首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 784 毫秒
1.
The identification of energy sources, pathways and trophic linkages among organisms is crucial for the understanding of food web dynamics. Stable isotopes were used to identify the trophic level of food web components and track the incorporation of organic matter of different origins in the coastal ecosystem adjacent to the Tagus estuary. It was shown that the river Tagus is a major source of organic carbon to this system. Also, the wide difference in δ13C among the primary consumers allowed the identification of the pelagic and the benthic energy pathways. The maximum trophic level observed was 2.4 for Sepia officinalis. This value is indicative of a short food web. It was concluded that the diet of the upper trophic level species relies directly on the lower food web levels to a considerable extent, instead of relying mostly on intermediate trophic level species. Moreover, the δ15N values of primary consumers were very close to that of particulate organic matter, probably due to poorly known processes occurring at the basis of the food web. This lowers the trophic length of the whole food web. Reliance on benthic affinity prey was high for all upper trophic level secondary consumers.  相似文献   

2.
Stable isotope analysis was used to investigate nekton movements and feeding location in a coastal area adjacent to a major European river, the Tagus, Portugal. Particulate organic matter isotopic signatures presented a gradient from the river towards the sea. Phytoplankton, zooplankton, polychaetes and the crab, Polybius henslowii, provided evidence of the incorporation of terrestrial organic matter into the lower levels of the food web, reflecting local isotopic signatures. Two fish species reflected the coastal isotopic gradient in δ13C, Diplodus vulgaris and Arnoglossus imperialis and the latter also presented isotopic differerences among the sites for δ15N. Alloteuthis subulata, Trisopterus luscus and Callionymus lyra were isotopicaly distinct among sites for δ15N. An increase of δ15N with length was detected for T. luscus and C. lyra, possibly showing ontogenic trophic level changes. Since A. subulata did not present differences in length and still showed isotopic distinction for δ15N, among areas, it was concluded that local biogeochemical factors may also have an influence. Diplodus bellottii and Dicologlossa cuneata did not reflect any isotopic signature reflecting their wide migration and feeding across the coastal area. Central isotopic ranges, defined as the site mean values for δ13C and δ15N ± 1‰ were determined for each species and site and those deviating from these were considered transient individuals. Central isotopic ranges accounted for 87% of A. imperialis, 80% of A. subulata, 77% of T. luscus, 67% of C. lyra and 50% of D. vulgaris. The number of individuals within each central isotopic range was surprisingly high for an open coastal area and comparable to those of more structured environments.  相似文献   

3.
Organic matter in a tropical mangrove ecosystem was characterized by stable carbon and nitrogen isotopic analyze, conducted on various organic samples, including land and mangrove plants, soils, particulate organic matter (POM), and sea and river sediments along the southwestern coast of Thailand. The δ13C values of land plants and POM in river water can be explained in terms of a greater influence of C3 plants than C4 plants in this area. The POM and sediments from the Trang River and Ko Talibong area showed systematically higher δ15N values than those from Ko Muk and other coastal areas. Organic matter in the Trang River might be influenced by nitrogen released from agricultural or human waste, which could affect the isotopic composition of POM and sediments in the Trang River estuary and along the coast near the river mouth. We used a stochastic method to estimate the contributions of four organic end-members, identifiable by their δ13C and δ15N values. The results implied that seagrasses were a major source of sedimentary organic matter, contributing 42 ± 5% in the Ko Muk area and 36 ± 5% in the Ko Talibong area. The contribution of coastal POM to sediments was estimated to be only 13% in Ko Muk and 19% in Ko Talibong. Mangrove plants contributed approximately 23% in both areas. It was concluded that seagrasses are an important source of sedimentary organic matter in this coastal region of southwestern Thailand. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The composition and behavior of allochthonous particulate organic matter (POM) in the northern part of Ise Bay, Japan were investigated to elucidate the short-term variation in POM accompanying changes in river discharge. The behavior of POM was significantly regulated by hydrographic conditions, but behavior was different in the upper layer versus the middle and lower layers. The former showed simple dynamics controlled by the river plume, while the latter showed complex dynamics because of changes in river discharge and subsequent variation in estuarine circulation. During normal discharge, the contribution of riverine materials to POC in the surface water within the bay was negligible because most riverine organic matter is deposited before flowing into the bay. During high discharge, on the other hand, the contribution of riverine organic matter to total POM increased to 50% at ∼10 km from the river mouth. Though riverine organic matter loads increased, the total amount of POC decreased around the river mouth due to flushing of phytoplankton. After river discharge, the contribution decreased rapidly.The behavior of POM in the middle and lower layers differed from that in the surface layer. At normal discharge, the influence of riverine organic matter was weak. During high discharge, high flooding temporarily weakened the bottom inflow, resulting in heavier riverine organic matter distributed from the river mouth to mid regions within the bay in the lower layer. The maximum contribution of riverine organic matter to total POM was estimated to be ∼60% around 25 km from the river mouth. After high discharge, riverine POM in the lower layer was pushed to the bay head by enhanced estuarine circulation and was uplifted to the middle layer. The behavior of riverine POM dynamically changed in relation to river discharge, and exerted a significant influence on bottom water conditions in the bay.  相似文献   

