首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The position of the Inland Ice margin during the late Wisconsin-Würm glaciation (ca. 15,000 yr BP) is probably marked by offshore banks (submarine moraines?) in the Davis Strait. The history of the Inland Ice since the late Wisconsin-Würm can be divided into four principal phases: (1) Relatively slow retreat from the offshore banks occurred at an average rate of approximately 1 km/100 yr until ca. 10,000 yr BP (Younger Dryas?) when the Taserqat moraine system was formed by a readvance. (2) At ca. 9500 yr BP, the rate of retreat increased markedly to about 3 km/100 yr, and although nearly 100 km of retreat occurred by ca. 6500 yr BP, it was punctuated by frequent regional reexpansions of the Inland Ice that formed extensive moraine systems at ca. 8800-8700 yr BP (Avatdleq-Sarfartôq moraines), 8400-8100 yr BP (Angujârtorfik-Fjord moraines), 7300 yr BP (Umîvît moraines), and 7200-6500 yr BP (Keglen-Mt, Keglen moraines). (3) Between 6500 and 700 yr BP, discontinous ice-margin deposits and ice-disintegration features were formed during retreat, which may have continued until the ice margin was near or behind its present position by ca. 6000 yr BP. Most of the discontinuous ice-margin deposits occur within 5–10 km of the present ice margin, and may have been formed by two main phases of readvance at ca. 4800-4000 yr BP and 2500-2000 yr BP. (4) Since a readvance at ca. 700 yr BP, the Inland Ice margin has undergone several minor retreats and readvances resulting in deposition of numerous closely spaced moraines within about 3 km of the present ice margin. The young moraines are diffieulto to correlate regionally, but several individual moraines have the following approximate ages: A.D. 1650, 1750, and 1880–1920.Inland Ice fluctuations in West Greenland were very closely paralleled by Holocene glacial events in East Greenland and the eastern Canadian Aretic. Such similarity of glacier behavior over a large area strongly suggests that widespread climatic change was the direct cause of Holocene glacial fluctuations. Moreover, historical advances of the Inland Ice margin followed slight temperature decreases by no more than a few decades, and 18O data from Greenland ice cores show that slight temperature decreases occurred frequently throughout the Holocene. Therefore, we conclude that construction of the major Holocene moraine systems in West Greenland was caused by slight temperature decreases, which decreased rates of ablation and thereby produced practically immediate advances of the ice sheet margin, but did not necessarily affect the long-term equilibrium of the ice sheet.  相似文献   

2.
Cosmogenic-nuclide exposure ages for 13 glacially transported boulders atop the Martha's Vineyard moraine, MA, USA, indicate that the southeastern margin of the Laurentide ice sheet reached its maximum extent during the last glaciation 23,200±500 yr ago. Another 10 age determinations from the younger Buzzards Bay moraine near Woods Hole, MA, indicate that this moraine complex was formed 18,800±400 yr ago. These ages correlate approximately with the terminations of cooling cycles recorded in Greenland ice cores and coeval ice-rafting events, suggesting that the marginal position of this sector of the ice sheet was tightly coupled to North Atlantic climate during the last glacial maximum.  相似文献   

3.
New marine geological evidence provides a better understanding of ice-sheet dynamics along the western margin of the last Svalbard/Barents Sea Ice Sheet. A suite of glacial sediments in the Kongsfjordrenna cross-shelf trough can be traced southwards to the shelf west of Prins Karls Forland. A prominent moraine system on the shelf shows minimum Late Weichselian ice extent, indicating that glacial ice also covered the coastal lowlands of northwest Svalbard. Our results suggest that the cross-shelf trough was filled by a fast-flowing ice stream, with sharp boundaries to dynamically less active ice on the adjacent shelves and strandflats. The latter glacial mode favoured the preservation of older geological records adjacent to the main pathway of the Kongsfjorden glacial system. We suggest that the same model may apply to the Late Weichselian glacier drainage along other fjords of northwest Svalbard, as well as the western margin of the Barents Ice Sheet. Such differences in glacier regime may explain the apparent contradictions between the marine and land geological record, and may also serve as a model for glaciation dynamics in other fjord regions.  相似文献   

