首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Dynamic crystallization experiments in the CaO–MgO–Al2O3–SiO2 (CMAS) system have been used to investigate the change in crystal shape when pre-existing polyhedral olivine crystals are cooled rapidly (1,639–2,182°C/h). Polyhedral olivines are crystallized initially in a first step using a slow cooling rate (2°C/h), then skeletal and dendritic overgrowths develop on the polyhedral crystals during a subsequent fast cooling event. During this second episode small dendritic olivines also nucleate within the liquid phase. Observation of the experimental sample by optical microscopy shows that the polyhedral olivine shape progressively changes to a skeletal and then to a dendritic morphology in the following sequence: polyhedral ⇒ hopper polyhedral ⇒ dendritic polyhedral. This evolutional sequence is discussed in terms of changes in the crystal growth conditions during cooling and a general relation between these olivine dynamic crystallization experiments and the integrated model of crystal growth by Sunagawa (Bull Minér 104:81–87, 1981, Morphology of crystals, Terra Scientific Publishing Company, 1987) is proposed.  相似文献   

2.
Chemical etching of pure melt-grown forsterite crystals is reported here for the first time. Cleaved forsterite crystals of known purity, and polished sections of the same crystals have been successfully etched revealing dislocations, subgrain boundaries, inclusions and growth imperfections.  相似文献   

3.
The coarse-grained Upper Border Series rocks of the Skaergaard intrusion contain abundant skeletal crystals of magnetite and ilmenite, skeletal and hopper crystals of apatite, and less abundant sector-zoned augite crystals and hopper zircon crystals. In addition, the melanogranophyres which occur as pods and lenses in the lower part of the Upper Border Series and the upper part of the Layered Series are characterized by very coarse-grained dendritic ferrohedenbergite crystals. Skeletal, hopper, and sectorzoned crystals are not present in the Layered Series gabbros. The development of these unusual crystal morphologies in the Upper Border Series requires that the roof-zone magma was intermittently supersaturated and indicates that the Skaergaard magma chamber was compositionally zoned and that heat loss through the roof maintained a temperature gradient in the magma that was greater than the adiabatic gradient. It is suggested that supersaturation developed in the roof-zone of the intrusion as a result of convective overturn and magma mixing during the early stages of crystallization, and as a result of sudden volatile loss during the later stages of crystallization when the Upper Border Series rocks became rigid enough to fracture.  相似文献   

4.
Closed hopper and complex swallowtail morphologies of olivine microcrysts have been described in the past in both mid-oceanic ridge basalts and subaerial tholeitic volcanoes and indicate fluctuations in magma undercooling. We describe similar morphologies in a Mid-Atlantic ridge pillow basalt (sample RD87DR10), and in addition we estimate the duration of temperature fluctuations required to produce these textures as follows: (1) Pairs of melt inclusions are arranged symmetrically around the centre of hopper crystals and each pair represents a heating–cooling cycle. Using the literature olivine growth rates relevant to the observed morphologies, and measuring the distance between two successive inclusions, we estimate the minimum time elapsed during one convection cycle. (2) The major element composition of melt inclusions (analysed by electron microprobe) was found to be in the range of the boundary layer measured in the glass surrounding the olivines, irrespective of their size. Several major elements demonstrate that this boundary layer results from rapid quenching on the seafloor, and not from crystal growth at depth, implying the inclusions had the same composition as the surrounding magma when they were sealed. Using diffusivity of slow diffusing elements such as Al2O3, we estimate the minimum time required for inclusion formation. These two independent approaches give concordant results: each cooling–heating cycle lasted between a few minutes and 1 h minimum. Thus, these crystals probably recorded thermal convection in small magmatic bodies (a dyke or shallow magma chamber) during the last hour or hours before eruption.  相似文献   

