首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
We simulate the time evolution of the neutral and charged species in the terrestrial middle atmosphere using a 1-D radiative-convective model with interactive neutral and ion chemistry driven by four different sets of daily spectral solar irradiance (SSI) available in the literature for the year 2000. Obtained daily time series of ozone, hydroxyl and electron densities are used to calculate their sensitivity to the short-term SSI variability at 205 nm. All applied SSI data sets possess 27-day solar rotation cycle; however, its amplitude and phase as well as the correlation between considered SSI time series differ among data sets leading to the different behavior of the atmospheric response. Contrary, the ozone and hydroxyl sensitivities to the SSI changes during solar rotation cycle are almost identical for all applied SSI data sets in the stratosphere. In the mesosphere, the difference in correlation between SSI in Herzberg continuum and Lyman-α line in considered SSI data sets leads to substantial scatter of the sensitivity estimates based on 205 nm. Our results show that for the sensitivity analysis in the stratosphere based on the SSI at 205 nm any considered SSI data sets can be applied. For the mesosphere, where the sensitivity strongly varies among applied SSI data sets more robust results can be obtained using the sensitivity calculations based on the SSI in Lyman-α line.  相似文献   

2.
Urban expansion is a hot topic in land use/land cover change(LUCC) researches. In this paper, maximum entropy model and cellular automata(CA) model are coupled into a new CA model(Maxent-CA) for urban expansion. This model can help to obtain transition rules from single-period dataset. Moreover, it can be constructed and calibrated easily with several steps.Firstly, Maxent-CA model was built by using remote sensing data of China in 2000(basic data) and spatial variables(such as population density and Euclidean distance to cities). Secondly, the proposed model was calibrated by analyzing training samples,neighborhood structure and spatial scale. Finally, this model was verified by comparing logistic regression CA model and their simulation results. Experiments showed that suitable sampling ratio(sampling ratio equals the proportion of urban land in the whole region) and von Neumann neighborhood structure will help to yield better results. Spatial structure of simulation results becomes simple as spatial resolution decreases. Besides, simulation accuracy is significantly affected by spatial resolution.Compared to simulation results of logistic regression CA model, Maxent-CA model can avoid clusters phenomenon and obtain better results matching actual situation. It is found that the proposed model performs well in simulating urban expansion of China. It will be helpful for simulating even larger study area in the background of global environment changes.  相似文献   

3.
To simplify the consideration of the soil-structure interaction (SSI) effects, a single degree-of-freedom (SDOF) replacement oscillator has been successfully utilized to represent an SSI system with SDOF structural model. In the present paper, this approximation is first extended to an equivalent fixed-base model with modified system parameters. Based on this generalization, a methodology is then proposed to determine the equivalent fixed-base models of a general multi degree-of-freedom SSI system using simple system identification techniques in the frequency domain. Various fixed-base models are formulated and their accuracy is compared for a five-story shear building resting on soft soil. It is shown that the actual SSI system can be accurately represented with an appropriate fixed-base model.  相似文献   

4.
张康  施袁锋 《地震工程学报》2018,40(6):1378-1383,1400
结合随机状态空间方程和极大似然法的期望最大EM算法进行了结构运行模态分析。EM算法以迭代的方式更新模型参数,进而得到状态空间方程的极大似然估计。模态参数通过状态空间模型参数求得。应用了平方根卡尔曼滤波方程提高EM迭代过程的计算稳健性。考虑到状态空间方程中激励噪声和测量噪声的相关性,建立了更完善的参数化状态空间方程。通过数值模拟对比分析,结果表明:考虑噪声相关性的EM算法比假设噪声不相关的EM算法具有更高的识别精度,EM算法在采样数据较少的情况下比随机子空间方法更有优势。  相似文献   

5.
The hybrid modelling method is presented herein along with the equivalent linearization method to take account of the strain-dependent non-linearity of soils in a soil-structure interaction (SSI) seismic analysis. A refined substructuring of the soil-structure system is utilized and two separate analyses are made to determine the soil free-field and SSI motions induced by earthquake excitation. This method is used to predict the seismic response of a 1/4-scale containment model built in the seismically active area of Lotung, Taiwan. The results obtained show excellent correlation with the field test results.  相似文献   