4.
Lateral moraines constructed along west to east sloping outlet glaciers from mountain centred, pre-last glacial maximum (LGM) ice fields of limited extent remain largely preserved in the northern Swedish landscape despite overriding by continental ice sheets, most recently during the last glacial. From field evidence, including geomorphological relationships and a detailed weathering profile including a buried soil, we have identified seven such lateral moraines that were overridden by the expansion and growth of the Fennoscandian ice sheet. Cosmogenic 10Be and 26Al exposure ages of 19 boulders from the crests of these moraines, combined with the field evidence, are correlated to episodes of moraine stabilisation, Pleistocene surface weathering, and glacial overriding. The last deglaciation event dominates the exposure ages, with 10Be and 26Al data derived from 15 moraine boulders indicating regional deglaciation 9600 ± 200 yr ago. This is the most robust numerical age for the final deglaciation of the Fennoscandian ice sheet. The older apparent exposure ages of the remaining boulders (14,600-26,400 yr) can be explained by cosmogenic nuclide inheritance from previous exposure of the moraine crests during the last glacial cycle. Their potential exposure history, based on local glacial chronologies, indicates that the current moraine morphologies formed at the latest during marine oxygen isotope stage 5. Although numerous deglaciation ages were obtained, this study demonstrates that numerical ages need to be treated with caution and assessed in light of the geomorphological evidence indicating moraines are not necessarily formed by the event that dominates the cosmogenic nuclide data.  相似文献   

5.
Neoglacial and Little Ice Age (LIA) limits occur within 2km of the Inland Ice margin in the Kangerlussuaq area on west Greenland. The LIA limit is clearly demarcated by ice-cored and non-ice-cored moraines, out-wash surfaces and trimlines. Rhizocarpon sp. thalli of ≥16mm on these landforms indicate a 1-2km retreat of the Inland Ice in the past c. 100 years, coincident with peripheral thinning of the ice. An older neoglacial moraine host of Rhizocarpon sp. thalli <40 mm indicates a minimum limiting age of <400 BP, whereas Optically Stimulated Luminescence (OSL) ages on aeolian silt capping the moraine yield close limiting ages of c. 2000 BP. Aeolian silt deposition beyond neoglacial limits yields OSL ages of c. 3000 BP, potentially coeval with advance of the Inland Ice. Aeolian sedimentation and the inferred age of the moraine are coincident with pronounced cooling inferred from palaeolimnological records from west and south Greenland. This neoglacial event at c. 2000 BP is probably of similar extent to the LIA maximum, because of the paucity of preserved moraine remnants.  相似文献   

6.
The erosional nature of glacial systems commonly results in removal of direct evidence of previous glaciation (e.g. till and moraine). Therefore, reconstruction of former ice‐margin positions may rely, in part, on indirect (proxy) evidence from the sedimentary record. This study examines the facies and sedimentary architecture of a pre‐Middle Wisconsinan sand and gravel deposit (the ‘Grimshaw gravels’), which is positioned between areas where previous stratigraphical investigations have identified single (Late Wisconsinan) and multiple (pre‐Middle to Late Wisconsinan) glaciation by the Laurentide Ice Sheet. Five facies associations (FAs) are characterized within the deposit, which, together with the sedimentary architecture, record a transition from a braided river environment in the west (FA1‐3) to a gravelly braidplain delta front in the east (FA4 and 5). We propose that the Grimshaw gravels braid delta formed at the margin of a body of water that occupied the ancestral Peace River valley, probably impounded by the LIS; hence, the Grimshaw braid delta provides proxy evidence of the presence of an ice margin (previously unrecognized) in the Peace River lowland prior to the Middle Wisconsinan. This study provides further understanding of the origin of the Grimshaw gravels deposit, allowing re‐evaluation of previous models of formation. These findings offer insight into the glacial history of the southwestern margin of the LIS, and may help to refine ice‐sheet reconstructions spanning the Wisconsinan glaciation.  相似文献   

