首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flakket on the island of Anholt in Denmark is a cuspate foreland facing the microtidal Kattegat sea. It is composed of a number of beach ridges typically covered by dune sand and separated by swales and wetlands. OSL dating indicates that the evolution of Flakket began c. AD 1000. Foreland growth was punctuated by a major episode of coastal reorganization leading to coastal retreat c. AD 1800. Coastal retreat led to the formation of an erosion surface that separates older and higher‐lying beach‐ridge and swale deposits from younger and lower‐lying deposits. The palaeo‐sea level is deduced from the architecture of the deposits, and interpretation of ground‐penetrating radar data and geomophological observations indicates that relative sea level was about 1.90±0.25 m above present sea level c. AD 1000, but about 0.00±0.25 m relative to present sea level c. AD 1830 and c. AD 1870. Anholt is situated at the margin of the uplifted Fennoscandian area; assuming uplift to be about 1.2 mm a?1 it follows that absolute sea level was about +0.70±0.25 m at AD 1000, but around ?0.22±0.25 m at AD 1830 and around ?0.17±0.25 m at AD 1870. Within the uncertainties of the age control, the sea‐level indicators mapped by ground‐penetrating radar reflections and the variability of estimates of uplift found in the literature, the result obtained for AD 1000 is consistent with findings from the Stockholm area in Sweden and with a recently published global sea‐level curve.  相似文献   

2.
The Tertiary sedimentary sequence in the Lusatian Brown Coal District is the result of several transgressive pulses with intercalated regressive phases. Regression repeatedly resulted in the formation of large littoral bogs at the transition between brackish and terrestrial palaeoenvironments. In the lithofacies changes of the Lower-Middle Miocene strata (high energy sands, low energy intertidal silts, paralic peats) long-term changes as well as short-term oscillations of sea level are recorded. The rise of sea level in the upper Lower Miocene (Hemmoorian transgression) is proved in numerous localities of the investigation area. After a regression phase with major peat formation events around the Lower-Middle Miocene boundary, a renewed sea-level rise resulted in the widest extension of marine-brackish beds over pre-Tertiary basement in the south of the region (higher Reinbekian transgression, Middle Miocene). Very differentiated, fine-scaled, probably sea-level induced coastline oscillations could probably be traced even into the coal seams by the recognition of successive bogfacial types possibly showing a groundwater level change in the ancient peat bog (change of topogeneous and ombrogeneous bog types). A biostratigraphic calibration of the decalcified Lower-Middle Miocene sequence with its alternating transgressive and regressive trends to the fully marine sediments of the basinal centre, which are dated by calcareous microfossils, is possible by means of dinoflagellate cysts and pollen and spores. Correspondence to: C. Strauss  相似文献   

3.
The contact between wave‐influenced foreshore and aeolian‐influenced backshore sediments (BA boundary) in raised spit deposits (Skagen Odde) is here used as a proxy for palaeo‐sea level over the past 7600 years. The elevation of the BA boundary was measured at 57 sample sites along the northwestern coast of the spit, and the age of these sites determined by optically stimulated luminescence (OSL) dating of quartz grains. The elevation of the BA boundary with age gives past variation in relative sea level; relative sea level rose between c. 7600 and c. 6250 years ago, when it reached a peak value around 12.5 m above present mean sea level (apmsl), followed by a slow sea‐level fall until c. 4600 years ago before it dropped rapidly to reach 2 m apmsl c. 2000 years ago. From the new data it is tentatively deduced that the land uplift rate declined from about 3 mm a−1 6000 years ago to about 1.5 mm a−1 2000 years ago (low estimate), or alternatively from 5 mm a−1 5000 years ago to 1.5 mm a−1 2000 years ago (extreme estimate). These data indicate that the long‐term average rate of vertical land movement during the past 5000 years was around 1.8 mm a−1 (low estimate) or around 2.5 mm a−1 (extreme estimate). These values seem reasonable compared with a modern value of about 1.6 to 1.7 mm a−1. The lack of an independent data set illustrating the isostatic uplift history with time, however, precludes the construction of a well‐constrained eustatic sea‐level curve.  相似文献   

