首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In integrated systems for accurate positioning, which consist of GNSS, INS, and other sensors, the GNSS positioning accuracy has a decisive influence on the performance of the entire system and thus is very important. However, GNSS usually exhibits poor positioning results in urban canyon environments due to pseudorange measurement errors caused by multipath creation, which leads to performance degradation of the entire positioning system. For this reason, in order to maintain the accuracy of an integrated positioning system, it is necessary to determine when the GNSS positioning is accurate and which satellites can have their pseudorange measured accurately without multipath errors. Thus, the objective of our work is to detect the multipath errors in the satellite signals and exclude these signals to improve the positioning accuracy of GNSS, especially in an urban canyon environment. One of the previous technologies for tackling this problem is RAIM, which checks the residual of the least square and identifies the suspicious satellites. However, it presumes a Gaussian measurement error that is more common in an open-sky environment than in the urban canyon environment. On the other hand, our proposed method can estimate the size of the pseudorange error directly from the information of altitude positioning error, which is available with an altitude map. This method can estimate even the size of non-Gaussian error due to multipath in the urban canyon environment. Then, the estimated pseudorange error is utilized to weight satellite signals and improve the positioning accuracy. The proposed method was tested with a low-cost GNSS receiver mounted on a test vehicle in a test drive in Nagoya, Japan, which is a typical urban canyon environment. The experimental result shows that the estimated pseudorange error is accurate enough to exclude erroneous satellites and improve the GNSS positioning accuracy.  相似文献   

2.
卫星信号模拟器是一种高精度的标准信号源,可以产生卫星导航信号,为导航接收机的研制开发、测试提供仿真环境,是导航接收机设计的必备辅助工具。详细介绍了卫星信号模拟器的国内外研究动态,总结了国内外在该领域的技术现状,最后,对卫星信号模拟器的未来发展趋势做了探讨。  相似文献   

3.
组合导航卫星系统定位技术进展   总被引:3,自引:0,他引:3  
多星座导航系统的组合共用是近年来卫星导航领域的发展方向之一。综述了基于组合导航卫星系统定位技术的最新研究进展,从多源信息融合理论的角度阐述了卫星导航系统组合定位的思路,同时在多星座导航系统组合的新背景下分析了载波相位模糊度解算这一关键问题的发展,探讨了系统组合共用实施中有待于进一步研究解决的新问题。  相似文献   

4.
Compared with the traditional GPS L1 C/A BPSK-R(1) signal, wideband global navigation satellite system (GNSS) signals suffer more severe distortion due to ionospheric dispersion. Ionospheric dispersion inevitably introduces additional errors in pseudorange and carrier phase observations that cannot be readily eliminated by traditional methods. Researchers have reported power losses, waveform ripples, correlation peak asymmetries, and carrier phase shifts caused by ionospheric dispersion. We analyze the code tracking bias induced by ionospheric dispersion and propose an efficient all-pass filter to compensate the corresponding nonlinear group delay over the signal bandwidth. The filter is constructed in a cascaded biquad form based on the estimated total electron content (TEC). The effects of TEC accuracy, filter order, and fraction parameter on the filter fitting error are explored. Taking the AltBOC(15,10) signal as an example, we compare the time domain signal waveforms, correlation peaks, code tracking biases, and carrier phase biases with and without this all-pass filter and demonstrate that the proposed delay-equalization all-pass filter is a potential solution to ionospheric dispersion compensation and mitigation of observation biases for wideband GNSS signals.  相似文献   

5.
Method for evaluating real-time GNSS satellite clock offset products   总被引:1,自引:0,他引:1  
Real-time satellite clock offset products are frequently utilized in navigation and positioning service fields. The precision of such products is a key issue for their application. The evaluation methods existed for satellite clock offset products are mostly based on post-processed satellite clock offset solutions, which will encounter problems in real-time product evaluation, especially for real-time satellite clock offset products estimated from data with regional stations only. We propose an improved evaluation method for global navigation satellite system (GNSS) satellite clock offset products. In the proposed method, we use all-satellite reference method instead of single-satellite reference method to eliminate the timescale in satellite clock offset products. Moreover, a preprocessing step is suggested to detect gross errors and initial clock bias before evaluating the precision of the satellite clock offsets. We conduct two examples to verify our method, and the experimental results show that the proposed method is more reasonable in assessing the GNSS satellite clock offset precision, and it also provides a reliable approach to analyzing the estimated satellite clock offset in both real-time and post-processed, or globally and regionally.  相似文献   