7.
A considerable portion of Northern Eurasia, and particularly its continental shelf, was glaciated by inland ice during late Weichsel time. This was first inferred from such evidence as glacial striae, submarine troughs, sea-bed diamictons, boulder trains on adjacent land, and patterns of glacioisostatic crustal movements. Subsequently, the inference was confirmed by data on the occurrence and geographic position of late Weichselian end moraines and proglacial lacustrine deposits.The south-facing outer moraines in the northeastern Russian Plain, northern West Siberia, and on Taimyr Peninsula are underlain by sediments containing wood and peat, the radiocarbon dating of which yielded ages of 22,000 to 45,000 yr B.P. The youngest late-glacial moraines are of Holocene age: the double Markhida moraine in the lower Pechora River basin, presumably associated with “degradational” surges of the Barents Ice Dome, is underlain by sediments with wood and peat dated at 9000 to 9900 yr B.P.: this suggests that deglaciation of the Arctic continental shelf of Eurasia was not completed until after 9000 yr B.P.The reconstructed ice-front lines lead to the conclusion that the late Weichselian ice sheet of Northern Eurasia (proposed name: the Eurasian Ice Sheet) extended without interruptions from southwestern Ireland to the northeastern end of Taimyr Peninsula, a distance of 6000 km: it covered an area of 8,370,000 km2, half of which lay on the present-day continental shelves and a quarter on lowlands that were depressed isostatically below sea level. Hence, the ice sheet was predominantly marine-based.A contour map of the ice sheet based both on the dependence of the heights of ice domes upon their radii and on factual data concerning the impact of bedrock topography upon ice relief has been constructed. The major features of the ice sheet were the British, Scandinavian, Barents, and Kara Ice Domes that had altitudes of 1.9 to 3.3 km and were separated from one another by ice saddles about 1.5 km high. At the late Weichselian glacial maximum, all the main ice-dispersion centers were on continental shelves and coastal lowlands, whereas mountain centers, such as the Polar Urals and Byrranga Range, played only a local role.The portions of the ice sheet that were grounded on continental shelves some 700 to 900 m below sea level were inherently unstable and could exist only in conjunction with confined and pinned floating ice shelves that covered the Arctic Ocean and the Greenland and Norwegian Seas.The Eurasian Ice Sheet impounded the Severnaya Dvina, Mezen, Pechora, Ob, Irtysh, and Yneisei Rivers, and caused the formation of ice-dammed lakes on the northern Russian Plain and in West Siberia. Until about 13,500 yr B.P. the proglacial system of lakes and spillways had a radial pattern; it included large West Siberian lakes, the Caspian and Black Seas, and ended in the Mediterranian Sea. Later, the system became marginal and discharged proglacial water mainly into the Norwegian Sea.  相似文献   

