首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop a new method for the statistical estimation of the tail of the distribution of earthquake sizes recorded in the Harvard catalog of seismic moments converted to m W -magnitudes (1977–2004 and 1977–2006). For this, we suggest a new parametric model for the distribution of main-shock magnitudes, which is composed of two branches, the pure Gutenberg-Richter distribution up to an upper magnitude threshold m 1, followed by another branch with a maximum upper magnitude bound M max, which we refer to as the two-branch model. We find that the number of main events in the catalog (N = 3975 for 1977–2004 and N = 4193 for 1977–2006) is insufficient for a direct estimation of the parameters of this model, due to the inherent instability of the estimation problem. This problem is likely to be the same for any other two-branch model. This inherent limitation can be explained by the fact that only a small fraction of the empirical data populates the second branch. We then show that using the set of maximum magnitudes (the set of T-maxima) in windows of duration T days provides a significant improvement, in particular (i) by minimizing the negative impact of time-clustering of foreshock/main shock/aftershock sequences in the estimation of the tail of magnitude distribution, and (ii) by providing via a simulation method reliable estimates of the biases in the Moment estimation procedure (which turns out to be more efficient than the Maximum Likelihood estimation). We propose a method for the determination of the optimal choice of the T value minimizing the mean-squares-error of the estimation of the form parameter of the GEV distribution approximating the sample distribution of T-maxima, which yields T optimal = 500 days. We have estimated the following quantiles of the distribution of T-maxima for the whole period 1977–2006: Q 16%(M max) = 9.3, Q 50%(M max) = 9.7 and Q 84%(M max) = 10.3. Finally, we suggest two more stable statistical characteristics of the tail of the distribution of earthquake magnitudes: The quantile Q T (q) of a high probability level q for the T-maxima, and the probability of exceedance of a high threshold magnitude ρ T (m*)  = P{m k  ≥ m*}. We obtained the following sample estimates for the global Harvard catalog and The comparison between our estimates for the two periods 1977–2004 and 1977–2006, where the latter period included the great Sumatra earthquake 24.12.2004, m W  = 9.0 confirms the instability of the estimation of the parameter M max and the stability of Q T (q) and ρ T (m*) = P{m k  ≥ m*}.  相似文献   

2.
The present work is a continuation and improvement of the method suggested in Pisarenko et al. (Pure Appl Geophys 165:1–42, 2008) for the statistical estimation of the tail of the distribution of earthquake sizes. The chief innovation is to combine the two main limit theorems of Extreme Value Theory (EVT) that allow us to derive the distribution of T-maxima (maximum magnitude occurring in sequential time intervals of duration T) for arbitrary T. This distribution enables one to derive any desired statistical characteristic of the future T-maximum. We propose a method for the estimation of the unknown parameters involved in the two limit theorems corresponding to the Generalized Extreme Value distribution (GEV) and to the Generalized Pareto Distribution (GPD). We establish the direct relations between the parameters of these distributions, which permit to evaluate the distribution of the T-maxima for arbitrary T. The duality between the GEV and GPD provides a new way to check the consistency of the estimation of the tail characteristics of the distribution of earthquake magnitudes for earthquake occurring over an arbitrary time interval. We develop several procedures and check points to decrease the scatter of the estimates and to verify their consistency. We test our full procedure on the global Harvard catalog (1977–2006) and on the Fennoscandia catalog (1900–2005). For the global catalog, we obtain the following estimates: \( \hat{M}_{{\rm max} } \)  = 9.53 ± 0.52 and \( \hat{Q}_{10} (0.97) \)  = 9.21 ± 0.20. For Fennoscandia, we obtain \( \hat{M}_{{\rm max} } \)  = 5.76 ± 0.165 and \( \hat{Q}_{10} (0.97) \)  = 5.44 ± 0.073. The estimates of all related parameters for the GEV and GPD, including the most important form parameter, are also provided. We demonstrate again the absence of robustness of the generally accepted parameter characterizing the tail of the magnitude-frequency law, the maximum possible magnitude M max, and study the more stable parameter Q T (q), defined as the q-quantile of the distribution of T-maxima on a future interval of duration T.  相似文献   

