首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 774 毫秒
1.
Using the Australia Telescope Compact Array (ATCA) we have imaged the fields around five promising pulsar candidates to search for radio pulsar wind nebulae (PWNe). We have used the ATCA in its pulsar-gating mode; this enables an image to be formed containing only off-pulse visibilities, thereby dramatically improving the sensitivity to any underlying PWN. Data from the Molonglo Observatory Synthesis Telescope were also used to provide sensitivity on larger spatial scales. This survey found a faint new PWN around PSR B0906−49; here we report on non-detections of PWNe towards PSRs B1046−58, B1055−52, B1610−50 and J1105−6107. Our radio observations of the field around PSR B1055−52 argue against previous claims of an extended X-ray and radio PWN associated with the pulsar. If these pulsars power unseen, compact radio PWNe, upper limits on the radio flux indicate that a fraction of less than 10−6 of their spin-down energy is used to power this emission. Alternatively, PSRs B1046−58 and B1610−50 may have relativistic winds similar to other young pulsars and the unseen PWN may be resolved and fainter than our surface brightness sensitivity threshold. We can then determine upper limits on the local interstellar medium (ISM) density of 2.2×10−3 and 1×10−2 cm−3, respectively. Furthermore, we derive the spatial velocities of these pulsars to be ∼450 km s−1 and thus rule out the association of PSR B1610−50 with supernova remnant (SNR) G332.4+00.1 (Kes 32). Strong limits on the ratio of unpulsed to pulsed emission are also determined for three pulsars.  相似文献   

2.
An algorithm of the ensemble pulsar time based on the optimal Wiener filtration method has been constructed. This algorithm allows the separation of the contributions to the post-fit pulsar timing residuals of the atomic clock and the pulsar itself. Filters were designed using the cross- and auto-covariance functions of the timing residuals. The method has been applied to the timing data of millisecond pulsars PSR B1855+09 and B1937+21 and allowed the filtering out of the atomic-scale component from the pulsar data. Direct comparison of the terrestrial time TT(BIPM06) and the ensemble pulsar time PTens revealed that the fractional instability of TT(BIPM06)−PTens is equal to  σ z = (0.8 ± 1.9) × 10−15  . Based on the  σ z   statistics of TT(BIPM06)−PTens, a new limit of the energy density of the gravitational wave background was calculated to be equal to  Ωg h 2∼ 3 × 10−9  .  相似文献   

3.
We report the discovery of a pulsar with a Galactic longitude of 304° and a dispersion measure (DM) of 875 cm−3 pc. PSR J1302−63 has the second largest DM of any known pulsar. It is also relatively weak, with a flux density of only 0.2 mJy at 1500 MHz. This is the 13th pulsar with a DM greater than 400 cm−3 pc located more than 50° from the Galactic Centre. It provides further evidence for a significant pulsar population and enhanced electron densities within the major spiral arms.  相似文献   

4.
We present 3 yr of timing observations for PSR J1453+1902, a 5.79-ms pulsar discovered during a 430-MHz drift-scan survey with the Arecibo telescope. Our observations show that PSR J1453+1902 is solitary and has a proper motion of  8 ±  2  mas yr−1. At the nominal distance of 1.2 kpc estimated from the pulsar's dispersion measure, this corresponds to a transverse speed of  46 ± 11   km s−1  , typical of the millisecond pulsar population. We analyse the current sample of 55 millisecond pulsars in the Galactic disc and revisit the question of whether the luminosities of isolated millisecond pulsars are different from their binary counterparts. We demonstrate that the apparent differences in the luminosity distributions seen in samples selected from 430-MHz surveys can be explained by small-number statistics and observational selection biases. An examination of the sample from 1400-MHz surveys shows no differences in the distributions. The simplest conclusion from the current data is that the spin, kinematic, spatial and luminosity distributions of isolated and binary millisecond pulsars are consistent with a single homogeneous population.  相似文献   