8.
Three‐dimensional (3D) seismic datasets, 2D seismic reflection profiles and shallow cores provide insights into the geometry and composition of glacial features on the continental shelf, offshore eastern Scotland (58° N, 1–2° W). The relic features are related to the activity of the last British Ice Sheet (BIS) in the Outer Moray Firth. A landsystem assemblage consisting of four types of subglacial and ice marginal morphology is mapped at the seafloor. The assemblage comprises: (i) large seabed banks (interpreted as end moraines), coeval with the Bosies Bank moraine; (ii) morainic ridges (hummocky, push and end moraine) formed beneath, and at the margins of the ice sheet; (iii) an incised valley (a subglacial meltwater channel), recording meltwater drainage beneath former ice sheets; and (iv) elongate ridges and grooves (subglacial bedforms) overprinted by transverse ridges (grounding line moraines). The bedforms suggest that fast‐flowing grounded ice advanced eastward of the previously proposed terminus of the offshore Late Weichselian BIS, increasing the size and extent of the ice sheet beyond traditional limits. Complex moraine formation at the margins of less active ice characterised subsequent retreat, with periodic stillstands and readvances. Observations are consistent with interpretations of a dynamic and oscillating ice margin during BIS deglaciation, and with an extensive ice sheet in the North Sea basin at the Last Glacial Maximum. Final ice margin retreat was rapid, manifested in stagnant ice topography, which aided preservation of the landsystem record. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
This paper examines marine geophysical and geological data, and new multibeam bathymetry data to describe the Pleistocene sediment and landform record of a large ice‐stream system that drained ~3% of the entire British?Irish Ice Sheet at its maximum extent. Starting on the outer continental shelf NW of Scotland we describe: the ice‐stream terminus environment and depocentre on the outer shelf and continental slope; sediment architecture and subglacial landforms on the mid‐shelf and in a large marine embayment (the Minch); moraines and grounding line features on the inner shelf and in the fjordic zone. We identify new soft‐bed (sediment) and hard‐bed (bedrock) subglacial landform assemblages in the central and inner parts of the Minch that confirm the spatial distribution, coherence and trajectory of a grounded fast‐flowing ice‐sheet corridor. These include strongly streamlined bedrock forms and megagrooves indicating a high degree of ice‐bed coupling in a zone of flow convergence associated with ice‐stream onset; and a downstream bedform evolution (short drumlins to km‐scale glacial lineations) suggesting an ice‐flow velocity transition associated with a bed substrate and roughness change in the ice‐stream trunk. Chronology is still lacking for the timing of ice‐stream demise; however, the seismic stratigraphy, absence of moraines or grounding‐line features, and presence of well‐preserved subglacial bedforms and iceberg scours, combined with the landward deepening bathymetry, all suggest that frontal retreat in the Minch was probably rapid, via widespread calving, before stabilization in the nearshore zone. Large moraine complexes recording a coherent, apparently long‐lived, ice‐sheet margin position only 5–15 km offshore strongly support this model. Reconstructed ice‐discharge values for the Minch ice stream (12–20 Gt a?1) are comparable to high mass‐flux ice streams today, underlining it as an excellent palaeo‐analogue for recent rapid change at the margins of the Greenland and West Antarctic Ice Sheets.  相似文献   

10.
S. Meiners 《GeoJournal》1997,42(2-3):259-302
The historical to post-glacial glacier positions have beenreconstructed from the recent glaciation history of selectedexamples. The chronological sequence of the ice margin positionscan be deduced from the increasing ages of the structures, whichare proportional to the distance from the recent terminus of theglacial tongue, or to the difference between the elevation of theice surface and that of the crest of the lateral moraine. Achronological classification of the glacial events in `phases'can be defined by calculating the snow-line depression aftertaking the relief factor into account. On a small scale, theyoungest glacial positions may vary depending on the localrelief. In both areas under investigation, the post-glacial iceextents are similar in so far as they are not more than 6 km fromthe Recent ice margin, and the historical and Neoglacial phasesare spatially close to one another. A decrease in the elevationof the glacial surface is a more important factor, compared tothe oscillations of the glacial tongue, influencing thedevelopment of the multiphase, lateral moraines that characterisethe Holocene glacial fluctuations.  相似文献   