6.
Spatial heterogeneity of soil has great impacts on dynamic processes of the hydrological systems. However, it is challenging and expensive to obtain spatial distribution of soil hydraulic properties, which often requires extensive soil sampling and observations and intensive laboratory analyses, especially in high elevation, hard to access mountainous areas. This study evaluates the impacts of soil heterogeneity on hydrological process in a high elevation, topographically complex watershed in Northwest China. Two approaches were used to derive the spatial heterogeneity of soil properties in the study watershed: (1) the spatial clustering method, Full‐Order‐CLK was used to determine five soil heterogeneous clusters (configurations 97, 80, 60, 40 and 20) through large number of soil sampling and in situ observations, and (2) the average values of soil hydraulic properties for each soil type were derived from the coarse provincial soil data sets (Gansu Soil Handbook at 1 : 1 000 000 scale). Subsequently, Soil and Water Assessment Tool model was used to quantify the impact of the spatial heterogeneity of soil hydraulic properties on hydrological process in the study watershed. Results show the simulations by Soil and Water Assessment Tool with the spatially clustered soil hydraulic information from the field sampling data had much better representation of the soil heterogeneity and had more accurate performance than the model using the average soil property values for each soil type derived from the coarse soil data sets. Thus, incorporating detailed field sampling, soil heterogeneity data greatly improve performance in hydrological modelling. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
中国区域电离层TEC与月均值偏差的空间相关性研究   总被引:3,自引:1,他引:2       下载免费PDF全文
姚璐  张学民  余涛 《地球物理学报》2014,57(11):3600-3610
本文利用美国喷气动力实验室(JPL)提供的电离层总电子含量(TEC)的地图网格产品,计算了中国区域上空电离层TEC与月均值偏差及其空间相关系数矩阵,从而分析了TEC与月均值偏差空间相关性的分布特征,根据统计学中定义的相关距离提取了这种偏差在经、纬度方向上的空间特征尺度.并以2008年和2011年为例,着重考察了TEC月偏差的空间特征尺度与太阳活动水平、地磁条件和季节变化之间的关系.结果发现,TEC与月均值偏差的空间相关性呈现椭圆形高斯分布的特征,沿纬线方向的特征尺度大于沿经线方向,不同纬度区域偏差的空间相关性特征差异明显,高纬的特征尺度在两个方向上均小于低纬,而不同经度区域在相同地方时条件下表现差异不大;两个方向的特征尺度在白天、太阳活动水平高和地磁活动剧烈时均存在增大的现象.  相似文献   

8.
将区域气候模式RegCM2与中国科学院大气物理研究所的9层全球格点大气环流模式IAP AGCM单向嵌套,对东亚现代气候进行数值模拟研究,同时检验和分析该嵌套模式的性能.已完成的10年积分结果表明,单向嵌套RegCM2由于具有较高分辨率和较完善的物理过程,因此对地面气温和降水的空间分布形势和季节变化趋势都有较好的模拟能力,且较与之嵌套的IAP AGCM的模拟效果有较大改善,如在中国区域,它模拟的年均地面气温与实况的空间相关系数由全球环流模式的092提高到094,模拟的年均降水由05提高到07. 这与嵌套RegCM2能模拟出IAP AGCM所不能分辨的中尺度信号有很大关系.  相似文献   

9.
In this study, it is intended to determine the effects of soil–structure interaction (SSI) and spatially varying ground motion on the dynamic characteristics of cable-stayed bridges. For this purpose, ground motion time histories are simulated for spatially varying ground motions, depending on its components of incoherence, wave-passage and site-response effects. The substructure method, which partitions the total soil–structure system into the structural system and the soil system, is used to treat the soil–structure interaction problem. To emphasize the relative importance of the spatial variability effects of earthquake ground motion, bridge responses are determined for the fixed base bridge model, which neglects the soil–structure interaction (no SSI) and for the bridge model including the soil–structure interaction (SSI). This parametric study concerning the relative importance of the soil–structure interaction and spatially varying ground motion shows that these effects should be considered in the dynamic analyses of cable-stayed bridges.  相似文献   

