首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spectral analyses of several published magnetic anomaly profiles from Candé & Kent (1992a) were undertaken prior to analysing, in the same way, raw magnetic anomaly data from similar parts of the South Atlantic. It was found that similar and distinct medium and short wavelengths were present in both the published and raw data. When these are converted into the time domain using the average rate of spreading for each profile, these periodicities appear similar, possibly identical, to those expected from the long-term eccentricity orbital parameters (Fischer, DeBoer & Premoli Silva 1990). While such correlations are not necessarily causative, they suggest that magnetohydro-dynamical processes near the core-mantle boundary may be affected by gravitational changes due to planetary orbital perturbations.  相似文献   

2.
Spectral analyses of long magnetic anomaly profiles of Cretaceous age in the Phoenix and Hawaiian lineations within the Pacific Basin show two to five non-harmonic wavelength peaks, with probabilities >90 per cent, within the range of several tens to hundreds of kilometres for each profile. For each profile with four peak wavelengths, their ratios correlate strongly ( r > 0.98) with the ratios for the Earth's orbital eccentricity periodicities for this time, and hence the profile peaks necessarily correlate with each other. These observations suggest that the magnetic anomaly signal is influenced by the Earth's changing orbital parameters, probably through their influence on the internal geomagnetic field. This implies that assumptions usually made to convert the magnetic signal to the magnetization of the oceanic crust may be suspect. The observations, if confirmed, indicate that orbital periodicities can assist in improving the age calibration of the global polarity timescale and that the predicted orbital behaviour of the Earth is confirmed for the last 150 Ma.  相似文献   

3.
The low-temperature magnetic properties of magnetite are reviewed, and implications for rock magnetism considered. The behaviour of fundamental properties of magnetite at low temperatures near the Verwey transition ( T v ) are documented, and attention is given to various Verwey transition theories. The low-temperature behaviour of the magnetic energies that control domain structure is reviewed in detail. For the first time in rock magnetic literature, the low-temperature anomaly in spontaneous magnetization ( M s ) is documented and the differences between the saturation magnetization and M s near the Verwey transition are discussed. It is argued that the low-temperature behaviour of the magnetocrystalline anisotropy, and in particular the anomaly at T v , is most likely to affect multidomain remanence during low-temperature cycling. For multidomain crystals it is calculated that the large increase in magnetocrystalline anisotropy intensity and reduction in symmetry on cooling through T v is likely to reduce the stability of closure domains.  相似文献   

4.
5.
6.
7.
8.
Satellite magnetometers sometimes pass through regions of plasma, such as the terrestrial ionosphere, where the ionization is large enough that some of the original ambient field is excluded from the plasma. This reduction of field inside the plasma region comes from the 'diamagnetic' effect of the charged particles in their helical trajectory around the magnetic field lines. The (container of the) magnetometer will exclude the plasma, and a simple-minded approach, treating the ionosphere in the same way as for a conventional diamagnetic fluid, predicts that the field seen by the magnetometer will be somewhat larger than the (reduced) field in the plasma. However, the 'diamagnetic' properties of the ionosphere are quite different from those of a conventional diamagnetic. In particular, there is a 'reflection' of the ionospheric charged particles at the surface of the magnetometer, and the overall effect is that the magnetometer does actually measure the field present in the plasma before the magnetometer is inserted. Similarly, any leakage fields from the magnetometer have no effect in the magnetosphere.  相似文献   

9.
10.
Hext's (1963 ) first-order analysis for error estimation in measurements of second-rank tensors is applied to the torque meter and the orthogonal-coil induction instrument, both representatives of the class of instruments that measures differences in magnetic susceptibility. The conventional measurement design for the torque meter is rotatable; an efficient and nearly rotatable design is proposed for the orthogonal-coil instrument. Error estimates are derived for a set of anisotropy parameters, K mean , H and μ . The applicability of a first-order analysis is discussed and illustrated by simulation studies.  相似文献   