4.
《Geodinamica Acta》2013,26(2):85-87
Abstract

This paper gives an answer to the criticism of Jussereta and Baeteman to the paper Discussion of “Relative sea level fluctuations in Aegean coastal areas from middle to late Holocene” by Kosmas Pavlopoulos [Geodinamica Acta 23/5–6 (2010) 225–232]. Jussereta and Baeteman were critical about how the peat beds can be regarded as certain sea level indicators. It is evident that the method adopted for the determination of the mean sedimentation rate of the peats beds is the dating of two distinct (usually basal and uppermost) layers.

A common inaccuracy that some researchers do when they refer to relative sea level changes, is to focus only on eustatic component of this process, and to ignore the rest two (isostatic and tectonic). Jussereta and Baeteman do not believe that a particulate site could suffer alternate stages of subsidence and uplift. However, Aegean Sea is an area of high tectonic potential, which has shaped by the interplay compression and extension forces.

Finally, this answer gives evidence that the observational data concerning the Holocene RSL stands in unstable localities can be compared with those data extracted from a hydro-isostatic model to estimate rates of vertical displacement and, therefore, to detect uplifting, relative stable and subsiding regions. This approach is followed by many researchers who study various Mediterranean coasts

© 2011 Lavoisier SAS. All rights reserved  相似文献   

5.
The results of thermodynamic calculations demonstrate that the pH and Eh values for bottom sea water enriched in organic matter tend to decrease drastically as a result of bacterial reduction of sulfates in sea water. Syngenetic sulfide ore beds associated with the Jiashengpan strata-bound Pb-Zn-S ore deposit are believed to have been precipitated under the conditions of pH varying from 7.08 to 7.17 and Eh from −0.232 to −0.418V. It is established that in the reducing system in sea water where reduction of sulfates by anaerobic bacteria took place, paleosalinity is an important factor affecting pH and Eh changes and controlling the formation of sulfide ore beds. The present study shows that the quantitative evaluation of physicochemical conditions can be effected from thermodynamic calculations on the basis of geochemical data.  相似文献   

6.
Marine and continental deposits from the Tjörnes area in northern Iceland were studied to obtain their pollen/spore content. Six Pollen Zones (PZ) were defined in the Early Pliocene Tjörnes beds and the Early Pleistocene Breidavík Group. The pollen is most diverse during the deposition of the lowest Tapes Zone (PZ 1) and the lower part of the overlying Mactra Zone (PZ 2). Local pollen from marshland, levee and foothill forests was deposited on a large coastal plain. The pollen spectrum reflects transgression and deepening during the second part of the Mactra Zone (PZ 3) and the lower part of the Serripes Zone (PZ 4). Gymnosperm pollen derived from the higher inland plateau increases in PZ 3. This background pollen was of minor importance during periods with an extensive coastal plain (PZ 1, 2, 4, 6). PZ 5 did not yield sufficient pollen for analysis. The pollen analysis allowed refinement of the sea‐level variations based on sedimentology and molluscs. Pollen of warmth‐demanding plants is recorded throughout the Tjörnes beds and the Early Pleistocene interglacial deposits. Warmth‐loving species indicate summers 8°C warmer than today during deposition of the Tapes Zone, and at least 5°C warmer during the rest of the Tjörnes beds. The Pliocene vegetation of Iceland matches well that of the present‐day western European maritime temperate climate. The drastic cooling at the onset of the Quaternary led to a marked vegetation impoverishment, already noticeable in the Early Pleistocene Breidavík Group.  相似文献   