6.
With the proposed new GNSS signals, enhanced navigation performance is expected in both civil and military applications. However, these new signals introduce the difficulty of combining multiple signal components into a constant-envelope signal. For the Compass B1 band, the problem is to multiplex a QPSK(2) signal and a new multiplexed binary offset carrier (MBOC) signal with a center frequency difference of 14.322 MHz. One approach for multiplexing spreading codes is the phase-optimized constant-envelope transmission (POCET) method proposed for the GPS L1 band. However, only binary spreading codes are considered in POCET. We first generalize the POCET method as a multilevel POCET (MPOCET) algorithm for multilevel coded signals. A new implementation of the alternative binary offset carrier (AltBOC) generator is derived from MPOCET. Secondly, the multiplexing problem for Compass is modeled by MPOCET. Multilevel subcarriers of AltBOC are adopted in the model. As a result, an 8-PSK unbalanced AltBOC (UAltBOC) modulation, which has a QPSK(2) signal at the lower sideband and a TMBOC signal at the upper sideband, is obtained. Simulations for signal model validation and power spectrum analysis are conducted. Numerical results indicate that UAltBOC successfully combines the QPSK and TMBOC signals with only 0.16-dB additional combining loss compared to AltBOC. The proposed MPOCET technique is demonstrated as a unified multiplexing method for navigation signals.  相似文献   

7.
智能手机凭借其普遍性、便携性和低成本等优势,已成为大众用户导航与位置服务的主流终端载体,其多频多系统GNSS(global navigation satellite system)观测值的开放进一步激发了手机高精度定位的研究。然而,受限于消费级GNSS器件性能,手机卫星观测值呈现出信号衰减严重、伪距噪声大、粗差周跳多等问题;并且受城市复杂环境影响,手机GNSS定位的连续性、可靠性也难以保证。提出一种城市场景手机GNSS/ MEMS(micro-electro mechanical system)融合的车载高精度定位方案。首先,构建了速度约束的GNSS差分定位模型;然后,通过手机内置MEMS与车辆运动约束,在挑战环境下进行GNSS/MEMS融合精密定位。实验结果表明,在开阔和树荫场景下,速度约束方法可达到分米至米级定位精度,相比于常规方法分别提升了35.2%和78.9%;在高架场景下,GNSS/MEMS融合定位的精度和连续性均提升显著;在隧道场景下,MEMS推算位置累积误差约为2.5%。实验结果初步表明,手机GNSS具备开阔环境下的车道级定位能力,手机GNSS/MEMS融合可提升城市复杂环境下车载定位的精度和连续可用性。  相似文献   

8.
Ionospheric scintillation produces strong disruptive effects on global navigation satellite system (GNSS) signals, ranging from degrading performances to rendering these signals useless for accurate navigation. The current paper presents a novel approach to detect scintillation on the GNSS signals based on its effect on the ionospheric-free combination of carrier phases, i.e. the standard combination of measurements used in precise point positioning (PPP). The method is implemented using actual data, thereby having both its feasibility and its usefulness assessed at the same time. The results identify the main effects of scintillation, which consist of an increased level of noise in the ionospheric-free combination of measurements and the introduction of cycle-slips into the signals. Also discussed is how mis-detected cycle-slips contaminate the rate of change of the total electron content index (ROTI) values, which is especially important for low-latitude receivers. By considering the effect of single jumps in the individual frequencies, the proposed method is able to isolate, over the combined signal, the frequency experiencing the cycle-slip. Moreover, because of the use of the ionospheric-free combination, the method captures the diffractive nature of the scintillation phenomena that, in the end, is the relevant effect on PPP. Finally, a new scintillation index is introduced that is associated with the degradation of the performance in navigation.  相似文献   

9.
CNS+GNSS+INS船载高精度实时定位定姿算法改进研究   总被引:2,自引:1,他引:1  
天文导航(CNS)、卫星导航(GNSS)和惯性导航(INS)3种系统组合可提供高精度的定位定姿结果。实际工程中因INS长时间误差累积,以及系统硬件传输存在不可忽略的时间延迟,导致INS提供给CNS的预报粗姿态误差较大,恶劣海况下难以保障快速搜星,造成天文导航可靠性下降、姿态测量精度较低的问题。为此,本文提出了一种CNS+GNSS+INS高精度信息融合实时定位定姿框架,引入了等角速度外推措施,有效地解决了惯导信息延迟问题。通过高精度转台模拟恶劣海况下载体大角速度摇摆,验证了本文提出的改进算法的有效性。试验结果表明,该算法架构简单,性能可靠,显著提高了恶劣环境下星敏感器的快速、准确搜星能力,保障了三组合姿态测量的精度和可用性。  相似文献   