3.
Starting from the classical empirical magnitude-energy relationships, in this article, the derivation of the modern scales for moment magnitude M w and energy magnitude M e is outlined and critically discussed. The formulas for M w and M e calculation are presented in a way that reveals, besides the contributions of the physically defined measurement parameters seismic moment M 0 and radiated seismic energy E S, the role of the constants in the classical Gutenberg–Richter magnitude–energy relationship. Further, it is shown that M w and M e are linked via the parameter Θ = log(E S/M 0), and the formula for M e can be written as M e = M w + (Θ + 4.7)/1.5. This relationship directly links M e with M w via their common scaling to classical magnitudes and, at the same time, highlights the reason why M w and M e can significantly differ. In fact, Θ is assumed to be constant when calculating M w. However, variations over three to four orders of magnitude in stress drop Δσ (as well as related variations in rupture velocity V R and seismic wave radiation efficiency η R) are responsible for the large variability of actual Θ values of earthquakes. As a result, for the same earthquake, M e may sometimes differ by more than one magnitude unit from M w. Such a difference is highly relevant when assessing the actual damage potential associated with a given earthquake, because it expresses rather different static and dynamic source properties. While M w is most appropriate for estimating the earthquake size (i.e., the product of rupture area times average displacement) and thus the potential tsunami hazard posed by strong and great earthquakes in marine environs, M e is more suitable than M w for assessing the potential hazard of damage due to strong ground shaking, i.e., the earthquake strength. Therefore, whenever possible, these two magnitudes should be both independently determined and jointly considered. Usually, only M w is taken as a unified magnitude in many seismological applications (ShakeMap, seismic hazard studies, etc.) since procedures to calculate it are well developed and accepted to be stable with small uncertainty. For many reasons, procedures for E S and M e calculation are affected by a larger uncertainty and are currently not yet available for all global earthquakes. Thus, despite the physical importance of E S in characterizing the seismic source, the use of M e has been limited so far to the detriment of quicker and more complete rough estimates of both earthquake size and strength and their causal relationships. Further studies are needed to improve E S estimations in order to allow M e to be extensively used as an important complement to M w in common seismological practice and its applications.  相似文献   

4.
A new modified magnitude scale M S (20R) is elaborated. It permits us to extend the teleseismic magnitude scale M S (20) to the regional epicenter distances. The data set used in this study contains digital records at 12 seismic stations of 392 earthquakes that occured in the northwest Pacific Ocean in the period of 1993–2008. The new scale is based on amplitudes of surface waves of a narrow range of the periods (16–25 s) close to the period of 20 s, for distances of 80–3000 km. The digital Butterworth filter is used for processing. On the basis of the found regional features concerning distance dependence for seismic wave attenuation, all the stations of the region have been subdivided into two groups, namely, “continental” and “island-arc.” For each group of stations, its own calibration function is proposed. Individual station corrections are used to compensate for the local features.  相似文献   

5.
We use 576 earthquakes of magnitude, M w, 3.3 to 6.8 that occurred within the region 33° N–42.5° N, 19° E–30° E in the time period 1969 to 2007 to investigate the stability of the relation between moment magnitude, M w, and local magnitude, M L, for earthquakes in Greece and the surrounding regions. We compare M w to M L as reported in the monthly bulletins of the National Observatory of Athens (NOA) and to M L as reported in the bulletins of the Seismological Station of the Aristotle University of Thessaloniki. All earthquakes have been analyzed through regional or teleseismic waveform inversion, to obtain M w, and have measured maximum trace amplitudes on the Wood–Anderson seismograph in Athens, which has been in operation since 1964. We show that the Athens Wood–Anderson seismograph performance has changed through time, affecting the computed by NOA M L by at least 0.1 magnitude units. Specifically, since the beginning of 1996, its east–west component has been recording systematically much larger amplitudes compared to the north–south component. From the comparison between M w and M L reported by Thessaloniki, we also show that the performance of the sensors has changed several times through time, affecting the calculated M L’s. We propose scaling relations to convert the M L values reported from the two centers to M w. The procedures followed here can be applied to other regions as well to examine the stability of magnitude calculations through time.  相似文献   