7.
The glaciomarine model for deglaciation of the Irish Sea basin suggests that the weight of ice at the last glacial maximum was sufficient to raise relative sea‐levels far above their present height, destabilising the ice margin and causing rapid deglaciation. Glacigenic deposits throughout the basin have been interpreted as glaciomarine. The six main lines of evidence on which the hypothesis rests (sedimentology, deformation structures, delta deposits, marine fauna, amino‐acid ratios and radiocarbon dates) are reviewed critically. The sedimentological interpretation of many sections has been challenged and it is argued that subglacial sediments are common rather than rare and that there is widespread evidence of glaciotectonism. Density‐driven deformation associated with waterlain sediments is rare and occurs where water was ponded locally. Sand and gravel deposits interpreted as Gilbert‐type deltas are similarly the result of local ponding or occur where glaciers from different source areas uncoupled. They do not record past sea‐levels and the ad hoc theory of ‘piano‐key tectonics’ is not required to explain the irregular pattern of altitudes. The cold‐water foraminifers interpreted as in situ are regarded as reworked from Irish Sea sediments that accumulated during much of the late Quaternary, when the basin was cold and shallow with reduced salinities. Amino‐acid age estimates used in support of the glaciomarine model are regarded as unreliable. Radiocarbon dates from distinctive foraminiferal assemblages in northeast Ireland show that glaciomarine sediments do occur above present sea‐level, but they are restricted to low altitudes in the north of the basin and record a rise rather than a fall in sea‐level. It is suggested here that the oldest dates, around 17 000 yr BP, record the first Late Devensian (Weichselian) marine inundation above present sea‐level. This accords with the pattern but not the detail of recent models of sea‐level change. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Late Pleistocene age terrace deposits are exposed in the narrow cliffed coastal plain of Bahia Coyote, Baja California Sur, resting unconformably on the lagoonal-shallow water volcaniclastics of the early Miocene Cerro Colorado Member of the El Cien Formation. The terrace is dissected by widely spaced arroyos and partically covered by alluvial fans in the inner and central areas. The marine deposits vary in thickness from 0.5 to 10 m and were laid down in pre-existing erosional channels and depressions in the Pleistocene landscape. The sequence begins with a cobble conglomerate with oyster shells, overlain by poorly bedded molluscan-rich bioclastic sands and coral rubble, beds of massive Porites in growth position and coral-rhodolith sands and marls. Beach sands and gravels and coastal dunes cap the sequence.Samples of Porites panamensis selected for U/Th dating are well-preserved aragonite (>95%). Preliminary results yield U/Th ages of 109–209 ka but the corals have initial δ 234U values in excess of modern seawater values. This indicates open-system behavior and uncertainty associated with the ages. A corrected age for the top of the massive Porites unit suggests that the corals grew during the last interglacial, marine isotope stage (MIS) 5e sea level high stand.Assuming global sea level during MIS 5e was ca. 4–5 m above present-day sea level (McCulloch and Esat, 2000) and the growth position of the corals was 1–5 m below sea level, the terraces have been uplifted between 12 and 25 m (12–15 cm/kyr). This is consistent with other terrace-based uplift rates for the central Baja California peninsula, north of the La Paz fault.  相似文献   

9.
During the early Pliocene, subaqueous delta‐scale clinoforms developed in the Águilas Basin, in a mixed temperate carbonate–siliciclastic system. The facies distribution is consistent with the infralittoral prograding wedge model. Stacking patterns and bounding surfaces indicate that the clinoforms formed during the highstand and falling sea‐level stages of a high rank cycle. Twenty‐two prograding clinothems were recognized over a distance of ≥1 km. Biostratigraphic data indicate a time span shorter than 700 kyr for the whole unit (MPl3 biozone of the Mediterranean Pliocene). Cyclic skeletal concentrations and occasional biostromes of suspension feeders (terebratulid brachiopods, modiolid bivalves and adeoniform bryozoan colonies), slightly evolved glauconite and occasional Glossifungites ichnofacies formed on the clinoforms during high‐frequency pulses of relative sea‐level rise. During such stages, increased accommodation space in the topsets of the clinoforms caused a strong reduction of terrigenous input into the foresets and bottomsets. This provided favourable conditions for the development of these suspension feeder palaeocommunities. During stillstand stages, however, reduced accommodation space in the topsets eventually resumed progradation in the foresets. There, the abundance of Ditrupa tubes indicates frequent siltation events that extirpated the terebratulid populations and other epifaunal suspension feeders in the foreset and bottomset subenvironments. The occurrence of shell beds on the clinoforms suggests that this case study represents lower progradation rates than standard examples where shell beds bound the clinobedded units at their base and top only. Importantly, the distributions of biofacies and ichnoassemblage associations contribute significantly to the understanding of the effects of relative sea‐level fluctuations on the evolution of subaqueous delta‐scale clinoform systems.  相似文献   