5.
河口羽流是河口冲淡水在陆架中扩展的主要形式, 其扩展受到诸多动力与地形因素的影响, 口门拦门沙就是其中之一。以一个理想化的河口为例, 采用区域海洋模型(regional ocean modelling system, ROMS), 研究口门拦门沙对河口羽流扩展的影响, 具体包括拦门沙对羽流的出流状态、扩展范围以及远场区沿岸流淡水输运的影响。研究结果表明, 拦门沙增加了口门处的水体分层, 减小了羽流出流速度, 增大了羽流凸出体的半径, 减小了远场区沿岸流宽度, 并进而减少了沿岸流中的淡水输送。本项研究对地形因素对河口羽流的扩展研究以及陆源物质的向海输运等均具有重要意义。  相似文献   

6.
《Marine Chemistry》2001,73(3-4):253-271
The influence of mangrove-fringed tropical estuaries on coastal carbon budgets has been widely recognised. However, a quantitative differentiation between riverine and mangrove-derived inputs to the dissolved (DOM) and microparticulate organic matter (POM) pool of these environments has been hitherto not possible. Based on lignin-derived phenols and stable carbon isotopes a chemical signature for mangrove, terrestrial and marine-derived organic matter was established for a mangrove estuary in North Brazil. A mixing model was applied to calculate the contribution of each of the three sources to the DOM and POM pool in the estuary throughout 18 tidal cycles in the course of one year. Best source assignment for POM was reached with the yield of lignin phenols and δ13C as paired indicators, while the origin of DOM was best identified by the yield of lignin phenols and the acid to aldehyde ratio of vanillyl phenols. Although only about 6% of the fluvial catchment area is covered by mangroves, their contribution to the estuarine DOM and POM pool generally exceeded several times the terrigenic input from the hinterland. This outwelling of mangrove-derived organic matter was enhanced during the rainy season. DOM and POM were exported from the mangrove to the estuary in similar proportions. Most mangrove-POM was rapidly removed from the water column, while mangrove-DOM behaved conservatively. In contrast, terrestrial DOM was almost entirely removed in the outer part of the estuary, which was accompanied by a concomitant increase in terrestrial POM. This seems to be the result of a geochemical barrier zone for this type of DOM in the estuary. Generally, a high proportion of mangrove-DOM was present in the outer part of the estuary, even at high tide. This indicates DOM outwelling from mangroves in adjacent bays or estuaries and points to similar driving forces controlling this process on a regional scale. Mangroves probably play a more important role than rivers for marine carbon budgets along the North Brazilian coast south of the Amazon estuary.  相似文献   