10.
Rapid industrialization and haze episodes in Malaysia ensure pollution remains a public health challenge. Atmospheric pollutants such as PM10 are typically variable in space and time. The increased vigilance of policy makers in monitoring pollutant levels has led to vast amounts of spatiotemporal data available for modelling and inference. The aim of this study is to model and predict the spatiotemporal daily PM10 levels across Peninsular Malaysia. A hierarchical autoregressive spatiotemporal model is applied to daily PM10 concentration levels from thirty-four monitoring stations in Peninsular Malaysia during January to December 2011. The model set in a three stage Bayesian hierarchical structure comprises data, process and parameter levels. The posterior estimates suggest moderate spatial correlation with effective range 157 km and a short term persistence of PM10 in atmosphere with temporal correlation parameter 0.78. Spatial predictions and temporal forecasts of the PM10 concentrations follow from the posterior and predictive distributions of the model parameters. Spatial predictions at the hold-out sites and one-step ahead PM10 forecasts are obtained. The predictions and forecasts are validated by computing the RMSE, MAE, R2 and MASE. For the spatial predictions and temporal forecasting, our results indicate a reasonable RMSE of 10.71 and 7.56, respectively for the spatiotemporal model compared to RMSE of 15.18 and 12.96, respectively from a simple linear regression model. Furthermore, the coverage probability of the 95% forecast intervals is 92.4% implying reasonable forecast results. We also present prediction maps of the one-step ahead forecasts for selected day at fine spatial scale.  相似文献   

11.
太湖水体遥感反演参数的空间异质性   总被引:1,自引:0,他引:1  
空间异质性的存在,会导致水质参数遥感反演中的尺度效应,影响反演精度,因此通过分析水质参数空间异质性,对于选择适当分辨率的遥感影像,提高反演精度具有重要意义.通过2008年10月在太湖布置的3个样方,利用GIS地统计学原理和分形维数的方法,对水质遥感反演中的三要素浓度,包括叶绿素a(Chl.a)、总悬浮物(TSM)和溶解有机碳(DOC)的空间异质性及其可能产生的尺度效应进行了研究.结果表明:太湖水体的三要素浓度在不同样方单元中变异系数相差较大,存在着明显的尺度效应;三个样方内Chl.a变异函数曲线斜率在变程范围内变化都较为剧烈,分形维数较高,说明太湖水体Chl.a受到某种起主导作用的生态过程的影响和控制;Chl.a和TSM的空间结构比例都在90%左右,有较强的空间相关性,表明其空间异质性的产生主要是由于结构性因素引起的,随机性因素作用微弱;DOC空间结构比例较小,说明随机性因素对其空间异质性的产生起了主导作用.三个样方中Chl.a的变程分别为147.3m、129.3m和115.0m,TSM的变程分别为1131.7m、130.6m、149.1m,因此在遥感反演中可选择TM影像,选择5×5窗口,以150m×150m作为基本单元;而DOC的变程分别为34.3m、38.5m、26.4m,表明其自相关距离较小,建议直接选择分辨率为30m的TM影像,使实际测量值与遥感影像最小单元相对应,消除反演过程中的尺度效应带来的误差.该研究也表明,MODIS的像元尺寸(250、500、1000m)明显偏大,在太湖水体三要素反演过程中,由于空间异质性引起的尺度效应,会造成一定的误差.  相似文献   

12.
A simple and fast evaluation method of soil–structure interaction (SSI) effects of embedded structures is presented via a cone model. The impedances and the effective input motions at the bottom of an embedded foundation are evaluated by means of the cone model. Those quantities are transformed exactly to the corresponding values at the top of the foundation. The evaluated quantities are combined with the super-structure at the top of the foundation. The transfer function amplitude of the interstory drift of a single-degree-of-freedom super-structure is computed for various cases, i.e. no SSI, SSI without embedment, SSI with shallow embedment, SSI with deep embedment. Soil properties are also varied to investigate in more detail the SSI effects of embedded structures. It is found that, while the transfer function amplitude is reduced by the increase of embedment in general, the characteristics of the transfer function amplitude for a very small ground shear wave velocity and large embedment are irregular and complicated.  相似文献   