10.
Palaeo shoreline is a commonly used proxy for palaeo sea level, but only if deposition is continuous and constant will shoreline trajectory T(l) completely capture sea‐level time‐series E(t). Artificial deltas were generated in the Eurotank flume facility under stepwise tectonic subsidence, periodic sea‐level fluctuation and two periodic water‐discharge scenarios, one in‐phase and the other out‐of‐phase with sea level. Independent input variables tectonic subsidence Y, sea level E and water discharge Q (controlling sediment supply S) were varied and dependent output variable shoreline trajectory T was monitored. These experiments confirm that deposition is discontinuous even for continuous sediment supply, and this hinders the inference of sea‐level curve from shoreline trajectory. These results justify the here‐developed methodology for converting shoreline trajectory from the space domain to the time domain, thereby improving the accuracy of the inferred sea‐level curve.  相似文献   

11.
Lower Messinian stromatolites of the Calcare di Base Formation at Sutera in Sicily record periods of low sea‐level, strong evaporation and elevated salinity, thought to be associated with the onset of the Messinian Salinity Crisis. Overlying aragonitic limestones were precipitated in normal to slightly evaporative conditions, occasionally influenced by an influx of meteoric water. Evidence of bacterial involvement in carbonate formation is recorded in three dolomite‐rich stromatolite beds in the lower portion of the section that contain low domes with irregular crinkly millimetre‐scale lamination and small fenestrae. The dominant microfabrics are: (i) peloidal and clotted dolomicrite with calcite‐filled fenestrae; (ii) dolomicrite with bacterium‐like filaments and pores partially filled by calcite or black amorphous matter; and (iii) micrite in which fenestrae alternate with dark thin wispy micrite. The filaments resemble Beggiatoa‐like sulphur bacteria. Under scanning electron microscopy, the filaments consist of spherical aggregates of dolomite, interpreted to result from calcification of bacterial microcolonies. The dolomite crystals are commonly arranged as rounded grains that appear to be incorporated or absorbed into developing crystal faces. Biofilm‐like remains occur in voids between the filaments. The dolomite consistently shows negative δ13C values (down to ?11·3‰) and very positive δ18O (mean value 7·9‰) that suggest formation as primary precipitate with a substantial contribution of organic CO2. Very negative δ13C values (down to ?31·6‰) of early diagenetic calcite associated with the dolomite suggest contribution of CO2 originating by anaerobic methane oxidation. The shale‐normalized rare earth element patterns of Sutera stromatolites show features similar to those in present‐day microbial mats with enrichment in light rare earth elements, and M‐type tetrad effects (enrichment around Pr coupled to a decline around Nd and a peak around Sm and Eu). Taken together, the petrography and geochemistry of the Sutera stromatolites provide diverse and compelling evidence for microbial influence on carbonate precipitation.  相似文献   