5.
The microstructures of microcline from some granitic rocks and pegmatites   总被引:1,自引:0,他引:1  
Numerical simulations of the growth of a large crystal face of plagioclase in response to an instantaneous undercooling below the equilibrium temperature are presented for model granodiorite and basalt melts with varying water contents. The simulations suggest that the anorthite content of plagioclase decreases uniformly from the composition in equilibrium with the bulk melt as undercooling is increased, and that the water content in the melt has little influence on this result. Comparison of the simulations with sharp compositional changes in natural profiles suggests that undercoolings of tens of degrees C can be rapidly imposed on plutonic phenocrysts. Large changes of undercooling most likely result from chilling of the magma and local convection around growing crystals. The observation in experiments that growth rate does not increase rapidly with increasing water content in the starting melting composition can be attributed to the concentration of water at the crystal face during growth; the action of water to reduce liquidus temperature and undercooling has a greater effect on growth rate than its action to increase transport rates. Even at large undercooling, there is no significant increase in temperature at the interface caused by the release of heat of crystallization.Simulations are presented to illustrate how disequilibrium growth processes due to undercooling can modify the normal zoning profiles expected from fractionation. Assuming that an undercooling is necessary to cause nucleation, normal zoning can result if crystal growth takes place at constant or increasing undercooling, but reverse zoning can occur at decreasing undercooling. Undercooling during growth is controlled by the relative rate of cooling and the rate at which the liquidus temperature is decreased by the accumulation of residual components and volatiles in the melt. Consequently, normal zoning should be promoted by rapid cooling, contemporaneous crystallization of other phases, and absence of volatiles, while reverse zoning should be expected in phenocrysts grown in slowly-cooled melts or in melts where volatiles are concentrated. The zoning patterns found in many plutonic plagioclase crystals suggest that their compositions are in significant disequilibrium with the melt; consequently, they are unsuitable for use in geothermometers.Approximate calculations suggest that the amount of water concentrated at the surface of growing phenocrysts in plutons can promote local convection. Comparison of simulated and observed oscillatory zoning profiles suggests that oscillatory zoning is not explained by a re-nucleationdiffusion model (Harloff 1927), but is readily explained by periodic local convection.  相似文献   

6.
Dendritic crystal morphologies occur in a number of igneousrocks and are thought to originate from the rapid growth ofcrystals, yet many examples of dendritic morphologies are foundin plutonic igneous rocks where cooling rates should be low.Results from crystal size distribution (CSD) measurements onharrisitic olivines from Rum, Scotland, combined with estimatedolivine growth rates, suggest that the characteristic skeletalhopper and branching olivines of harrisitic cumulates that areup to centimetres long, may have exceptionally short crystalgrowth times (several hours to several hundreds of days). This,together with very low calculated nucleation densities for harrisiticolivine, supports the interpretation of harrisite being a disequilibriumtexture, developed in response to supersaturation of the magmain olivine. We propose that this supersaturation arose throughundercooling of thin picrite sheets emplaced along the Rum magmachamber floor, beneath cooler resident magma. It is envisagedthat the picrite sheets were largely free of suspended olivinecrystals. Coupled with the olivine-enriched composition of themelt and the increasing cooling rate, this allowed homogeneousnucleation of olivine to set in at deeper undercooling and greaterolivine supersaturation than if there had been plentiful suspendedolivines to act as heterogeneous nuclei. The enhanced supersaturationcaused rapid growth of olivine once nucleation began, with skeletaland dendritic shapes. It is suggested that the observed, interlayeredsequences of harrisite and cumulus peridotite found throughoutthe Rum Layered Suite are a result of multiple episodes of harrisitecrystallization resulting from picrite emplacement that alternatedwith periods of crystal growth and accumulation in the mainbody of magma at lesser degrees of undercooling. KEY WORDS: crystal size distribution; harrisite; crystal growth rates; Rum Layered Suite  相似文献   