7.
Systematic water sampling for characterization of chromophoric dissolved organic matter (CDOM) in the coastal South Atlantic Bight, was conducted as part of the long term Coastal Ocean Research and Monitoring Program (CORMP). Water samples were collected during a 3.5 year period, from October 2001 until March 2005, in the vicinity of the Cape Fear River (CFR) outlet and in adjacent Onslow Bay (OB). During this study there were two divergent hydrological and meteorological conditions in the CFR drainage area: a severe drought in 2002, followed by the very wet year of 2003. CDOM was characterized optically by the absorption coefficient at 350 nm, the spectral slope coefficient (S), and by Excitation Emission Matrix (EEM) fluorescence. Parallel Factor Analysis (PARAFAC) was used to assess CDOM composition from EEM spectra and six components were identified: three terrestrial humic-like components, one marine humic-like component and two protein-like components. Terrestrial humic-like components contributed most to dissolved organic matter (DOM) fluorescence in the low salinity plume of the CFR. The contribution of terrestrial humic-like components to DOM fluorescence in OB was much smaller than in the CFR plume area. Protein-like components contributed significantly to DOM fluorescence in the coastal ocean of OB and they dominated DOM fluorescence in the Gulf Stream waters. Hydrological conditions during the observation period significantly impacted both concentration and composition of CDOM found in the estuary and coastal ocean. In the CFR plume, there was an order of magnitude difference in CDOM absorption and fluorescence intensity between samples collected during the drought compared to the wet period. During the drought, CDOM in the CFR plume was composed of equal proportions of terrestrial humic-like components (ca. 60% of the total fluorescence intensity) with a significant contribution of proteinaceous substances (ca. 20% of the total fluorescence). During high river flow, CDOM was composed mostly of humic substances (nearly 75% of total fluorescence) with minor contributions by proteinaceous substances. The impact of changes in fresh water discharge patterns on CDOM concentration and composition was also observed in OB, though to a lesser degree.  相似文献   

8.
The distribution of dissolved (soluble and total) and particulate (leachable and total) aluminum was examined in the Columbia River and estuary, in near-field and far-field river plumes, and in adjacent coastal waters of Washington and Oregon during the River Influence on Shelf Ecosystems (RISE) cruise of May/June 2006. Dissolved and particulate aluminum (Al) concentrations were significantly greater in the river than in the coastal waters that mixed to form the plume. Dissolved Al concentrations in the Columbia River (∼80 nM) were low relative to other major rivers. Leachable and total particulate Al concentrations within the river reached concentrations greater than 1000 nM and 18,000 nM, respectively. Dissolved Al within the Columbia River estuary showed a significant removal (∼60%) at salinities between 0 and 10 with salt-induced flocculation of colloidal Al complexes and enhanced particle scavenging being probable explanations for aluminum removal. Dissolved and particulate Al concentrations were significantly greater in near-field plumes relative to surrounding coastal waters. As the plume advected from near-field to far-field away from the river mouth, dilution of the plume with lower dissolved Al surface waters as well as particle scavenging along the flow path appeared to be controlling dissolved Al distributions. Particle settling as well as dilution with lower particle-load waters led to observed decreases in particulate Al as the plume moved from near-field to far-field. However, the percent-leachable particulate aluminum in both near-field and far-field plumes was remarkably constant at ∼7%. Dissolved and particulate Al in a far-field plume over 100 km southwest of the Columbia River mouth were over an order-of-magnitude greater than surrounding waters, illustrating the importance of the Columbia River plume as a mechanism for transporting Al offshore. Aluminum could be used to trace the input of biologically-required elements such as iron into waters off the shelf.  相似文献   

9.
The unique physical and biogeochemical characteristics of oxygen minimum zones (OMZs) influence plankton ecology, including zooplankton trophic webs. Using carbon and nitrogen stable isotopes, this study examined zooplankton trophic webs in the Eastern Tropical North Pacific (ETNP) OMZ. δ13C values were used to indicate zooplankton food sources, and δ15N values were used to indicate zooplankton trophic position and nitrogen cycle pathways. Vertically stratified MOCNESS net tows collected zooplankton from 0 to 1000 m at two stations along a north-south transect in the ETNP during 2007 and 2008, the Tehuantepec Bowl and the Costa Rica Dome. Zooplankton samples were separated into four size fractions for stable isotope analyses. Particulate organic matter (POM), assumed to represent a primary food source for zooplankton, was collected with McLane large volume in situ pumps.The isotopic composition and trophic ecology of the ETNP zooplankton community had distinct spatial and vertical patterns influenced by OMZ structure. The most pronounced vertical isotope gradients occurred near the upper and lower OMZ oxyclines. Material with lower δ13C values was apparently produced in the upper oxycline, possibly by chemoautotrophic microbes, and was subsequently consumed by zooplankton. Between-station differences in δ15N values suggested that different nitrogen cycle processes were dominant at the two locations, which influenced the isotopic characteristics of the zooplankton community. A strong depth gradient in zooplankton δ15N values in the lower oxycline suggested an increase in trophic cycling just below the core of the OMZ. Shallow POM (0–110 m) was likely the most important food source for mixed layer, upper oxycline, and OMZ core zooplankton, while deep POM was an important food source for most lower oxycline zooplankton (except for samples dominated by the seasonally migrating copepod Eucalanus inermis). There was no consistent isotopic progression among the four zooplankton size classes for these bulk mixed assemblage samples, implying overlapping trophic webs within the total size range considered.  相似文献   