6.
We propose a method that employs the squared displacement integral (ID2) to estimate earthquake magnitudes in real time for use in earthquake early warning (EEW) systems. Moreover, using τ c and P d for comparison, we establish formulas for estimating the moment magnitudes of these three parameters based on the selected aftershocks (4.0 ≤ M s  ≤ 6.5) of the 2008 Wenchuan earthquake. In this comparison, the proposed ID2 method displays the highest accuracy. Furthermore, we investigate the applicability of the initial parameters to large earthquakes by estimating the magnitude of the Wenchuan M s 8.0 mainshock using a 3-s time window. Although these three parameters all display problems with saturation, the proposed ID2 parameter is relatively accurate. The evolutionary estimation of ID2 as a function of the time window shows that the estimation equation established with ID2 Ref determined from the first 8-s of P wave data can be directly applicable to predicate the magnitudes of 8.0. Therefore, the proposed ID2 parameter provides a robust estimator of earthquake moment magnitudes and can be used for EEW purposes.  相似文献   

7.
The source parameters of the M W = 7.6 Olyutorskii earthquake were estimated using the moments of the slip rate function with degrees 1 and 2. The moments were estimated from broadband P-wave records at 52 stations of the worldwide network. The first step was to find a function S(t) for each station; this function is an apparent source time function, i.e., the P-wave slip as radiated by the source toward a station under consideration. The method of empirical Green’s functions was used to estimate S(t). The next step was to calculate the moments of S(t) of degrees 1 and 2 over time and to set up relevant equations to be solved by least squares for the unknown source moments. The horizontal linear source was used as a nonparametric model for calculating the source moments. Haskell’s parametric model was used for further interpretation of the source moments. The resulting estimates are as follows: the source centroid was 13–25 km southwest of the epicenter, the source was 105–120 km long, the source strike was 222°–228°, the rupture velocity was 2.7–3.0 km/s, and the total radiation duration was 24–27 s. These estimates indicate a bilateral rupture dominated by a southwestward sense of rupture propagation. The source characteristics are consistent with the aftershock area geometry and with the focal mechanism, as well as with surface breakage as observed by geologists in the field.  相似文献   

8.
Quality factor Q, which describes the attenuation of seismic waves with distance, was determined for South Africa using data recorded by the South African National Seismograph Network. Because of an objective paucity of seismicity in South Africa and modernisation of the seismograph network only in 2007, I carried out a coda wave decay analysis on only 13 tectonic earthquakes and 7 mine-related events for the magnitude range 3.6?≤?M L ?≤?4.4. Up to five seismograph stations were utilised to determine Q c for frequencies at 2, 4, 8 and 16 Hz resulting in 84 individual measurements. The constants Q 0 and α were determined for the attenuation relation Q c(f)?=?Q 0 f α . The result was Q 0?=?396?±?29 and α?=?0.72?±?0.04 for a lapse time of 1.9*(t s???t 0) (time from origin time t 0 to the start of coda analysis window is 1.9 times the S-travel time, t s) and a coda window length of 80 s. This lapse time and coda window length were found to fit the most individual frequencies for a signal-to-noise ratio of at least 3 and a minimum absolute correlation coefficient for the envelope of 0.5. For a positive correlation coefficient, the envelope amplitude increases with time and Q c was not calculated. The derived Q c was verified using the spectral ratio method on a smaller data set consisting of nine earthquakes and one mine-related event recorded by up to four seismograph stations. Since the spectral ratio method requires absolute amplitudes in its calculations, site response tests were performed to select four appropriate stations without soil amplification and/or signal distortion. The result obtained for Q S was Q 0?=?391?±?130 and α?=?0.60?±?0.16, which agrees well with the coda Q c result.  相似文献   

9.
This paper presents the review of the experience in applying the approach based on the limiting distributions of the extreme value theory (the generalized Pareto distribution, GPS, and generalized extreme value distribution, GEV) for deriving the distributions of maximal magnitudes and related ground accelerations from the earthquakes on the future time intervals of a given duration. The results of analyzing the global and regional earthquake catalogs and the ground peak accelerations during the earthquakes are described. It is shown that the magnitude of the strongest possible earthquake M max (and analogous characteristics for other types of data), which is often used in seismic risk assessment, is potentially unstable. We suggest a stable alternative for M max in the form of quantiles Q q (τ) of the maximal possible earthquake, which could occur during the future time interval of length τ. The quantity of the characteristic maximal event M c, which has been introduced in our previous publications, is another helpful robust scalar parameter. All the cases of approximation of the tails of empirical distributions, which were studied in our works, turned out to be finite (bounded); however, the rightmost point of these distributions, M max, is often poorly detectable and unstable. Therefore, the M max parameter has a low practical value.  相似文献   