7.
Two glassy refractory Al-rich chondrules in Semarkona (LL3.0), the most primitive unequilibrated ordinary chondrite, provide direct evidence for condensation of Si and Mg on melt droplets during cooling. The chondrules are completely rounded, rich in Ca and Al, and poor in Fe and alkalis. They have extraordinarily abundant glass (70-80 vol%) with a subordinate amount of forsterite as the only crystalline phase that occurs mostly rimming the chondrule edge. The groundmass glass is concentrically zoned in terms of Si with an outward increase, which is overlapped with local heterogeneity of Mg and Al induced by crystallization of forsterite. The outward increase of Si, mostly compensated by Al, cannot be formed solely by crystallization of forsterite from a homogeneous melt in a closed system. Combined with skeletal or dendritic morphology and sector zoning of forsterite, it is suggested that Si condensed onto totally molten droplets (“initial melts”) accompanied by nucleation and rapid growth of forsterite with lowering temperature. The “initial melts”, the compositions of which were estimated from the Ca contents of the first crystallized forsterite, are very similar to Type C CAI but are notably poorer in Mg and Si than the bulk chondrules, indicating condensation of Mg in addition to Si with an atomic ratio of Mg:Si ∼ 3:2. The condensation after the nucleation of forsterite took place below ∼1300 °C under cooling at ∼70 °C/h and amounted to 30 wt% of the current chondrule. This study suggests a model that a short-time and local shock heating event induced melting of Type C CAI and concomitant evaporation of dusts, ferromagnesian chondrules of earlier generation, and their fragments to generate Mg and Si-rich gas, which condensed onto the melt droplets upon cooling accompanying condensation of Type I chondrules.  相似文献   

8.
Variations in bulk Mg/Si ratios in the various groups of chondritic meteorites indicate that Mg/Si fractionation occurred in the primitive solar nebula. Enstatite (MgSiO3) evaporates incongruently forming forsterite (Mg2SiO4) as an evaporation residue; therefore, evaporation of enstatite produces Mg/Si variations in solid (Mg-rich) and gas (Si-rich) and must be considered as a probable process responsible for Mg/Si fractionation recorded in chondrites. To understand the evaporation kinetics of enstatite, incongruent evaporation experiments on enstatite single crystals have been carried out in vacuum and in hydrogen gas at temperatures of 1300 to 1500°C. A polycrystalline forsterite layer is formed on the surface of enstatite by preferential evaporation of the SiO2 component, both in vacuum and in hydrogen gas. The thickness of the forsterite layer in vacuum increases with time in the early stage of evaporation and later the thickness of the forsterite layer remains constant (several microns). This is due to the change in the rate limiting process from surface reaction plus nucleation and growth to diffusion in the surface forsterite layer. The activation energy of the diffusion-controlled evaporation rate constant of enstatite is 457 (±58) kJ/mol. A thinner forsterite layer is formed on the surface of enstatite in hydrogen gas than in vacuum. Evaporation of enstatite in hydrogen gas is also considered to be controlled by diffusion of ions through the forsterite layer. The thin forsterite layer formed in hydrogen gas is ascribed to the enhanced evaporation rate of forsterite in the presence of hydrogen gas.The results are applied to incongruent evaporation under the solar nebular conditions. The steady thickness of the forsterite of nebular pressure-temperature conditions is estimated to be submicron because of the enhanced evaporation rate of forsterite under hydrogen-rich nebular conditions if evaporated gases are taken away immediately and no back reaction occurs (an open system). Because enstatite grains in the solar nebula would be comparable to the estimated steady thickness of forsterite, evaporation of such enstatite grains under kinetic conditions could play an important role in producing variations in Mg/Si ratios between solid and gas in the solar nebula.  相似文献   

9.
The activity of a given mineral component in a silicate melt can be calculated from the compositions of coexisting melt and crystals, provided that 1) the component is an independently variable component of the crystal, and 2) appropriate thermodynamic data for the component are known. This approach is used to calibrate the compositional dependence of the activities of forsterite, fayalite, anorthite, and albite from experimental data on natural mafic-to-intermediate melts. The natural logarithms of the activities of forsterite and anorthite can be closely approximated as second-degree polynomial functions of the melt composition (r 2=0.99 and 0.97, respectively); corresponding fits for fayalite and albite are significantly poorer (r 2=0.81 and 0.87, respectively). The shapes of the fitted activity surfaces yield information about speciation in silicate melts. The activity models for forsterite and anorthite provide excellent geothermometers with standard deviations of temperature residuals of approximately 10° C. These geothermometers, when combined with the activity models for fayalite and albite, can be used to predict the temperature at which olivine or plagioclase will crystallize from a melt, along with the composition of the crystals.  相似文献   