10.
The stable nitrogen isotope ratio (δ15N) is an established indicator of trophic hierarchy in marine food-web studies. Most of these studies presume that spatial variation in the primary food source is negligible, although a water-depth-related increase in δ15N of particulate organic matter (POM) has been found in many systems. We used the high-Antarctic Weddell Sea shelf and slope ecosystem to test whether such a depth-related change in δ15N is reflected at higher trophic levels, i.e., benthic consumers of POM. In suspension feeders (SF) we found a significant increase in δ15N with water depth of up to 9.8‰, whereas in deposit feeders (DF) a depth effect was barely detectable. Particle-size preferences of the two feeding guilds combined with particle-size-dependent sinking velocities and biogeochemical reworking of POM are discussed as the major causes of these differences. It is essential to marine food-web studies to take into account the general depth effect on POM δ15N as well as potential feeding-guild-specific differences in the response of POM consumer tissue δ15N to avoid serious bias and misinterpretation of stable-isotope-based trophic information.  相似文献   

11.
A model for the Zambezi River plume, the largest on the Indian Ocean coast of Africa, is presented and the results of experiments with different discharges and wind forcings are analysed. Although the river plays an important role in the southern African economy through power generation on large dams, artisanal fisheries, and frequent flooding events that impact greatly on local populations, the plume has not been well studied. Observations during the period 2004–2007, when the winds were mainly easterly or south-easterly, indicated that the plume waters can extend both downstream (equatorwards) and upstream (polewards) of the Zambezi Delta with a recirculating bulge near the river mouth. The model is constructed using the Regional Ocean Modeling System (ROMS), with a 40-km long, 3-km wide river discharging into a rectangular coastal ocean with a linearly sloping bottom. When the model is forced only by a constant river discharge of 1 000?m3 s?1 (typical of observed discharge amounts in summer), the Kelvin and Froude numbers for the resulting plume imply a ‘large-scale’ buoyant discharge with a coastal current that is close to being in geostrophic balance with the across-shore pressure gradient and a recirculating ageostrophic bulge near the mouth. The distributions of the bulge and plume waters are found to be relatively insensitive to the discharge amount. Under constant wind forcing, the plume distribution changes dramatically. Northerly and easterly winds produce the largest changes with the latter able to deflect the plume up to 180° due to Ekman drift. When sea breeze-like winds are imposed, accumulation of water in the bulge occurs with substantial spreading upstream. Stronger sea breezes lead to less downstream spreading of the plume than gentle winds. When the winds are mainly across-shore, Ekman drift dominates, but the dynamics become almost geostrophic when the winds are roughly aligned to the coast. These experiments suggest that the Zambezi River plume is sensitive to the winds on diurnal to synoptic time-scales.  相似文献   