10.
The problem of determining trends in thermospheric dynamics parameters (horizontal winds) based on analysis of trends in various combinations of ionospheric F 2-layer parameters is formulated. The previous attempts of the authors in this direction are briefly described. It is shown that all studied parameters lead to the same result: after the “boundary date” (approximately 1980) a systematic change in these parameters (a long-term trend) is observed, this fact manifesting changes in the dynamical regime of the thermosphere because of cooling and contraction of the entire middle and upper atmosphere. The results of a search for trends in the hmF2 height for the moment (T(ss) + 2 h) are described. These trends are found higher than the hmF2 trends obtained earlier by various authors analyzing the hmF2 behavior at fixed moments of local time.  相似文献   

11.
Source rock extracts and crude oils from the Songliao Basin were analyzed by high-temperature gas chromatography (HTGC), gas chromatography-mass spectrometry (HTGC-MS) and gas chromatography-isotope ratio-mass spectrometry (GC-IRMS), for high molecular-weight alkanes. The distributions of n-alkanes in the Nenjiang Formation extracts are in the C14―C63 range; a bimodal distribution occurs in the C-21 and C21―40 regions. The C30―C37 n-alkanes are accompanied by C29―C35 hopanes, whereas the high molecular-weight C45―C47 n-alkanes co-occur with abundant isoalkanes, alkylcyclohexanes and alkylcyclopentanes. The high δ 13C values of the n-alkanes and the microscopic maceral compositions indicate a highly diversified organic source input for the Nenjiang Formation source rocks, ranging from aquatic plants, blue alge-bacteria, to land plant material. In contrast, n-alkanes in the rock extracts of the Qingshankou Formation are characterized by a single modal distribution, with relatively low abundances of C29―C35 hopanes, but high molecular-weight isoalkanes, alkylcyclohexanes and alkylcyclopentanes. The relatively low δ 13C values of C22―C44 n-alkanes and organic material compositions indicate that the source rocks in the Qingshankou Formation contain dominantly type I algal organic matter. The relative abundance of C 40 compounds in source rocks changes little at low maturity stage, but decreases drastically at higher maturity levels, with a concurrent reduction in the odd/even carbon predominance. In crude oils, in contrast, the relative abundance of C 40 compounds appears to relate closely with the oil source and oil viscosity.  相似文献   

12.
785 traces of vertical components from shallow earthquakes recorded by 10 CDSN (Chinese Digital Seismographic Network) stations and 5 GSN (Global Seismographic Network) stations were collected to study the attenuation characteristics ofL g coda in the Chinese continent and its adjacent regions. The records were processed first using the stack spectral ratio method to obtain the average values ofQ 0 (Q at 1Hz) and η, the frequency dependence, ofL g coda in the ellipses corresponding to the paths. The back-projection technique was then employed to obtain the tomographic maps ofQ 0 and η values, and the distribution of their errors. Results indicate that in the studied areaQ 0 varies between 200 and 500. The lowest value ofQ 0 exists in the Yun-nan-Tibetan region, while the highest value ofQ 0 occurs in the southern edge of Siberian platform. η varies between 0.3 and 0.8. For most part of the studied area η varies inversely withQ 0.  相似文献   

13.
We analyze the anelasticity of the earth using group delays of P-body waves of deep (>200 km) events in the period range 4–32 s for epicentral distances of 5–85 degrees. We show that Time Frequency Analysis (TFA), which is usually applied to very dispersive surface waves, can be applied to the much less dispersive P-body waves to measure frequency-dependent group delays with respect to arrival times predicted from the CMT centroid location and PREM reference model. We find that the measured dispersion is due to: (1) anelasticity (described by the P-wave quality factor Q p ), (2) ambient noise, which results in randomly distributed noise in the dispersion measurements, (3) interference with other phases (triplications, crustal reverberations, conversions at deep mantle boundaries), for which the total dispersion depends on the amplitude and time separation between the different phases, and (4) the source time function, which is dispersive when the wavelet is asymmetrical or contains subevents. These mechanisms yield dispersion ranging in the order of one to 10 seconds with anelasticity responsible for the more modest dispersion. We select 150 seismograms which all have small coda amplitudes extending to ten percent of the main arrival, minimizing the effect of interference. The main P waves have short durations, minimizing effects of the source. We construct a two-layer model of Q p with an interface at 660 km depth and take Q p constant with period. Our data set is too small to solve for a possible frequency dependence of Q p . The upper mantle Q 1 is 476 [299–1176] and the lower mantle Q 2 is 794 [633–1064] (the bracketed numbers indicate the 68 percent confidence range of Q p –1). These values are in-between the AK135 model (Kennett et al., 1995) and the PREM model (Dziewonski and Anderson, 1981) for the lower mantle and confirm results of Warren and Shearer (2000) that the upper mantle is less attenuating than PREM and AK135.  相似文献   