10.
Mantling of alkali feldspar megacrysts by oligoclase (‘rapakivi texture’) generally can be interpreted as the result of magma mixing, although decompression is a viable interpretation, especially for high-level intrusions. Coexistence of mantled and unmantled crystals can be explained by transfer of mantled crystals (‘antecrysts’) from a mixed (hybrid) rock to a host granitoid devoid of mantled crystals, for example, by disintegration of microgranitoid enclaves. Processes capable of explaining multiple oligoclase shells include repeated increase and release of volatiles, and repeated replenishment by more mafic magma. The shells could be formed by transfer of megacrysts into and out of a magma-mixing zone during flow in dyke-like conduits or in the fronts of mafic flows moving across cumulate layers in plutons. Ovoid megacrysts, which occur especially in Proterozoic rapakivi granitoids, are difficult to interpret but are better explained by growth processes than by magmatic corrosion. The common presence of simple twinning, partial crystal faces, euhedral plagioclase inclusions and granophyre-like intergrowths with quartz favours normal magmatic growth. The common ovoid shapes with local facets could reflect incomplete development of crystal faces, owing to relatively rapid growth. Granophyre-like intergrowths in the ovoids, local granophyre occurring as megacryst rims and in the groundmass, and the common presence of miaroles suggest growth of the ovoids at relatively shallow depth, at conditions of delayed nucleation and consequent undercooling, resulting from accumulation and retention of fluid. Development of the ovoids is independent of plagioclase mantling.  相似文献   

11.
Single crystals of olivine were grown at 0.1 MPa total pressure in a floating-zone image furnace. Composition of crystals grown ranged from 67 mol% forsterite to 90 mol% forsterite. Improvements in the crystal growth technique allowed growth of large crystals (0.005 m diameter, 0.070 m length) with very low dislocation density, no visible bubbles, and no cracks. The most significant improvement was the addition of a platinum-wound resistance heater internal to the image furnace. This heater provided the dual improvements of better control over oxygen fugacity from a CO/CO2 gas mix and alteration of the crystal growth interface resulting in a significant reduction in crystal defects. No subgrain boundaries have been observed in crystals growth here and dislocation densities on the order of 108-109 m-2 have been achieved. Iron concentration is nearly uniform across the diameter (0.005 m) of crystals and varies approximately 5 mol% along the crystal length (0.040 to 0.050 m).  相似文献   

12.
成中梅  路凤香 《现代地质》1997,11(2):149-156
摘  要  阐述了火山岩晶体粒度分布的基本原理和研究方法‚分析了老山沟火山岩斜长石、 辉石、橄榄石、铁钛氧化物的晶体粒度分布。前3种矿物在中间粒度处发生了有意义的弯折‚ 原因是岩浆上升时过冷度增大。估算了岩浆房中斜长石、橄榄石的成核速率、结晶时间及上 升过程中处于结晶带的时间。研究表明‚在岩浆的演化过程中‚晶体的分离和累积作用及岩 浆的混合和对围岩的同化作用可以忽略。  相似文献   