11.
Decay of the last Cordilleran Ice Sheet (CIS) near its geographical centre has been conceptualized as being dominated by passive downwasting (stagnation), in part because of the lack of large recessional moraines. Yet, multiple lines of evidence, including reconstructions of glacio‐isostatic rebound from palaeoglacial lake shoreline deformation suggest a sloping ice surface and a more systematic pattern of ice‐margin retreat. Here we reconstructed ice‐marginal lake evolution across the subdued topography of the southern Fraser Plateau in order to elucidate the pattern and style of lateglacial CIS decay. Lake stage extent was reconstructed using primary and secondary palaeo‐water‐plane indicators: deltas, spillways, ice‐marginal channels, subaqueous fans and lake‐bottom sediments identified from aerial photograph and digital elevation model interpretation combined with field observations of geomorphology and sedimentology, and ground‐penetrating radar surveys. Ice‐contact indicators, such as ice‐marginal channels, and grounding‐line moraines were used to refine and constrain ice‐margin positions. The results show that ice‐dammed lakes were extensive (average 27 km2; max. 116 km2) and relatively shallow (average 18 m). Within basins successive lake stages appear to have evolved by expansion, decanting or drainage (glacial lake outburst flood, outburst flood or lake maintenance) from southeast to northwest, implicating a systematic northwestward retreating ice margin (rather than chaotic stagnation) back toward the Coast Mountains, similar in style and pattern to that proposed for the Fennoscandian Ice Sheet. This pattern is confirmed by cross‐cutting drainage networks between lake basins and is in agreement with numerical models of North American ice‐sheet retreat and recent hypotheses on lateglacial CIS reorganization during decay. Reconstructed lake systems are dynamic and transitory and probably had significant effects on the dynamics of ice‐marginal retreat, the importance of which is currently being recognized in the modern context of the Greenland Ice Sheet, where >35% of meltwater streams from land‐terminating portions of the ice sheet end in ice‐contact lakes.  相似文献   

12.
Along the margins of continental ice sheets, lakes formed in isostatically depressed basins during glacial retreat. Their shorelines and extent are sensitive to the ice margin and the glacial history of the region. Proglacial lakes, in turn, also impact the glacial isostatic adjustment due to loading, and ice dynamics by posing a marine-like boundary condition at the ice margin. In this study we present a tool that efficiently identifies lake basins and the corresponding maximum water level for a given ice sheet and topography reconstruction. This algorithm, called the LakeCC model, iteratively checks the whole map for a set of increasing water levels and fills isolated basins until they overflow into the ocean. We apply it to the present-day Great Lakes and the results show good agreement (∼1−4%) with measured lake volume and depth. We then apply it to two topography reconstructions of North America between the Last Glacial Maximum and the present. The model successfully reconstructs glacial lakes such as Lake Agassiz, Lake McConnell and the predecessors of the Great Lakes. LakeCC can be used to judge the quality of ice sheet reconstructions. © 2019 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd.  相似文献   

13.
The Bristol Channel, including onshore areas, is critical for reconstructing Pleistocene glacial limits in southwest Britain. Debate about the precise regional southern limits of Devensian (Oxygen Isotope Stage (OIS) 2) and Anglian (OIS 12) glaciations has recently been rekindled. The Paviland Moraine (Llanddewi Formation), Gower, south Wales is conventionally regarded as Anglian in age. Its ‘old’ age has been based on reported highly weathered clasts, a subdued morphology and ‘field relationships’ to fossil beach sediments of now disputed age(s). Relatively little about its sedimentary characteristics has been previously published. This paper: (i) presents new sedimentological evidence including lithofacies analysis, XRF analysis and electrical resistivity tomography (ERT) of sediment cores and electrical resistivity of a tied 3D field grid; (ii) re‐assesses the proposed ‘old’ age; (iii) suggests a likely depositional origin; and (iv) discusses implications for regional glacial dynamics and future research priorities. The sediments comprise mostly dipping glacigenic diamict units containing mainly Welsh Coalfield erratics. The location and subdued moraine morphology are attributed to the hydrological influence of the underlying limestone, the local topography and ice‐sheet behaviour rather than to long‐term degradation. Moraine formation is attributed mainly to sediment gravity flows that coalesced to produce an ice‐frontal apron. Neither geochemical data nor clasts indicate prolonged subaerial weathering and in‐situ moraine sediments are restricted to a limestone plateau above and inland of fossil beach sediments. We recommend rejecting the view that the moraine represents the only recognized OIS 12 deposit in Wales and conclude that instead it marks the limit of relatively thin Last Glacial Maximum (LGM) ice in west Gower. This requires revision of the accepted view of a more restricted LGM limit in the area. We suggest that substrate hydrological conditions may be a more influential factor in moraine location and form than is currently acknowledged.  相似文献   