10.
针对GNSS接收机在室内环境中面临的强烈的信号衰减、非视距传播和互相关效应的问题,提出了一种基于粗时段导航和RAIM算法解决A-GNSS室内定位问题的方法,并利用BDS数据验证了该方法的可靠性。结果表明,粗时段导航算法能够提供连续可靠的定位结果,应用于微弱信号环境;基于组合FDE的RAIM算法能够增加定位结果可用率,解决室内卫星信号存在的非视距传播和互相关效应的问题。基于粗时段导航与RAIM算法的A-GNSS定位技术能够应用于室内定位,仿真定位结果水平方向RMS在10 m以内。  相似文献   

11.
Gao  Zhouzheng  Ge  Maorong  Li  You  Shen  Wenbin  Zhang  Hongping  Schuh  Harald 《GPS Solutions》2018,22(2):1-12
GPS Solutions - Despite the broad range of navigation, positioning, and timing services offered by the global navigation satellite system (GNSS), its signals are vulnerable to blockage and...  相似文献   

12.
全球导航卫星系统(GNSS)存在落地信号弱、易受干扰等问题,而低轨卫星系统因其较高的信号落地功率、较低的信号空间损耗以及较好的多普勒特性逐渐成为导航领域的研究热点. 铱星星座是目前唯一已实现全球覆盖的低轨卫星系统,其提供的授时与定位(STL)能力主要服务于美国军方,具体信号体制及接收处理技术均未公开发布. 通过对铱星STL突发信号体制开展深入研究及解析,提出利用STL突发信号实现非合作导航定位,并通过实收信号完成了定位解算算法验证,实收试验结果表明所提算法能够实现精度优于100 m的定位. 研究成果能够为我国低轨导航系统建设提供理论基础,有效推进下一代卫星导航系统持续发展.   相似文献   

13.
针对现有全球卫星导航系统性能评估无规范的评估标准问题,该文提出了以统一模型和算法为评估体系的方法,较详细的评估了全球卫星导航系统公开服务信号的基本性能,主要评估了空间信号误差、广播电离层模型改正效率及伪距单点定位精度等。结果表明:空间信号误差方面,伽利略最优、GPS和北斗三号相当;广播电离层模型方面,北斗全球广播电离层模型改正效果最优,GPSK8与NeQuick模型在低中纬度改正效果相当,北斗区域电离层模型在其服务区内具有较高改正效果;定位方面,北斗、GPS和伽利略静态伪距单点定位的三维位置均方根误差优于5m,格洛纳斯优于10 m;动态伪距单点定位方面,北斗在中国境内定位精度最高;基于统一评估体系下,可以直观对比得到目前各卫星导航系统的性能差异,同时也为后续的建设提供相应的参考。  相似文献   

14.
海量IGS数据实时线程池并发获取   总被引:1,自引:0,他引:1  
随着全球卫星导航系统(GNSS)的迅猛发展,国际GNSS服务组织(IGS)发布了各类海量高精度服务数据。目前,IGS数据在GNSS基线解算、精密单点定位、卫星精密定轨、地壳形变监测、地球电离层和地球动力学研究等领域得到了广泛应用。传统的IGS服务数据下载过程烦琐而耗时,且易出错。如何快速且正确获取IGS数据是当前用户迫切关心的问题。本文基于FTP文件传输协议,设计了实时线程池并发和断点续传算法,并对海量IGS数据进行一站式分类下载测试,通过对试验结果进行分析比较,最终得出海量数据最优的获取方法。  相似文献   

15.
Due to their low power levels, global positioning system (GPS) signals are very susceptible to interference from intentional and unintentional sources. With ever increasing reliance on global navigation satellite systems (GNSS) for everyday operation of safety–critical infrastructure, the detection, localization and elimination of interference to GNSS is of paramount importance. The GNSS environmental monitoring system (GEMS) II provides the capability to detect and localize interferers in real time in a given area. It consists of a number of spatially distributed sensor nodes connected to a central processing unit. Interference is localized using hybrid direction-of-arrival (DOA) and time-difference-of-arrival (TDOA) techniques. We describe the GEMS II environment and provide an in-depth analysis and evaluation of the TDOA aspects of the system. During evaluation, signals generated from Spirent GPS signal generators as well as data from actual field-test trials are used to provide extensive performance analysis and comparison, with a view to final system integration.  相似文献   

