yttrium.  相似文献   

10.
Equations of state of Plagioclase Feldspars   总被引:2,自引:1,他引:1  
The volume variation with pressure of seven intermediate plagioclase feldspars has been determined by high-pressure single-crystal X-ray diffraction. The bulk moduli of plagioclases for a 3rd-order Birch-Murnaghan EoS can be described by the following pair of equations:
with for plagioclase with X An <20 and for X An >35. These parameters can also be used in a Murnaghan EoS to describe the volume variation of plagioclase feldspars up to pressures of 3 GPa. For a Murnaghan EoS with , the values of the bulk moduli can be described by a single equation, , with a small loss in the accuracy of the predicted volumes up to pressures of 3 GPa.Editorial responsibility: T.L. GroveAn erratum to this article can be found at  相似文献   

11.
The electrical conductivity of upper-mantle rocks—dunite, pyroxenite, and lherzolite—was measured at ∼2–3 GPa and ∼1,273–1,573 K using impedance spectra within a frequency range of 0.1–10Hz. The oxygen fugacity was controlled by a Mo–MoO2 solid buffer. The results indicate that the electrical conductivity of lherzolite and pyroxenite are approximately half and one order of magnitude higher than that of dunite, respectively. A preliminary model involving water and iron content effects on the electrical conductivity was derived and is summarized by the relation:
The results also indicate that pyroxenes dominate the bulk conductivity of upper mantle in hydrous conditions and suggest the maximum water content in oceanic upper mantle is as high as ∼0.09 wt%.  相似文献   

12.
Earthquake recurrence intervals for large and great shallow mainshocks in 12 seismogenic sources along the North Pacific seismic zone (Alaska-Aleutians-Kamchatka-Kuril Islands) have been estimated and used for the determination of the following relations:
  相似文献   

13.
Laboratory experiments were conducted to evaluate the partitioning ofrare earth elements (REE) between solution and suspended particles. Becauseof their strong tendency to complex, the REE can be used to study a varietyof marine processes and in particular particle scavenging. In this study, anemphasis was placed on examining abiotic redox processes that influence theuptake of dissolved Ce by particles. Batch sorption experiments wereconducted with REE and synthetic mineral phases over the range of pH4–9. The solutions varied in ionic strength between 0 and 0.7 M andconsisted of individual solutes (NaNO3, NaCl, andNa2SO4), ionic mixtures that duplicate theseawater composition, and natural seawater. The uptake of REE from solutionwas also studied at a Pt electrode coated with using cyclic voltametry. Experimental results are consistent with uptake of dissolved Ce onto occurring by a combination of oxidativescavenging and surface complexation. The contribution of oxidativescavenging to the removal of Ce from solution is most pronounced at acidicpH, where the strictly trivalent REE exhibit little propensity for sorptiononto . Sorption of dissolved Ce onto FeOOH occursin a manner analogous to that of the other strictly trivalent REE and nocontribution from oxidative scavenging is observed on this mineral phase atlow pH. Our work also substantiates the hypothesis that anions in solution,particularly and Cl-, aswell as those adsorbed on the surface of the particles, influence the extentof Ce uptake by . This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
15.
The Chemical Speciation of Fe(III) in Freshwaters   总被引:1,自引:0,他引:1  
Dialysis and chemical speciation modelling have been used to calculate activities of Fe3+ for a range of UK surface waters of varying chemistry (pH 4.3–8.0; dissolved organic carbon 1.7–40.3 mg l−1) at 283 K. The resulting activities were regressed against pH to give the empirical model: . Predicted Fe3+ activities are consistent with a solid–solution equilibrium with hydrous ferric oxide, consistent with some previous studies on Fe(III) solubility in the laboratory. However, as has also sometimes been observed in the laboratory, the slope of the solubility equation is lower than the theoretical value of 3. The empirical model was used to predict concentrations of Fe in dialysates and ultrafiltrates of globally distributed surface and soil/groundwaters. The predictions were improved greatly by the incorporation of a temperature correction for , consistent with the temperature dependence of previously reported hydrous ferric oxide solubility. The empirical model, incorporating temperature effects, may be used to make generic predictions of the ratio of free and complexed Fe(III) to dissolved organic matter in freshwaters. Comparison of such ratios with observed Fe:dissolved organic matter ratios allows an assessment to be made of the amounts of Fe present as Fe(II) or colloidal Fe(III), where no separate measurements have been made. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The activity of silica in kimberlites,revisited   总被引:1,自引:1,他引:0  
The activity of silica in a silicate liquid in equilibrium with olivine and orthopyroxene decreases with increasing pressure. In contrast, the activity of silica in an unbuffered silicate liquid changes little with pressure. Although the implications of these pressure dependencies have been considered by previous authors in terms of inferring pressures of origin of magmas, less consideration has been given to the implications of these dependencies on the evolution of the magma en route to the surface, or to the mantle through which the magma passes. In this paper, a combination of Schreinemakers’ analysis in isothermal section and calculated reactions in space is used to (a) rationalize the absence of orthopyroxene xenocrysts in kimberlites and the relative abundance of olivine “megacrysts” therein, (b) propose another reason for the paucity of xenocrystic mantle-derived carbonates in kimberlites, (c) explain why clinopyroxene is much less reactive in the kimberlite melt than is orthopyroxene, and (d) explore the implications of the relative stabilities of olivine, orthopyroxene, and clinopyroxene in kimberlitic magma for the mantle through which the magma transits.
Robert W. LuthEmail:
  相似文献   