12.
Abstract Extraordinary sequences of conspicuous, pervasive and laterally persistent varves characterize the Castile evaporites. They occur as singlets (calcite laminae), couplets (calcite laminae interstratified with anhydrite laminae), thick couplets (calcite laminae interstratified with thin anhydrite beds) and triplets (calcite and anhydrite laminae interstratified with thin halite beds). The varves accumulated in a deep (initially ≈ 550 m), persistently stratified, saline lake surrounded by an extinct reef. The lake had formed when the reef grew across a channel between an embayment and the ocean. Although located virtually on the palaeo-equator, the lake experienced negligible meteoric influx and extreme seasonality. During the season of high relative humidity, more marine groundwater entered the lake through the permeable reef barrier than exited as reflux and, secondarily, as evaporation. Consequently, the lake level rose by up to several metres to sea level. The ‘refreshening’ decreased salinity and replenished dissolved CO2– the critical nutrient limiting growth of indigenous phytoplankton. Algae proliferated, pH increased and CaCO3 precipitated. It mixed with organic matter to form a thin, dark lamina. During the season of low relative humidity, tens of cubic kilometres of water evaporated from and, secondarily, leaked out through the surrounding reef. More water exited than entered, brine level fell below sea level, and salinity of the upper brine layer increased. Gypsum usually precipitated and rained onto the basin floor forming a couplet; infrequently, halite also precipitated forming a triplet. Every few thousand years, for <50 to several hundred years, the lake became unstratified during the dry season, and wind-induced overturn allowed a layer of gypsum crystals up to ≈ 2 cm high to precipitate on the basin floor. Each layer, now thin beds of anhydrite nodules and anhydrite pseudomorphs after gypsum, and an underlying lamina of CaCO3 and admixed organic matter formed a thick couplet. The different varve types recur with a period of 1800–3000 years reflecting climatic changes on a millennial time scale.  相似文献   

13.
Corals from the Seychelles Islands, Indian Ocean, occur mainly as small coralline algae–vermetid remnants found in cavities adhering to the rock surface, and they rarely attain more than 2 m2in area. Samples ofGoniastreaandPoritesfrom elevations between 1.7 and 6 m above present mean sea level were dated by TIMS238U–234U–230Th techniques. The ages from well-preserved corals lie between 131,000 and 122,000 yr B.P., in agreement with most other observations of the last-interglacial sea level. Field evidence and dating from high marine limestones from two sections at La Digue Island indicate a period of coral buildup until 131,000 yr B.P., followed by a drop in sea level between 131,000 and 122,000 yr B.P.  相似文献   

14.
Abundant dinocysts in a high-resolution core from Voldafjorden, western Norway, reflect changes in sea surface-water conditions during the last c. 11 300 BP. The period from c. 11 300 to 10 800 BP (Late Allerφd) was characterized by cool temperate surface-waters, high annual temperature variation and relatively strong stratification of the water column, which is characteristic of fjord environments. Due to the stratification of the surface waters, the uppermost layer may have warmed considerably. This generated a principal difference in temperature conditions between land and sea, with slightly higher temperatures in the marine environments. The period from c. 10 800 to 10 000 BP is characterized by very harsh conditions, with sea surface-water temperatures close to freezing and long lasting seasonal sea-ice cover. Similar temperature changes at the beginning and end of the Younger Dryas are characteristic for NW Europe, but those in Voldafjorden differ from those in the open sea and in the Norwegian Channel by being significantly larger. The stratification of the water column during the Late Allerφd was probably broken down because of incipient inflow of temperate normal saline waters, which caused a marked sea surface-water warming, at c. 10 000 BP. Surface-water conditions close to those of today were gradually established between c. 10000 and 9500 BP. However, these interglacial conditions were abruptly interrupted by a significant drop in winter sea surface-water temperature and salinity occurring around 9700 BP. From c. 9500 to 7000 BP the influence of temperate normal saline water masses increased stepwise until full interglacial conditions were established around c. 7000 BP. The change in the dinocyst assemblage around 7000 BP in Voldafjorden was probably related to the onset of the modern Norwegian Coastal Current, previously documented in cores from the Skagerrak and the Mid-Norwegian Continental Shelf. The last c. 7000 BP is characterized by relatively stable surface-water conditions, possibly interrupted by periods of cooling or decreased inflow of temperate normal saline water. Like several other dinoflagellate cyst records from the Norwegian-Greenland Sea, O. centrocarpum peak values are between 4000 and 5000 BP, suggesting a regional-scale oceanographic change.  相似文献   