14.
Site response in the aftershock zone of 2001 Bhuj Mw 7.7 earthquake has been studied using the H/V spectral ratio method using 454 aftershocks (Mw 2.5–4.7) recorded at twelve three-component digital strong motion and eight three-component digital seismograph sites. The mean amplification factor obtained for soft sediment sites (Quaternary/Tertiary) varies from 0.75–6.03 times for 1–3 Hz and 0.49–3.27 times for 3–10 Hz. The mean amplification factors obtained for hard sediment sites (hard Jurassic/Mesozoic sediments) range from 0.32–3.24 times for 1–3 Hz and 0.37–2.18 times for 310 Hz. The upper bounds of the larger mean amplification factors for 1–3 Hz are found to be of the order of 3.13–6.03 at Chopadwa, Vadawa, Kavada, Vondh, Adhoi, Jahwarnagar and Gadhada, whereas, the upper bounds of the higher mean amplification factors at 3–10 Hz are estimated to be of the order of 2.00–3.27° at Tapar, Chopadwa, Adhoi, Jahwarnagar, Gandhidham and Khingarpur. The site response estimated at Bhuj suggests a typical hard-rock site behavior. Preliminary site response maps for 1–3 Hz and 310 Hz frequency ranges have been prepared for the area extending from 23–23.85 °N and 69.65–70.85°E. These frequency ranges are considered on the basis of the fact that the natural frequencies of multi-story buildings (3 to 10 floor) range between 1–3 Hz, while the natural frequencies for 1 to 3 story buildings vary from 3–10 Hz. The 1–3 Hz map delineates two distinct zones of maximum site amplification (>3 times): one lying in the NW quadrant of the study area covering Jahwarnagar, Kavada and Gadadha and the other in the SE quadrant of the study area with a peak of 6.03 at Chopadwa covering an area of 70 km × 50 km. While the 3–10 Hz map shows more than 2 times site amplification value over the entire study area except, NE quadrant, two patches in the southwest corner covering Bhuj and Anjar, and one patch at the center covering Vondh, Manfara and Sikara. The zones for large site amplification values (∼3 times) are found at Tapar, Chopadwa, Adhoi and Chobari. The estimated site response values show a good correlation with the distribution of geological formations as well as observed ground deformation in the epicentral zone.  相似文献   

15.
This paper presents a robust H∞ output feedback control approach for structural systems with uncertainties in model parameters by using available acceleration measurements and proposes conditions for the existence of such a robust output feedback controller. The uncertainties of structural stiffness, damping and mass parameters are assumed to be norm-bounded. The proposed control approach is formulated within the framework of linear matrix inequalities, for which existing convex optimization techniques, such as the LMI toolbox in MATLAB, can be used effectively and conveniently. To illustrate the effectiveness of the proposed robust H∞ strategy, a six-story building was subjected both to the 1940 El Centro earthquake record and to a suddenly applied Kanai-Tajimi filtered white noise random excitation. The results show that the proposed robust H∞ controller provides satisfactory results with or without variation of the structural stiffness, damping and mass parameters.  相似文献   