12.
Concentrations of mercury were determined for the waters, suspended matter and sediments of the Tagus and of major French estuaries.The Tagus estuary is one of the most contaminated by mercury derived from the outfalls of a chloralkali plant and from other industrial sources. In deposited sediments the median level, 1·0 μg Hg g?1, is twenty times higher than the natural background and Hg contents depend on the sediment grain-size, age and the distance from waste-outfalls. Suspended matter is more regularly and highly contaminated (median value: 4·5 μg Hg g?1). In the French estuaries Hg levels in the suspended material decrease with salinity due to dilution and/or remobilization processes. In June 1982, in the Loire estuary, high values of Hg are observed in the middle estuary and attributed to urban and industrial sources.In the Tagus estuary, the general distribution of total dissolved Hg confirms the contamination: it increases seaward from 10 ng 1?1 in the river to 80 ng 1?1 in the estuary outlet. The dissolved Hg is almost totally organic in the river, inorganic in the middle estuary due to inorganic Hg effluents and again organic in the lower estuary. This variation is related to the dissolved organic carbon values. The dissolved Hg levels in the Loire Estuary (5–300 ng 1?1) are much higher than in the Gironde estuary (3–6 ng 1?1) and of the same order as those observed in the Tagus estuary.  相似文献   

13.
The Po River runoff strongly affects the oceanographic and ecological characteristics of the Northern Adriatic Sea. Catalysed reported deposition ‐ fluorescence in situ hybridization (CARD‐FISH) analysis was employed to assess how the composition of the coastal bacterioplankton community is influenced by the river runoff in two different seasons (spring and autumn). Samples were collected from the water column along a coastal–offshore transect in the Northern Adriatic Sea at different depths. Four clone libraries were then constructed from coastal (0 m) and offshore waters (?65 m). Higher abundances of bacteria were recorded in coastal waters as compared with the offshore samples. This result was mainly due to the trophic state of the water column, and it was related to salinity. Particularly, Actinobacteria and Gammaproteobacteria were affected by the riverine inputs, whereas Bacteroidetes and Alphaproteobacteria showed only minor responses. This was particularly clear in the autumn sample, in which a clear difference between the coastal and the offshore samples was found due to a strong influence of the less saline river water with high nutrient concentrations. Analysis of 205 partial length 16S rRNA gene sequences indicated a high diversity with the dominance of Alphaproteobacteria, Bacteroidetes and Gammaproteobacteria mainly affiliated to coastal and marine bacterioplankton clades. Actinobacteria were also detected and, together with Gammaproteobacteria, strongly follow the freshwater intrusion. Overall, our results indicate that the seasonal difference in the Po River discharge greatly affects the bacterioplankton community. In spring we observed a smooth transition from coastal to open‐sea conditions owing to the more superficial freshwater plume. In autumn the deeper freshwater intrusion in the coastal site and thermal stratification offshore resulted in a marked difference between the coastal and offshore microbial communities.  相似文献   

14.
River plumes are the regions where the most intense river-sea-land interaction occurs, and they are characterized by complex material transport and biogeochemical processes. However, due to their highly dynamic nature, global river plume areas have not yet been determined for use in synthetic studies of global oceanography. Based on global climatological monthly averaged salinity data from the NOAA World Ocean Atlas 2009 (WOA09), and monthly averaged salinity contour maps of the East and South China Seas from the Chinese Marine Atlas, we extract the monthly plume areas of major global rivers using a geographic information system (GIS) technique. Only areas with salinities that are three salinity units lower than the average salinity in each ocean are counted. This conservative estimate shows that the minimum and maximum monthly values of the total plume area of the world’s 19 largest rivers are 1.72 × 10 6 km 2 in May and 5.38 × 10 6 km 2 in August. The annual mean area of these river plumes (3.72 × 10 6 km 2 ) takes up approximately 14.2% of the total continental shelves area worldwide (26.15 × 10 6 km 2 ). This paper also presents river plume areas for different oceans and latitude zones, and analyzes seasonal variations of the plume areas and their relationships with river discharge. These statistics describing the major global river plume areas can now provide the basic data for the various flux calculations in the marginal seas, and therefore will be of useful for many oceanographic studies.  相似文献   