15.
Detailed sedimentological, micropalaeontological, mineralogical and geochemical investigations as well as 14C datings were carried out on a core from the southern part of the Kattegat Sea. According to the micropalaeontological interpretations, sea level rose by approximately 20 m in the period c. 9610 BP to 8200 BP. The core therefore provides evidence of the hydrographical conditions in the southern Kattegat during the early Holocene transgression. In the sediment there is geochemical evidence of strong stratification in the water column possibly related to inflow of saline water around 9080 BP. After the sediments dated to 8200 BP there is a hiatus followed by very young (<300 BP?) sediments. It is suggested that this hiatus might be associated with the opening of the Danish Straits.  相似文献   

16.
The East China Sea Shelf has an unusually wide and low gradient shelf, supplied from sediment‐charged rivers and large river delta systems, with bottom currents sweeping the sea floor and located in the path of strong typhoons. Sediment gravity flow deposits, including four hybrid event beds and a high density turbidite, are identified in a core from the mid‐shelf of the East China Sea. The hybrid event beds typically comprise three or two internal divisions from the base to the top: (i) H1, H3 and H5; or (ii) H3 and H5. Radiocarbon ages of the hybrid event beds were in the range of 3821 to 8526 yr bp . Based on correlation with surrounding cores, the hybrid events may have happened at any time between 1930 yr bp and 3890 yr bp . The δ13C values in hybrid event beds together with bathymetry data suggest local erosion on the shelf. The average δ13C value for the H1 division is similar to the H3 division in the hybrid event beds, implying that the organic matter in the H1 and H3 divisions may come from the same source area. Cross‐plots of upper continental crust normalized rare earth elements in the five units reveal that the sediment source of the four hybrid event beds and the turbidite was ultimately primarily from Korean rivers. Partial transformation from a moderate‐strength debris flow with the additional role of erosional bulking can explain occurrences of hybrid event beds on the East China Sea Shelf. The data indicate that hybrid sediment gravity flow deposits were sourced from intra‐shelf failures and subsequently transformed and deposited as hybrid event beds. The study shows that hybrid sediment gravity flows and turbidity currents may not necessarily indicate proximity to a major fluvial or deltaic system and that intra‐shelf sedimentation can be a sediment source. It is unlikely that the debris flows and turbidity currents were triggered by a hyperpycnal flow or tsunami, because both can carry continental and/or coastal signals which have not been recognized in the core. Typhoons are the probable triggering mechanism.  相似文献   

17.
The Late Devensian (<20 ka BP) glacial geology of the Irish Sea Basin (4000 km2) is an event stratigraphy recording the entry of marine waters into a glacio-isostatically-depressed basin, and the rapid retreat of the Irish Sea Glacier as a tidewater ice margin. Marine limits occur up to 140 m O.D. Across much of the central basin, the ice margin was uncoupled from its bed exposing a subglacially-scoured topography to glaciomarine processes. The Irish Sea Glacier was a major drainage conduit of the last British Ice Sheet; calving of the marine ice margin resulted in fast flow (surging) of ice streams recorded by drumlin fields around the northern basin margin and tunnel valleys. Rapid evacuation of the basin may have stranded large areas of dead ice in peripheral zones (e.g. Cheshire/Shropshire Lowlands) and initiated the collapse of the ice sheet.Thick wedges of ice-contact glaciomarine sediments were deposited during ice retreat as morainal bank complexes by successive tidewater ice margins stabilized at pinning points around the Irish Sea coast. Where morainal banks occur on the seaward side of drumlin swarms there is a clear sequential relationship between rapid ice loss from calving ice margins, the development of fast flowing ice streams, drumlinization and the pumping of subglacial sediment to tidewater. Raised delta complexes are locally associated with marine limits along the high relief coastal margins of Wales, east central Ireland, and the Lake District. Associated valley infill complexes record downslope resedimentation of heterogenous sediments into the marine environment during ice retreat. Co-eval offshore deposits are represented by well-stratified glaciomarine complexes that infill a subglacially-scoured topography that shows networks of tunnel valleys. Glaciomarine mud drapes occur well to the south of the maximum limit of grounded ice in the basin (e.g. North Devon, Scilly Islands, Southern Ireland). The age of these distal sediments, previously mapped as pre-Devensian tills, is constrained by amino acid ratios.Basin rebound following deglaciation was rapid, with over 100 m recovery in 3 ka, and was followed by a low marine still stand. Peat, accumulating in offshore areas now as much as 55 m below sea level has been drowned by the postglacial eustatic rise in sea level.The glacio-sedimentary model identified in this paper, involving rapid ice retreat and related sedimentation triggered by rising relative sea level, suggests that isotatic downwarping is an important mechanism for deglaciating continental shelves.  相似文献   