13.
The magma mixing origin of mantled feldspars   总被引:25,自引:1,他引:25  
The key to mantled feldspar genesis is epitaxial nucleation of plagioclase on K-feldspar or K-feldspar on plagioclase. Once this nucleation takes place there is a relatively straightforward process of crystal growth yielding rapakivi and antirapikivi textures. The most common mantling is plagioclase on K-feldspar which occurs in both volcanic and plutonic environments. In the volcanic environment the morphology of the plagioclase overgrowth typically is dendritic, though in subvolcanic and shallow plutonic environments dendritic growth is followed by a more or less continuous non-cellular shell of plagioclase. In the plutonic environment, early stages of plagioclase overgrowth also tend to be dendritic, although with coarser-grained characteristics. Dendritic morphology is thus a common denominator in rapakivi genesis. Since growth of dendritic plagioclase is clearly related to marked undercooling in silicate melt systems its occurrence in many volcanic rocks is to be expected. Equivalent quenching in the plutonic environment requires a cooling mechanism independent of conductive heat transfer to wallrock and also independent of effective cooling related to sudden loss of volatile phases that could only occur late in the crystallization of most magmas and therefore after much dendritic plagioclase had already formed. Internal quenching of portions of magma systems must occur if mafic magma is abruptly mixed with felsic magma. Such magma mixing yields a heterogeneous system at first, one that is in a drastic state of disequilibrium and tending to force nucleation of one feldspar type on the surface of another resulting in epitaxial crystallization of dendritic plagioclase on K-feldspar. Mantling of one feldspar type by another during magma mixing is paralleled by dendritic growth zones in coexisting plagioclase crystals.Mantling textures occur in hybrid rocks of magma mixing origin. Some of the hybrid rocks are fine-grained, mafic-rich, and may contain phenocrysts of quartz, plagioclase, and K-feldspar. They occur as rounded inclusions in calc-alkaline granites and granodiorites. The host plutons themselves commonly have mantled feldspars or at least plagioclase with the unusual zoning characteristics commonly accompanying rapakivi texture. Magma-mixing tends to occur in batches so that hybrid crystal-melt systems, the calc-alkaline granitic plutons, become intrusive into earlier hybrid crystal-melt systems, represented by the mafic-rich inclusions.  相似文献   

14.
High-resolution X-ray computed tomography has been carried out on a suite of komatiite samples representing a range of volcanic facies, chromite contents and degrees of alteration and metamorphism, to reveal the wide range of sizes, shapes and degrees of clustering that chromite grains display as a function of cooling history. Dendrites are spectacularly skeletal chromite grains formed during very rapid crystallization of supercooled melt in spinifex zones close to flow tops. At slower cooling rates in the interiors of thick flows, chromite forms predominantly euhedral grains. Large clusters (up to a dozen of grains) are characteristic of liquidus chromite, whereas fine dustings of mostly individual ~20-μm grains form by in situ crystallization from trapped intercumulus liquid. Chromite in coarse-grained olivine cumulates from komatiitic dunite bodies occurs in two forms: as clusters or chains of euhedral crystals, developing into “chicken-wire” texture where chromite is present in supra-cotectic proportions; and as strongly dendritic, semi-poikilitic grains. These dendritic grains are likely to have formed by rapid crescumulate growth from magma that was close to its liquidus temperature but supersaturated with chromite. In some cases, this process seems to have been favoured by nucleation of chromite on the margins of sulphide liquid blebs. This texture is a good evidence for the predominantly cumulus origin of oikocrysts and in situ origin of heteradcumulate textures. Our 3D textural analysis confirms that the morphology of chromite crystals is a distinctive indicator of crystallization environment even in highly altered rocks.  相似文献   

15.
赵珊茸  徐畅  张国庆  李坤 《地球科学》2013,38(2):211-217
综合分析了石英、石榴子石、橄榄石、锆石、红柱石的各不同结晶学意义的晶面腐蚀像特点,总结了晶面腐蚀像与晶面对称性及晶面结构特点之间的关系.腐蚀像不仅可以揭示晶面及晶体的对称性,还可以揭示晶面的结晶学意义,即同一晶体上的不同结晶学意义的晶面,尽管对称性相同,也具有不同的腐蚀像;不同晶体之间的具有相同对称性的晶面可能会有相同的腐蚀像;腐蚀像类似于一种宏观晶体形态,主要与晶面的对称性有关,与晶面上原子、离子排列的结构细节关系不大;同一晶体的同一晶面在不同的腐蚀剂中所得的腐蚀像也可能完全不同;有些晶面的腐蚀像可以用晶体生长形态的常见晶面与被腐蚀面的交棱来解释.该研究在揭示晶体溶解形态机理、将溶解形态与晶体生长形态对比、用溶解形态来反映晶体曾经经历的酸-碱环境等方面具有理论与实际意义.   相似文献   