14.
Deglaciation processes within different rock relief types are discussed. The lower parts of the fissure-valley landscape in western Sweden were covered by the late-glacial sea at deglaciation, while the rock plateaux between the valleys formed an arctic archipelago. The glacial movements, deposition activity and recession were intimately dependent on the variations of the topography and on the buoyancy of the seawater in the valleys. The opinion that a piedmont glaciation existed in eastern Halland during the deglaciation stage has been corroborated concerning areas above the marine limit. In the valleys below this limit the ice margin, however, was straight or slightly concave. The western part of the South Swedish Highland, situated high above the marine limit, is characterized by a zonal deglaciation; zone by zone of the ice margin was detached from the actively moving ice and became immobile. Subglacially formed eskers appear together with glaciofluvial deltas which formed extramarginally in ice-dammed lakes. The moraine forms are often dominated by 1–2 km long drumlins with rock cores. Where the ice diverged over a convex bedrock basement, Rogen-like moraine ridges, radial as well as transverse, were formed during the deglaciation stage when the ice was stagnating.  相似文献   

15.
Large outlet glaciers draining the Greenland Ice Sheet significantly influence overall ice sheet mass balance. Considerable short term (years to decades) retreat and fluctuations in velocity of Jakobshavn Isbræ, western Greenland, illustrate the complex nature by which large outlet glaciers respond to climate change, making predictions of future ice sheet change challenging. To provide a longer-term view (centuries), we investigate the geological record of Jakobshavn Isbræ change. We use continuous sediment records from lakes that were influenced by the recent advance of Jakobshavn Isbræ, which took place during the Little Ice Age. In particular, we explore the use of annually laminated lake sediments (varves) to precisely constrain the advance of the ice margin as it approached its late Holocene maximum extent. We find that the ice margin advanced recently, at least after ~1650 to ~1700 AD, and more likely ~1800 AD. We suggest that during this period Jakobshavn Isbræ advanced at a rate that was similar to its historically documented average retreat since ~1850 AD. Our results indicate that Jakobshavn Isbræ, and presumably other large marine calving glaciers, have the ability to advance quickly in response to climate forcing.  相似文献   

16.
The Veikimoraines in northernmost Sweden display a very conspicuous distribution pattern, sharply demarcated to the east and successively decreasing to the south, west and north. The sharp demarcation to the east is thought to reflect the front of a stagnant ice sheet. The downwasting of this glacier was retarded by the insulation of a thick superglacial debris cover and subarctic vegetation invaded at least parts of the slowly collapsing ice. Radiocarbon datings of organic matter deposited in connection with the formation of the Veiki moraine, lithostratigraphical evidence and the relation to other glacial features prove the Veiki moraine landscape to date from the deg laciation of the first Weichselian ice sheet, i.e. the Peräpohjola Interstadial. The good preservation of the features implies that in extensive areas of northern sweden the Early Weichselian glacial landscape escaped significant erosion despite being overrun by two later glaciers. Previous interpretations of the Late Weichselian/Holocene deglaciation are largely based on an Early Weichselian deglaciation pattern.  相似文献   

17.
The presence of glacial sediments across the Rauer Group indicates that the East Antarctic ice sheet formerly covered the entire archipelago and has since retreated at least 15 km from its maximum extent. The degree of weathering of these glacial sediments suggests that ice retreat from this maximum position occurred sometime during the latter half of the last glacial cycle. Following this phase of retreat, the ice sheet margin has not expanded more than ∼ 1 km seaward of its present position. This pattern of ice sheet change matches that recorded in Vestfold Hills, providing further evidence that the diminutive Marine Isotope Stage 2 ice sheet advance in the nearby Larsemann Hills may have been influenced by local factors rather than a regional ice-sheet response to climate and sea-level change.  相似文献   