16.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

17.
The recent seismicity catalogue of metropolitan France Sismicité Instrumentale de l’Hexagone (SI-Hex) covers the period 1962–2009. It is the outcome of a multipartner project conducted between 2010 and 2013. In this catalogue, moment magnitudes (M w) are mainly determined from short-period velocimetric records, the same records as those used by the Laboratoire de Détection Géophysique (LDG) for issuing local magnitudes (M L) since 1962. Two distinct procedures are used, whether M L-LDG is larger or smaller than 4. For M L-LDG >4, M w is computed by fitting the coda-wave amplitude on the raw records. Station corrections and regional properties of coda-wave attenuation are taken into account in the computations. For M L-LDG ≤4, M w is converted from M L-LDG through linear regression rules. In the smallest magnitude range M L-LDG <3.1, special attention is paid to the non-unity slope of the relation between the local magnitudes and M w. All M w determined during the SI-Hex project is calibrated according to reference M w of recent events. As for some small events, no M L-LDG has been determined; local magnitudes issued by other French networks or LDG duration magnitude (M D) are first converted into M L-LDG before applying the conversion rules. This paper shows how the different sources of information and the different magnitude ranges are combined in order to determine an unbiased set of M w for the whole 38,027 events of the catalogue.  相似文献   

18.
In earthquake occurrence studies, the so-called q value can be considered both as one of the parameters describing the distribution of interevent times and as an index of non-extensivity. Using simulated datasets, we compare four kinds of estimators, based on principle of maximum entropy (POME), method of moments (MOM), maximum likelihood (MLE), and probability weighted moments (PWM) of the parameters (q and τ 0) of the distribution of inter-events times, assumed to be a generalized Pareto distribution (GPD), as defined by Tsallis (1988) in the frame of non-extensive statistical physics. We then propose to use the unbiased version of PWM estimators to compute the q value for the distribution of inter-event times in a realistic earthquake catalogue simulated according to the epidemic type aftershock sequence (ETAS) model. Finally, we use these findings to build a statistical emulator of the q values of ETAS model. We employ treed Gaussian processes to obtain partitions of the parameter space so that the resulting model respects sharp changes in physical behaviour. The emulator is used to understand the joint effects of input parameters on the q value, exploring the relationship between ETAS model formulation and distribution of inter-event times.  相似文献   

19.
On the basis of Parry’s method (1986), an improved method was established to determine the molar volume (Vm) and compositions (X) of the NaCl-H2O-CO2 (NHC) system inclusion. To use this method, the determination of Vm-X only requires three microthermometric data of a NHC inclusion: partial homog-enization temperature (Th ,CO2), salinity (S) and total homogenization temperature (Th). Theoretically, four associated equations are needed containing four unknown parameters: X CO2, XNaCl, Vm and F (volume fraction of CO2 phase in total inclusion when occurring partial homogenization). When they are released, the Vm-X are determined. The former three equations, only correlated with Th ,CO2, S and F, have simplified expressions:XCO2=f1(Th,CO2,S,F),XNaCl=f2(Th,CO2,S,F),Vm=f3(Th,CO2,S,F). The last one is the thermodynamic relationship of X CO2, XNaCl, Vm and Th:f4(XCO2,XNaCl,Vm,Th)=0.Since the above four associated equations are complicated, it is necessary to adopt iterative technique to release them. The technique can be described by:(i) Freely input a F value (0≤F≤1),with Th ,CO2 and S, into the former three equations. As a result,X CO 2,XNaCl and the molar volume value recorded as Vm1 are derived. (ii) Input the X CO2 and XNaCl gotten in the step above into the last equation, and another molar volume value recorded as Vm2 is determined. (iii) If Vm1 is unequal to Vm2, the calculation will be restarted from “(i)”. The iteration is completed until Vm1 is equal to Vm2, which means that the four associated equations are released. Compared to Parry’s (1986) solution method, the improved method is more convenient to use, as well as more accurate to determine X CO 2. It is available for a NHC inlusion whose partial homogenization temperature is higher than clatherate melting temperature and there are no solid salt crystals in the inclusion at parital homogenization.  相似文献   

20.
The seismic waves excited by the M w 7.6 Olyutorskii earthquake that occurred on April 20, 2006 in the Koryak Upland gave rise to water-level changes in five wells situated in continental areas of Kamchatka at hypocentral distances of 750–1150 km. We describe the effects due to seismic waves, as well as the water-level anomalies for February–April 2006 before the earthquake. We used an original technique for the processing of water-level records based on the study of barometric and tidal water-level responses in order to estimate the volume strain in water-saturated rocks during synchronous level variations at two wells. We discuss possible mechanisms for producing anomalous water-level changes due to elastic deformation of monitored groundwater reservoirs and to crack dilatancy in the water-saturated rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号