13.
This paper revisits the phenomenon of dynamic soil‐structure interaction (SSI) with a probabilistic approach. For this purpose, a twofold objective is pursued. First, the effect of SSI on inelastic response of the structure is studied considering the prevailing uncertainties. Second, the consequence of practicing SSI provisions of the current seismic design codes on the structural performance is investigated in a probabilistic framework. The soil‐structure system is modeled by the sub‐structure method. The uncertainty in the properties of the soil and the structure is described by random variables that are input to this model. Monte Carlo sampling analysis is employed to compute the probability distribution of the ductility demand of the structure, which is selected as the metrics for the structural performance. In each sample, a randomly generated soil‐structure system is subjected to a randomly selected and scaled ground motion. To comprehensively model the uncertainty in the ground motion, a suite of 3269 records is employed. An extensive parametric study is conducted to cover a wide range of soil‐structure systems. The results reveal the probability that SSI increases the ductility demand of structures designed based on the conventional fixed‐based assumption but built on flexible soil in reality. The results also show it is highly probable that practicing SSI provisions of modern seismic codes increase the ductility demand of the structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
In this work, we address the problem of characterizing the heterogeneity and uncertainty of hydraulic properties for complex geological settings. Hereby, we distinguish between two scales of heterogeneity, namely the hydrofacies structure and the intrafacies variability of the hydraulic properties. We employ multiple-point geostatistics to characterize the hydrofacies architecture. The multiple-point statistics are borrowed from a training image that is designed to reflect the prior geological conceptualization. The intrafacies variability of the hydraulic properties is represented using conventional two-point correlation methods, more precisely, spatial covariance models under a multi-Gaussian spatial law. We address the different levels and sources of uncertainty in characterizing the subsurface heterogeneity, and explore their effect on groundwater flow and transport predictions. Typically, uncertainty is assessed by way of many images, termed realizations, of a fixed statistical model. However, in many cases, sampling from a fixed stochastic model does not adequately represent the space of uncertainty. It neglects the uncertainty related to the selection of the stochastic model and the estimation of its input parameters. We acknowledge the uncertainty inherent in the definition of the prior conceptual model of aquifer architecture and in the estimation of global statistics, anisotropy, and correlation scales. Spatial bootstrap is used to assess the uncertainty of the unknown statistical parameters. As an illustrative example, we employ a synthetic field that represents a fluvial setting consisting of an interconnected network of channel sands embedded within finer-grained floodplain material. For this highly non-stationary setting we quantify the groundwater flow and transport model prediction uncertainty for various levels of hydrogeological uncertainty. Results indicate the importance of accurately describing the facies geometry, especially for transport predictions.  相似文献   

15.
Seismic fragilities of buildings are often developed without consideration of soil-structure interaction (SSI), where base of the building is assumed to be fixed. This study highlights effect of SSI and uncertainty in soil properties such as friction angle, cohesion, density, shear modulus and Poisson's ratio and foundation parameters on seismic fragilities of non-ductile reinforced concrete frames resting in dense silty sand. Three-, five-, and nine-storey three-bay moment resisting reinforced concrete frames resting on isolated shallow foundation are studied and the numerical models for SSI are developed in OpenSees. Three sets of 10 ground motions, with mean spectrum of 100, 500, and 1000 yr return period hazard level (matching EC-8 design spectrum), are used for the nonlinear time history analyses. An optimized Latin Hyper Cube sampling technique is used to draw the sample of soil properties and foundation parameters. The fragilities are developed for the fixed base model and SSI models. However, the fragilities that incorporate the soil parameter and foundation uncertainties are only slightly different from those based solely on the uncertainty in seismic demand from earthquake ground motion, suggesting that fragilities that are developed under the assumption that all soil and foundation parameters at their median (or mean) values are sufficient for the purpose of earthquake damage or loose estimation of structures resting on dense silty sand. But the consideration of the SSI effect has the significant influence on the fragilities compare to the fixed base model. The structural parameter uncertainty and foundation modeling uncertainty are not considered in the study.  相似文献   

16.
Spatial rainfall amounts accumulated over short to medium periods of time, say a few days, tend to have a probabilistic structure with very distinctive features. Some of these that are specially relevant for the purpose of spatial modeling are the presence of mixed sampling distributions, right skewed distributions conditional on rainfall occurrence, and a complex spatial association structure. The goal of this work is to construct a family for the bivariate distributions of spatial rainfall fields that incorporates these distinctive features. It is based on the separate modeling of spatial occurrence of rainfall and the spatial distribution of positive rainfalls. The main properties of the bivariate distributions are derived, and some properties of the random field realizations are illustrated through simulation. Some limitations of the proposed model are also discussed.  相似文献   