11.
12.
Low-field magnetic susceptibility and its anisotropy (AMS) were measured for a suite of sandstone and siltstone samples. AMS orientations measured on two systems (Bartington and Digico) differed before thermal treatment of the samples but became the same after thermal demagnetization in air to 600 °C. Six position measurement schemes for the Bartington system do not eliminate the effects of specimen inhomogeneity and other errors, whereas 12- and 24-position measurements give good agreement with the Digico anisotropy meter and with the observed petrofabric. Thermal demagnetization from temperatures between 400 and 650 °C had the effect of enhancing both the magnetic susceptibility and AMS. Although the most profound mineralogical change due to heating was the conversion of kaolinite into metakaolin, IRM, XRD, DTA and Mössbauer spectroscopic analysis demonstrate that the changes in magnetic properties were due to the transformation upon heating of trace amounts of sulphides into magnetite and/or maghemite and haematite. Both magnetic susceptibility and the degree of anisotropy decrease with higher-temperature thermal demagnetization due to the oxidation of the newly formed magnetite and/or maghemite into haematite. The magnetic foliation of the newly formed magnetite/maghemite and haematite is parallel to the bedding, possibly following the orientation of the original sulphides.  相似文献   

13.
A six-parameter statistical model of the non-dipole geomagnetic field is fitted to 2597 harmonic coefficients determined by Cain, Holter & Sandee (1990) from MAGSAT data. The model includes sources in the core, sources in the crust, and instrument errors. External fields are included with instrument errors. The core and instrument statistics are invariant under rotation about the centre of the Earth, and one of the six parameters describes the deviation of the crustal statistics from rotational invariance. The model treats the harmonic coefficients as independent random samples drawn from a Gaussian distribution. The statistical model of the core field has a correlation length of about 500 km at the core-mantle boundary, too long to be attributed to a white noise source just below the boundary layers at the top of the core. The estimate of instrument errors obtained from the statistical model is in good agreement with an independent estimate based on tests of the instruments (Langel, Ousley & Berbert 1982).  相似文献   

14.
15.
16.
17.
18.
Summary. The northward component of the induced magnetic field due to the equatorial electrojet at the Earth's surface is calculated using a more realistic local time variaton of the external field due to the electrojet than is provided for by models of the electrojet currently used in induction calculations. It is seen that appreciable induction effects can be expected about an hour before local noon for the kind of local time variation considered. Our results are in qualitative agreement with direct observations of Earth currents in the equatorial region in Nigeria. At local times when observable induction effects are present, the magnetic field due to the electrojet is necessarily three-dimensional; hence in order to obtain the internal part directly from the observed total field due to the electrojet at the Earth's surface, a three-dimensional formulation is required.  相似文献   

19.
Summary. An exact equation is derived for the magnetic field lines of the general axisymmetric magnetic multipole of arbitrary degree ( n ). This new result has important applications in studies of the possible nature of solarterrestrial physics during geomagnetic polarity reversals. In the limiting case of a magnetic dipole ( n=1 ), the equation for the magnetic field lines of the general axisymmetric magnetic multipole simplifies correctly to the well-known dipolar form, which is used extensively in geomagnetism, magnetospheric physics and cosmic-ray physics as a first-order approximation to the actual configuration of the geomagnetic field.
It is also shown theoretically that suites of similar magnetic field lines of the general axisymmetric multipole attain their maximum radial distances from the origin on a set of circular conical surfaces, with coincident vertices at the centre of the Earth; this set includes the equatorial plane if the degree ( n ) of the multipole is odd. The magnetic field is horizontal everywhere on all these surfaces.
Palaeomagnetic studies have suggested that during some polarity reversals the magnetic field in the inner magnetosphere can be represented approximately either by a single, non-dipolar, low-degree (2 < n < 4), axisymmetric magnetic multipole or by a linear combination of such multipoles. In this situation, the equation for the field lines of an axisymmetric magnetic multipole of low degree (2 < n < 4) would be as fundamental to a proper understanding of magnetospheric, ionospheric and cosmic-ray physics during polarity reversals as is the equation for dipolar field lines in the case of the contemporary geomagnetic field.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号