17.
We present experiments showing that the lower oceanic crust should melt efficiently and quickly when heated by hot ascending magmas. Average plagioclase–olivine and plagioclase–augite pairs from the lower crust at the Southwest Indian Ridge have melt–mineral saturation boundaries at 1,190 and 1,154°C, respectively, and melt rapidly (>0.01 mm/h) at 50°C or more above these temperatures. Melting experiments performed on olivine–plagioclase and augite–plagioclase mineral pairs from actual oceanic lower crustal rock samples and under conditions applicable to a MOR setting (1,220–1,330°C, 1 atm, quartz–fayalite–magnetite oxygen buffer, 0.25–24 h) indicate that the resulting disequilibrium melts are linear mixes of the mineral compositions. The rates of melting are slower than the rate of heat-diffusion into a sample and are approximated as:
Our results indicate that great care must be taken in backward models using basalt chemistry alone to explore mantle-melting processes, assuming only crystallization and fractionation during ascent, as partial melts may mix with intruded hot magma.  相似文献   

18.
The chemical potential of oxygen (µO2) in equilibrium with magnesiowüstite solid solution (Mg, Fe)O and metallic Fe has been determined by gas-mixing experiments at 1,473 K supplemented by solid-cell EMF experiments at lower temperatures. The results give:
where IW refers to the Fe-"FeO" equilibrium. The previous work of Srecec et al. (1987) and Wiser and Wood (1991) agree well with this equation, as does that of Hahn and Muan (1962) when their reported compositions are corrected to a new calibration curve for lattice parameter vs. composition. The amount of Fe3+ in the magnesiowüstite solid solution in equilibrium with Fe metal was determined by Mössbauer spectroscopy on selected samples. These data were combined with literature data from gravimetric studies and fitted to a semi-empirical equation:
These results were then used to reassess the activity-composition relations in (Mg, Fe)2SiO4 olivine solid solutions at 1,400 K, from the partitioning of Mg and Fe2+ between olivine and magnesiowüstite in equilibrium with metallic Fe experimentally determined by Wiser and Wood (1991). The olivine solid solution is constrained to be nearly symmetric with , with a probable uncertainty of less than ±0.5 kJ/mol (one standard deviation). The results also provide a useful constraint on the free energy of formation of Mg2SiO4.Editorial responsibility: B. Collins  相似文献   

19.
Three independent Pb isotope homogenizing processes operating on large volumes of rock material during limited intervals in the Phanerozoic have been used to define a unique evolutionary curve for rock and ore lead isotopic compositions of the southern Massif Central, France. The model is
  相似文献   

20.
The carbon dioxide solubility in alkali basalts: an experimental study   总被引:1,自引:1,他引:0  
Experiments were conducted to determine CO2 solubilities in alkali basalts from Vesuvius, Etna and Stromboli volcanoes. The basaltic melts were equilibrated with nearly pure CO2 at 1,200°C under oxidizing conditions and at pressures ranging from 269 to 2,060 bars. CO2 solubility was determined by FTIR measurements. The results show that alkalis have a strong effect on the CO2 solubility and confirm and refine the relationship between the compositional parameter Π devised by Dixon (Am Mineral 82:368–378, 1997) and the CO2 solubility. A general thermodynamic model for CO2 solubility in basaltic melts is defined for pressures up to 2 kbars. Based on the assumption that O2− and CO32− mix ideally, we have:
_boxclose_3^2 - ^m (P,T)X_^2 - ^m f__2 (P,T) K(P,T) = X__3^2 - ^m (P,T) ( X_^2 - ^m f__2 (P,T) ). \begin{gathered} K(P,T) = {\frac{{X_{{{\text{CO}}_{3}^{2 - } }}^{m} (P,T)}}{{X_{{{\text{O}}^{2 - } }}^{m} \times f_{{{\text{CO}}_{2} }} (P,T)}}} \hfill \\ K(P,T) = {{X_{{{\text{CO}}_{3}^{2 - } }}^{m} (P,T)} \mathord{\left/ {\vphantom {{X_{{{\text{CO}}_{3}^{2 - } }}^{m} (P,T)} {\left( {X_{{{\text{O}}^{2 - } }}^{m} \times f_{{{\text{CO}}_{2} }} (P,T)} \right).}}} \right. \kern-\nulldelimiterspace} {\left( {X_{{{\text{O}}^{2 - } }}^{m} \times f_{{{\text{CO}}_{2} }} (P,T)} \right).}} \hfill \\ \end{gathered}  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号