18.
The Late Tithonian ammonites Paraulacosphinctes cf. transitorius (Oppel) and P. cf. senoides Tavera from the Feodosiya section boundary Tithonian-Berriasian beds of the Crimea are described. These species allow the correlation of the beds with P. cf. transitorius recognized in the Crimea with the Upper Tithonian Substage of the Western European scale. Based on magnetostratigraphic data, these beds supposedly correlate with the Durangites Zone.  相似文献   

19.
The Daposhang section at Muhua, Changshun. Guizhou. is an excellent and attractive DevonianCarboniferous boundary section. The transitional beds between the Devonian and Carboniferous of the sectionare continuous and well exposed. belonging to the deep-water basin facies Abundant fossil groups have beendiscovered from this section: conodonts. ammonoids. trilobites. ostracods. vertebrate microfossils and so on.So far as known. it has the most continuous and complete conodont zonation for the Devonian-Carboniferousboundary beds in the world. It is especially worth pointing out that both typical Siponodella pracsulcata andthe transitional forms between S. praesulcata and S. sulcata have been found from the upper pracsulcata Zoneof the Daposhang section. Evidently. we can not only prove the actual existence of the evolutionary lineagefrom S. praesulcata to S. sulcata, but also exactly define the level of the Devonian-Carboniferous boundary. Inthis paper. the development of the Devonian-Carboniferous boundary beds at the Daposhang section is dealtwith and the section is compared with the Muhua section and the Nanbiancun section which are the candidatesfor the Devonian-Carboniferous boundary stratotype. In the authous opinion the Daposhang section is obvi-ously better than the Muhua and the Nanbiancun sections. hence it can be recommended as one of the candi-dates for the international Devonian-Carboniferous boundary stratotype.  相似文献   

20.
Various early Paleozoic (Cambrian Series 3–Middle Ordovician) reefs are found in the Taebaek Group, eastern Korea, located in the eastern margin of the Sino-Korean Block. They occur in every carbonate-dominant lithostratigraphic unit of the group, but their morphology and composition differ markedly. The Daegi Formation (middle Cambrian: Cambrian Series 3) contains siliceous sponge-Epiphyton reefs formed in a shallow subtidal environment, which is one of the earliest metazoan-bearing microbial reefs after the archaeocyath extinction. The Hwajeol Formation (upper Cambrian: Furongian) encloses sporadic dendrolites consisting of Angulocellularia, which developed in a relatively deep subtidal environment, representing a rare deeper water example. The onset of the Ordovician radiation resulted in the formation of microbialite–Archaeoscyphia–calathiid patch reefs in shallow subtidal deposits of the Lower Ordovician Dumugol Formation. Subsequent late Early Ordovician relative sea-level fall established extensive peritidal environments, forming microbial mats and stromatolites of the Lower–Middle Ordovician Makgol Formation. Ensuing Ordovician radiation resulted in one of the earliest metazoan skeletal reefs of the Middle Ordovician Duwibong Formation, constructed by stromatoporoid Cystostroma and bryozoan Nicholsonella, and developed around shallow shoals. These reefs reflect ongoing evolution and sea-level change during the early Paleozoic, and exemplify a rare glimpse of peri-Gondwanan records of reef evolution, which warrant detailed investigations and comparison with their counterparts in other regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号