16.
Laser-melted magnesium silicate droplets, supercooled 400–750°C below their equilibrium liquidus temperatures before crystallization, were examined to provide a comparison with meteoritic and lunar chondrules and to examine physicochemical parameters that may indicate the conditions of their formation. Internal textures of the spherules strikingly resemble textures observed in some chondrules. Definite trends in crystal morphology, crystal width and texture were established with respect to nucleation temperature and bulk composition. Such trends provide a framework for determining the nucleation temperature of chondrules. The only phase to nucleate from the supercooled forsterite-enstatite normative melts was forsterite, which was present in more-than-normative amounts. Highly siliceous glass (~65wt. % SiO2) was identified interstitially to the forsterite crystals in seven of the spherules and is thought to be present in all. The presence of enstatite and the large proportion of crystals in some meteoritic chondrules implies that they were maintained at temperatures considerably in excess of 600°C at some point in their history.  相似文献   

17.
Geological sequestration is one of the most effective ways to reduce greenhouse gases, such as carbon dioxide (CO2). The deep oceanic crust dominated by ultrabasic rock could store CO2 permanently. However, the storage mechanism has not been thoroughly understood because of the limited amount of research and experiments conducted. This study explored the reactive mechanisms of water–rock–gas in an ultrabasic system under different conditions. Forsterite, the most dominant mineral found in ultrabasic reservoirs, was used to conduct laboratory physical simulation experiments. Two experimental systems were designed including an scCO2–forsterite–water system and an N2–forsterite–water system. All experiments were performed for 1000 h at an experimental temperature of 150°C and a pressure of 150 bar, respectively, to mimic the geological conditions. The liquid products from the experiments were analysed by inductively coupled plasma-optical emission spectrometry, whereas the solid samples were analysed by scanning electron microscopy with energy disperse spectroscopy. Results showed that: (1) in the early stage during scCO2/N2–forsterite–water interaction, forsterite was dissolved with a reactive transitional zone forming on the surface, which caused H+ to enter into the silicate framework and accelerated the reaction; (2) in the N2 system, the dissolution of forsterite was inhibited by the Mg2+ concentration after reaching its saturation in the late stage; and (3) in the scCO2 system, magnesite was precipitated as a secondary mineral during the late stage, which promoted the dissolution of forsterite. As a result, the degree of dissolution of forsterite in the scCO2 system was far higher than in the N2 system. The experimental results are consistent with the numerical simulation using TOUGHREACT, a geochemical simulation procedure, which showed that CO2 promotes the dissolution of forsterite greatly at high temperature and pressure.  相似文献   

18.
MOCK  A.; JERRAM  D. A. 《Journal of Petrology》2005,46(8):1525-1541
Growth histories and residence times of crystals in magmaticsystems can be revealed by studying crystal sizes, size distributionsand shapes. In this contribution, serial sectioning has beenemployed on a sample of porphyritic rhyolite from a Permo-Carboniferouslaccolith from the Halle Volcanic Complex, Germany, to reconstructthe distribution of felsic phenocrysts in three dimensions inorder to determine their true shapes, sizes and three-dimensionalsize distributions. A model of all three phenocryst phases (quartz,plagioclase, K-feldspar) with 217 crystals, and a larger modelcontaining 1599 K-feldspar crystals was reconstructed in threedimensions. The first model revealed a non-touching frameworkof crystals in three dimensions, suggesting that individualcrystals grew freely in the melt prior to quenching of the texture.However, crystal shapes are complex and show large variationon a Zingg diagram (intermediate over long axis plotted againstshort over intermediate axis). They often do not resemble thecrystallographic shapes expected for phenocrysts growing unhinderedfrom a melt, indicating complex growth histories. In contrast,the three-dimensional size distribution is a simple straightline with a negative slope. Stereologically corrected size distributionsfrom individual sections compare well with stereologically correctedsize distributions obtained previously from the same sample.However, crystal size distribution (CSD) data from individualsections scatter considerably. It is shown that CSDs can berobustly reproduced with a sampling size of greater than 200crystals. The kind of shape assumed in stereological correctionof CSDs, however, has a large influence on the calculation andestimation of crystal residence times. KEY WORDS: 3D reconstruction; crystal shapes; CSD; porphyritic rhyolite; quantitative petrography  相似文献   