15.
The photosynthetic properties of phytoplankton populations as related to physical–chemical variations on small temporal and spatial scales and to phytoplankton size structure and pigment spectra were investigated in the Northern Adriatic Sea off the Po River delta in late winter 1997. Large diatoms (fucoxanthin) dominated the phytoplankton in the coastal area whereas small phytoflagellates (mainly 19′-hexanoyloxyfucoxanthin, chlorophyll b, 19′-butanoyloxyfucoxanthin) occurred outside the front. The front was defined by the steep gradient in density in the surface layer separating low-salinity coastal waters from the offshore waters.Physical features of the area strongly influenced phytoplankton biomass distributions, composition and size structure. After high volumes of Po River discharge several gyres and meanders occurred in the area off the river delta in February. Decreasing river discharge and the subsequent disappearance of the gyres and the spreading dilution of the river plume was observed in March. The dynamic circulation of February resulted in high photosynthetic capacity of the abundant phytoplankton population (>3.40 mg m−3). In March, the slow circulation and an upper low-salinity water layer, segregated from the deeper layers, resulted in lack of renewal of this water mass. The huge phytoplankton biomass, up to 15.77 mg chl a m−3, became nutrient depleted and showed low photosynthetic capacity. In February, an exceptionally high PmaxB, 20.11 mg C (mg chl a)−1 h−1 was recorded in the Po River plume area and average PmaxB was three-fold in February as compared to the March recordings, 10.50 mg C (mg chl a)−1 h−1 and 3.22 mg C (mg chl a)−1 h−1, respectively.The extreme variability and values of phytoplankton biomass in the innermost plume area was not always reflected in primary production. Modeling of circulation patterns and water mass resilience in the area will help to predict phytoplankton response and biomass distributions. In the frontal area, despite a considerable variability in environmental conditions, our findings have shown that the phytoplankton assemblages will compensate for nutrient depression and hydrographic constraints, by means of size and taxonomic composition and, as a result, the variability in the photosynthetic capacity was much less pronounced than that observed for other parameters.  相似文献   

16.
黎为  任杰 《海洋学报》2018,40(3):16-24
利用1 200 kHz的宽频RDI ADCP于2015年7月在磨刀门河口拦门沙前缘的浅水站和沿岸流影响的深水站进行座底观测,采样频率为1 Hz,数据经滤波去噪处理,应用方差方法分析了磨刀门的羽状流湍流动力特征。结果表明,磨刀门河口水流表现出3层流结构,峰值流速出现在表层的羽状流层,深水区雷诺应力量级为10-3~10-5 m2/s2,小于拦门沙前缘的湍流脉动强度;拦门沙前缘和深水区湍流动能密度参数的范围均在0.01~0.6 m2/s2左右,羽状流的湍动能比底边界层高一个数量级。拦门沙前缘羽状流的湍动能生成率量级约为10-3 W/kg,比底层大2~3个量级,且远强于深水区;垂直涡黏系数的大小约为0~0.15 m2/s。总的来说,羽状流表现出层化稳定、混合强烈,以及高的湍动能生成率,为羽状流携带高浊度悬沙离岸远距离搬运提供了湍流动力条件。  相似文献   

17.
A series of molecular organic markers were determined in surface sediments from the Gulf of Genoa (Ligurian Sea) in order to evaluate their potential for palaeo-environmental reconstructions. Allochthonous input can be characterized by the distributions of n-C29 and n-C31 alkanes, n-C26 and n-C28 alkanols and branched glycerol dialkyl glycerol tetraethers (GDGTs), whose concentrations are generally highest near the river mouths. In the open basin however, terrestrial n-alkanes and n-alkanols may have an additional, eolian source. Autochthonous input is represented by crenarchaeol and isoprenoid GDGTs. Their concentrations are highest in the open basin showing the preference of Thaumarchaeota for oligotrophic waters. Indications of a significant degradation of sterols and C37 alkenones exclude these lipids as reliable productivity proxies. Using terrestrial and aquatic lipids as end-members allows estimating the percentage of terrestrial organic matter between 20% and 58% in the coastal area decreasing to 1–30% in the deep basin. The spatial distribution of sea surface temperature (SST) estimates using the alkenone-based UK′37 index is very similar to the autumnal (November) mean satellite-based SST distribution. Conversely, TEXH86-derived SST estimates are close to winter SSTs in the coastal area and summer SSTs in the open basin. This pattern reflects presumably a shift in the main production of Thaumarchaeota from the coastal area in winter to the open basin in summer. This study represents a major prerequisite for the future application of lipid biomarkers on sediment cores from the Gulf of Genoa.  相似文献   