16.
In urban canyons, buildings and other structures often block the line of sight of visible Global Navigation Satellite System (GNSS) satellites, which makes it difficult to obtain four or more satellites to provide a three-dimensional navigation solution. Previous studies on this operational environment have been conducted based on the assumption that GNSS is not available. However, a limited number of satellites can be used with other sensor measurements, although the number is insufficient to derive a navigation solution. The limited number of GNSS measurements can be integrated with vision-based navigation to correct navigation errors. We propose an integrated navigation system that improves the performance of vision-based navigation by integrating the limited GNSS measurements. An integrated model was designed to apply the GNSS range and range rate to vision-based navigation. The possibility of improved navigation performance was evaluated during an observability analysis based on available satellites. According to the observability analysis, each additional satellite decreased the number of unobservable states by one, while vision-based navigation always has three unobservable states. A computer simulation was conducted to verify the improvement in the navigation performance by analyzing the estimated position, which depended on the number of available satellites; additionally, an experimental test was conducted. The results showed that limited GNSS measurements can improve the positioning performance. Thus, our proposed method is expected to improve the positioning performance in urban canyons.  相似文献   

17.
彭葳  戴吾蛟 《测绘工程》2016,25(4):60-65
连续的全球卫星导航系统(GNSS)基准站的坐标时间序列中包含了复杂的噪声信号、非构造形变及其它因素的影响,尤其在垂直方向,对GNSS基准站在国际地球参考框架(ITRF)下的运动速率估计产生了较大的干扰。为进一步提高速率精度,文中采用整体模态分解(EEMD)方法对GNSS基准站的垂向观测时间序列进行分解,并根据各种信号的Hurst值进行分类及重构为噪声信号、季节性信号和长期趋势信号,采用最小二乘方法拟合长期趋势信号得到垂向速率。通过对中国大陆构造环境监测网络(CMONOC)的GNSS台站从2001—2013年近13a的垂向坐标时间序列的实例分析,采用基于EEMD和Husrt指数的最小二乘法能够准确地估计GNSS基准站的垂向速率。  相似文献   

18.
Current cooperative positioning with global navigation satellite system (GNSS) for connected vehicle application mainly uses pseudorange measurements. However, the positioning accuracy offered cannot meet the requirements for lane-level positioning, collision avoidance and future automatic driving, which needs real-time positioning accuracy of better than 0.5 m. Furthermore, there is an apparent lack of research into the integrity issue for these new applications under emerging driverless vehicle applications. In order to overcome those problems, a new extended Kalman filter (EKF) and a multi-failure diagnosis algorithm are developed to process both GNSS pseudorange and carrier phase measurements. We first introduce a new closed-loop EKF with partial ambiguity resolution as feedback to address the low accuracy issue. Then a multi-failure diagnosis algorithm is proposed to improve integrity and reliability. The core of this new algorithm includes using Carrier phase-based Receiver Autonomous Integrity Monitoring method for failure detection, and the double extended w test detectors to identify failure. A cooperative positioning experiment was carried out to validate the proposed method. The results show that the proposed closed-loop EKF can provide highly accurate positioning, and the multi-failure diagnosis method is effective in detecting and identifying failures for both code and carrier phase measurements.  相似文献   

19.
Joint use of observations from multiple global navigation satellite systems (GNSS) is advantageous in high-accuracy positioning. However, systematic errors in the observations can significantly impact on the positioning accuracy if such errors cannot be properly mitigated. The errors can distort least squares estimations and also affect the results of variance component estimation that is frequently used to determine the stochastic model when observations from multiple GNSS are used. We present an approach that is based on the concept of semiparametric estimation for mitigating the effects of the systematic errors. Experimental results based on both simulated and real GNSS datasets show that the approach is effective, especially when applied before carrying out variance component estimation.  相似文献   

20.
Global navigation satellite system (GNSS), such as global positioning system (GPS), has been widely used for vehicular and outdoor navigation. Accuracy is one, among many, of the advantages of using GNSS in the open sky. However, GNSS finds difficulty in achieving similar results in portable navigation, where users spend most of their time indoors or in urban canyons, places where GNSS signals suffer from multipath error or signal blockage. One of the most common solutions for providing location services in such challenging environments is integrating GNSS with inertial sensors, such as accelerometers and gyroscopes. However, the arbitrary orientation of the portable device can present a more difficult challenge when using inertial sensors for portable navigation. In order to obtain a navigation solution using inertial sensors, an accurate heading estimation is required. Resolving the heading misalignment angle between the portable navigation device and the moving platform, such as using the device while walking or in a vehicle while driving, is critical to obtaining an accurate heading estimation. We present a solution for resolving the misalignment between the portable device and the moving platform, which exploits multiple portable devices like smartphones or tablets and/or smart wearable devices such as smart watches, smart glasses, and/or smart fitness and activity trackers/monitors. Several real field test experiments using portable devices were conducted to examine the performance of the proposed method. Results show how a portable navigation solution can be improved by further enhancing misalignment estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号