17.
In this paper, we assess the performance of the catchment model SIMulated CATchment model (SIMCAT), to predict nitrate and soluble reactive phosphorus concentrations against four monitoring regimes with different spatial and temporal sampling frequencies. The Generalised Likelihood Uncertainty Estimation (GLUE) uncertainty framework is used, along with a general sensitivity analysis to understand relative parameter sensitivity. Improvements to model calibration are explored by introducing more detailed process representation using the Integrated Catchments model (INCA) water quality model, driven by the European hydrological predictions for the environment model. The results show how targeted sampling of headwater watercourses upstream of point discharges is essential for calibrating diffuse loads and can exert a strong influence on the whole‐catchment model performance. Further downstream, if the point discharges and loads are accurately represented, then the improvement in the catchment‐scale model performance is relatively small as more calibration points are added or frequency is increased. The higher‐order, dynamic model integrated catchments model of phosphorus dynamics, which incorporates sediment and biotic interaction, resulted in improved whole‐catchment performance over SIMCAT, although there are still large epistemic uncertainties from land‐phase export coefficients and runoff. However, the very large sampling errors in routine monitoring make it difficult to invest confidence in the modelling, especially because we know phosphorous transport to be very episodic and driven by high flow conditions for which there are few samples. The environmental modelling community seems to have been stuck in this position for some time, and whilst it is useful to use an uncertainty framework to highlight these issues, it has not widely been adopted, perhaps because there is no clear mechanism to allow uncertainties to influence investment decisions. This raises the question as to whether it might better place a cost on uncertainty and use this to drive more data collection or improved models, before making investment decisions concerning, for example, mitigation strategies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Spatial sampling design based on the variability and distribution of soil properties is an important issue with the progress in precision agriculture and soil ecology. Electromagnetic induction (type EM38) and variance quad‐tree (VQT) method were both applied to optimize the sampling scheme of soil salinity in a coastal reclamation field in north Jiangsu Province, China. Apparent soil electrical conductivity (ECa) measured with EM38 was used as an ancillary variable and the spatial distribution of ECa was used as priori information. The process and result of VQT algorithm analysis was illustrated and the obtained sampling strategy was validated using observed soil salinity. Then the spatial precision and sampling efficiency were evaluated. The result indicated that the spatial distribution of soil salinity produced with the VQT scheme was quite similar to that produced with total sampling sites, while sampling quantity of the former was reduced to approximately 1/2 of the latter. The spatial precision of VQT scheme was considerably higher than that of traditional grid method with respect to the same sampling number, and fewer samples were required for VQT scheme to obtain the same precision level. A 17.3% increase in sampling efficiency was achieved by VQT over grid method at the precision level of 90%. The VQT method was proved to be more efficient and economical because it can sample intensively or sparsely according to variation status in local areas. The associated application of EM38 and VQT method provides efficient tools and theoretical basis for saving sampling cost and improving sampling efficiency in coastal saline region and enriching soil ecology.  相似文献   

19.
本文通过对高层建筑结构-地基动力相互作用体系和刚性地基上高层建筑结构的振动台模型试验成果的对比分析,研究了相互作用对结构动力特性和地震反应的影响。结果-地基动力相互作用使结构频率减小,阻尼增大;相互作用体系的振型曲线与刚性地基上结构的振型曲线不同,基础处存在平动和转动;在地震动作用下考虑相互作用的结构加速度、层间剪力、弯矩以及应变通常比刚性地基上的情况小,而位移则比刚性地基上的情况大。  相似文献   

20.
Spatial sampling design is one of the key steps in land cover accuracy assessment, and many traditional sampling approaches may not achieve credible spatial sampling due to the high spatial heterogeneity of land cover. This paper characterizes the spatial heterogeneity with three-level LSIs and determines the subsequent sample sizes and their spatial distributions. The three-level LSIs are rLSI in a region, cLSI for each land cover class and uLSI in each geographic sampling unit in the region. The rLSIs are used to derive appropriate sample sizes in the target regions. The cLSIs are used to assure that larger sample numbers are allocated to land cover classes with higher spatial heterogeneity. The uLSIs provide useful measures for selecting optimal geographic units in which sample sites will be located. This LSI-based sampling approach can derive the sample sizes and determine their distributions in an adaptive way according to the spatial heterogeneity. An experimental case study further demonstrates that the LSI-based sampling approach obtains more appropriate sample sizes for each region, sufficient sample numbers for rare classes, and optimal sample distributions in the geographical space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号