18.
Satellite ocean colour remote sensing can serve as a powerful tool to assess river plume characteristics because it provides daily mapping of surface suspended particulate matter (SPM) concentration at high spatial resolution. This study’s ultimate objective was to better understand daily and seasonal particle dynamics in a coastal area strongly influenced by freshwater discharge and wind—the Rhône River (France), this being the major source of terrestrial input to the Mediterranean Sea. SPM concentrations and biogenic composition (chlorophyll a, organic carbon) were investigated during several bio-optical field campaigns conducted in spring–autumn of 2010 both from aboard a research vessel and by means of an autonomous profiling float. Freshwater discharge and wind velocities varied significantly during the year, associated with marked fluctuations in surface SPM (upper 1 m), even within hours and not restricted to any specific season. Thus, the range was ca. 12–25 g m–3 (dry mass basis) on 9 April (spring), and ca. 3–39 g m–3 on 4–5 November (late autumn). Short-term variations were observed also in SPM composition in terms of POC (albeit not chl a), with POC/SPM ratios ranging between ca. 3 and 11% over ca. 3 weeks in spring. Nevertheless, the particulate backscattering coefficient (b bp) proved to be a robust proxy of SPM concentration in the river plume (b bp(770)?=?0.0076?×?SPM, R2?=?0.80, N?=?56). It has recently been demonstrated that 80% of the Rhône’s terrestrial discharge occurs during flood events. The results of the present study revealed that, under these conditions, SPM is constrained largely within surface waters (i.e. at depths <5 m), with only weak daily vertical variability. By implication, ocean colour satellite data are highly suitable in meaningfully estimating the overall SPM load exported by the Rhône River to the Mediterranean. These findings make a solid contribution to future improvements of three-dimensional sediment transport models for the region and similar settings.  相似文献   

19.
Freshwater input is known to have the potential to influence marine pelagic and benthic communities through the export of nutrients, sediments and detritus. The increase in nutrients of riverine origin in coastal environments can enhance primary production in coastal areas, supporting a diverse and rich fauna. However, it is not clear how and to what extent these freshwater inputs influence marine populations. We investigated the potential effects of freshwater input on the diets of intertidal benthic organisms in situ on the east coast of South Africa, analysing their δ13C and δ15N stable isotope and fatty acid content. Specifically, we investigated the dietary regime of three barnacle and one mussel species in relation to their proximity to the mouths of large rivers. Strong dissimilarities among species were recorded with both techniques; however, no significant effect of freshwater input was observed for any of them. There are several possible explanations for these results, including rapid dilution, with fresh water near the river mouth being thoroughly mixed with seawater, resulting in a riverine influence being too weak to be detectable in the signatures of benthic populations. Our results contrast with a previous study conducted in the same area, where it was suggested that demersal organisms relied on freshwater-derived organic matter. Our study, however, showed no freshwater effect either within a few metres or tens of kilometres from the nearest large river mouths, supporting the notion that freshwater input does not play an important role for the benthic intertidal community in the ecosystems studied. Given that freshwater input is likely to diminish in the future, because of increased human abstraction of water, any potential effects of freshwater input on these marine populations are likely to be further reduced.  相似文献   

20.
Multidimensional statistical analysis was used to study the polychaete distribution in soft-bottoms of two coastal areas of the Tyrrhenian Sea (Italy), which are influenced by the discharges of the rivers Tiber and Ombrone. In both areas the distributional patterns of these organisms are determined mainly by sediment types and related factors such as hydrodynamics, river input, and sedimentation. The grain-size gradient from the coast to the open sea affects not only species composition, but also species richness, diversity and abundance.In both areas three main communities have been identified: a sandy biocoenosis, a mixed-sediment biocoenosis and a muddy biocoenosis. The sandy coastal community is characterized by only a few species, while the intermediate zone of sandy-mud sediments presents the highest species richness and diversity. At the mouth of the River Tiber the influence of the river is more evident than at the mouth of the River Ombrone. This is due to the Tiber's greater river flow, which determines an environmental uniformity and a ‘cenotic continuum’ from sandy to muddy communities. This does not occur at the mouth of the Ombrone, where the river flow is less important and the polychaete communities are better defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号