18.
A new and significant site of organic silty sand has been found beneath the Valders till at Valders Quarry in northeastern Wisconsin. This is now the earliest known late-glacial site associated with red till ice advances in the western Great Lakes area. Leaves of terrestrial plants washed into a small depression provide a date of 12,965 ± 200 yr B.P. (WIS-2293), which is significantly older than the Two Creeks Forest Bed (ca. 11,800 yr B.P.). Percentage and concentration pollen diagrams suggest that the site was open and distant from a closedPiceaforest. No wood orPiceaneedles have been found. This date is statistically indistinguishable from 12,550 ± 233 yr B.P., the mean of three dates for the end of inorganic varve sedimentation at Devils Lake, 160 km southwest at the terminus of the Green Bay Lobe. Assuming that the Green Bay lobe vacated its outermost moraine in the interval from 13,000 to 12,500 yr B.P., only a short time was available for retreat of the ice margin over 350 km, drainage of red sediment from Lake Superior into the Lake Michigan basin, readvance of over 250 km, retreat of at least 80 km, and advance to this site. The time for these events appears to have been too short to resolve by current radiocarbon technique. This extremely rapid collapse of the Green Bay lobe has a calibrated age of about 15,000 cal yr B.P., about that of the dramatic warming seen in the Greenland ice cores.  相似文献   

19.
Genesis of hummocky moraine in the Bolmen area, southwestern Sweden   总被引:2,自引:0,他引:2  
During the late Weichselian deglaciation of southern Scandinavia vast areas of hummocky moraine were formed. The genesis of this landform was studied by geomorphological and sedimentological methods in an area in southwestern Sweden. Four exposures in moraine hummocks were investigated using sedimentological methods. They were found to be composed of stratified diamictons with frost-shattered boulders and deformed intrabeds of sorted sediments. The diamictons were interpreted as sediment-flow deposits, with the hummocks formed in stagnant ice by flowage of supraglacial glacial debris into depressions and subsequent inversion of the landscape due to ice melt. With the exception of hummocky moraine, the study area contains low relief moraine, which like the hummocky moraine was supraglacially formed. A new model is presented where the distribution of hummocky and low relief moraine is dependent on the vertical distribution of glacial debris in the ice sheet, which in turn is related to the flow regime of the ice sheet prior to stagnation. A compressive flow before stagnation favoured development of the hummocky moraine, while low relief moraine formation occurred where the ice flow was extending or at steady state.  相似文献   

20.
Land‐terminating parts of the west Greenland ice sheet have exhibited highly dynamic meltwater regimes over the last few decades including episodes of extremely intense runoff driven by ice surface ablation, ponding of meltwater in an increasing number and size of lakes, and sudden outburst floods, or ‘jökulhlaups’, from these lakes. However, whether this meltwater runoff regime is unusual in a Holocene context has not been questioned. This study assembled high‐resolution topographical data, geological and landcover data, and produced a glacial geomorphological map covering ~1200 km2. Digital analysis of the landforms reveals a mid‐Holocene land‐terminating ice margin that was predominantly cold‐based. This ice margin underwent sustained active retreat but with multiple minor advances. Over c. 1000 years meltwater runoff became impounded within numerous and extensive proglacial lakes and there were temporary connections between some of these lakes via spillways. The ice‐dams of some of these lakes had several quasi‐stable thicknesses. Meltwater was apparently predominantly from supraglacial sources although some distributary palaeochannel networks and some larger bedrock palaeochannels most likely relate to mid‐Holocene subglacial hydrology. In comparison to the geomorphological record at other Northern Hemisphere ice‐sheet margins the depositional landforms in this study area are few in number and variety and small in scale, most likely due to a restricted sediment supply. They include perched fans and deltas and perched braidplain terraces. Overall, meltwater sourcing, routing and the proglacial runoff regime during the mid‐Holocene in this land‐terminating part of the ice sheet was spatiotemporally variable, but in a manner very similar to that of the present day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号