19.
Growth of transport-controlled reaction layers between single crystals of periclase and quartz, and forsterite and quartz was investigated experimentally at 1.5 GPa, 1100°C to 1400°C, 5 min to 72 h under dry and melt-free conditions using a piston-cylinder apparatus. Starting assemblies consisting of Per | Qtz | Fo sandwiches produced polycrystalline double layers of forsterite and enstatite between periclase and quartz, and enstatite single layers between forsterite and quartz. The position of inert Pt-markers initially deposited at the interface of the reactants and inspection of mass balance confirmed that both layer-producing reactions are controlled by MgO diffusion, while SiO2 is relatively immobile. BSE and TEM imaging revealed thicknesses from 0.6 μm to 14 μm for double layers and from 0 to 6.8 μm for single layers. Both single and double layers displayed non-parabolic growth together with pronounced grain coarsening. Textural evolution and growth rates for each reaction are directly comparable. Forsterite–enstatite double layers are always wider than enstatite single layers, and the growth of enstatite in the double layer is slower than that in the single layer. In double layers, the enstatite/forsterite layer thickness ratio significantly increases with temperature, reflecting different MgO mobilities as temperature varies. Thus, thickness ratios in multilayered reaction zones may contain a record of temperature, but also that of any physico-chemical parameter that modifies the mobilities of the chemical components between the various layers. This potential is largely unexplored in geologically relevant systems, which calls for further experimental studies of multilayered reaction zones.  相似文献   

20.
To evaluate the applicability of P2O5 concentration in potassic alkali feldspar as a monitor of P2O5 in melt for undercooled systems, crystal–melt partitioning for P was evaluated via feldspar growth experiments in P-bearing ((3 wt% P2O5), water-saturated haplogranitic liquids at 200 MPa, with liquidus undercoolings (ΔT) of 25, 50, 100, 200, and 300°C. Increasing undercooling in the range ΔT=25–200°C shows an evolution of crystal morphologies, from euhedral and well-filled individuals at ΔT=25–50°C to radial clusters with increasingly skeletal habit at greater undercooling. Experiments at ΔT=100–200°C also document the development of P- (up to (9 wt% P2O5) and Si-enriched, more alkaline boundary layers adjacent to crystals. Experiments at ΔT=300°C show an additional change in crystallization fabric in which spherulites of skeletal crystals form in open (vapor) space created by the dissolution of bulk silicate, and compositional boundary layers are not observed. We interpret the changes in reaction products at ΔT=300°C to indicate conditions below a glass transition; hence, partition coefficients were not determined for this undercooling. Values of K d(P)Kfs/melt from experiments at ΔT=25–200°C, calculated from pairs of crystal and immediately adjacent liquid compositions (including boundary layers at higher undercooling), are mostly in the range of 0.25–0.55 and show no effective change with increased undercooling. Essentially no change in K d(P)Kfs/melt with undercooling apparently stems from an interplay between boundary layer composition and a change in the substitution mechanism for P in feldspar from AlPSi−2, common in peraluminous to metaluminous liquids near equilibrium, to increasing proportions of ([ ],P)(M+,Si)−1 with increased undercooling. Bulk glass and liquid beyond boundary layers in experiments with significant percentages of crystallization are homogeneous, and show pronounced fractionation primarily due to the removal of an orthoclase component. Because crystallization was still in progress in experiments with ΔT≤200°C, compositional homogeneity in the bulk liquid requires extremely rapid diffusion of most haplogranite components (Na, K, and Al), apparently resulting from chemical potential gradients stemming from the removal of components from the liquid by crystal growth. Similar homogeneity and bulk fractionation in experiments with ΔT=300°C requires rapid diffusive equilibration for the alkalis even at temperatures below an apparent glass transition. Unlike the haplogranite components, P is only concentrated in liquid boundary layers (ΔT≤200°C) or low-density aqueous vapor (ΔT=300°C) adjacent to crystals. Hence, the P2O5 contents of melt inclusions likely are not representative of bulk melt concentrations in significantly undercooled systems (ΔT≤50–100°C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号