5.
We present phase resolved optical spectroscopy and photometry of V4580 Sagittarii, the optical counterpart to the accretion powered millisecond pulsar SAX J1808.4−3658, obtained during the 2008 September/October outburst. Doppler tomography of the N  iii λ4640.64 Bowen blend emission line reveals a focused spot of emission at a location consistent with the secondary star. The velocity of this emission occurs at  324 ± 15 km s−1  ; applying a ' K -correction', we find the velocity of the secondary star projected on to the line of sight to be  370 ± 40 km s−1  . Based on existing pulse timing measurements, this constrains the mass ratio of the system to be  0.044+0.005−0.004  , and the mass function for the pulsar to be  0.44+0.16−0.13 M  . Combining this mass function with various inclination estimates from other authors, we find no evidence to suggest that the neutron star in SAX J1808.4−3658 is more massive than the canonical value of  1.4 M  . Our optical light curves exhibit a possible superhump modulation, expected for a system with such a low mass ratio. The equivalent width of the Ca  ii H and K interstellar absorption lines suggest that the distance to the source is ∼2.5 kpc. This is consistent with previous distance estimates based on type-I X-ray bursts which assume cosmic abundances of hydrogen, but lower than more recent estimates which assume helium-rich bursts.  相似文献   

6.
We discuss the formation of pulsars with massive companions in eccentric orbits. We demonstrate that the probability for a non-recycled radio pulsar to have a white dwarf as a companion is comparable to that of having an old neutron star as a companion. Special emphasis is given to PSR B1820−11 and PSR B2303+46. Based on population synthesis calculations we argue that PSR B1820−11 and PSR B2303+46 could very well be accompanied by white dwarfs with mass ≳1.1 M. For PSR B1820−11, however, we cannot exclude the possibility that its companion is a main-sequence star with a mass between ∼0.7 M and ∼5 M.  相似文献   

7.
G35.6−0.4 is an extended radio source in the Galactic plane which has previously been identified as either a supernova remnant or an H  ii region. Observations from the Very Large Array Galactic Plane Survey at 1.4 GHz with a resolution of 1 arcmin allow the extent of G35.6−0.4 to be defined for the first time. Comparison with other radio survey observations show that this source has a non-thermal spectral index, with   S ∝ν−0.47±0.07  . G35.6−0.4 does not have obvious associated infrared emission, so it is identified as a Galactic supernova remnant, not an H  ii region. It is  ≈15 × 11 arcmin2  in extent, showing partial limb brightening.  相似文献   

8.
PSR J1833−1034 and its associated pulsar wind nebula (PWN) have been investigated in depth through X-ray observations ranging from 0.1 to 200 keV. The low-energy X-ray data from Chandra reveal a complex morphology that is characterized by a bright central plerion, no thermal shell and an extended diffuse halo. The spectral emission from the central plerion softens with radial distance from the pulsar, with the spectral index ranging from  Γ= 1.61  in the central region to  Γ= 2.36  at the edge of the PWN. At higher energy, INTEGRAL detected the source in the 17–200 keV range. The data analysis clearly shows that the main contribution to the spectral emission in the hard X-ray energy range is originated from the PWN, while the pulsar is dominant above 200 keV. Recent High Energy Stereoscopic System (HESS) observations in the high-energy gamma-ray domain show that PSR J1833−1034 is a bright TeV emitter, with a flux corresponding to ∼2 per cent of the Crab in 1–10 TeV range. In addition, the spectral shape in the TeV energy region matches well with that in the hard X-rays observed by INTEGRAL . Based on these findings, we conclude that the emission from the pulsar and its associated PWN can be described in a scenario where hard X-rays are produced through synchrotron light of electrons with Lorentz factor  γ∼ 109  in a magnetic field of ∼10 μG. In this hypothesis, the TeV emission is due to inverse-Compton interaction of the cooled electrons off the cosmic microwave background photons. Search for PSR J1833−1034 X-ray pulsed emission, via RXTE and Swift X-ray observations, resulted in an upper limit that is about 50 per cent.  相似文献   

9.
We have detected the rare phenomenon of stable, drifting sub-pulse behaviour in two pulsars discovered in the recent Swinburne intermediate latitude pulsar survey. The pulsars, PSR     and PSR J1919+0134, have approximate periods ( P ) of 1.873 and 1.6039 s respectively.
Both pulsars have multicomponent profiles, and distinct drifting is observed across them. We have identified a single drift mode in both pulsars: the drift rate for PSR     being 5.4(1) ms P −1 and 5.8(2) ms P −1 for PSR 1919+0134. The drifting is linear across the profile with no departure from linearity at the edges within the sensitivity of our observations.  相似文献   

10.
We present the results of Australia Telescope Compact Array (ATCA) H  i line and 20-cm radio continuum observations of the galaxy quartet NGC 6845. The H  i emission extends over all four galaxies but can only be associated clearly with the two spiral galaxies, NGC 6845A and B, which show signs of strong tidal interaction. We derive a total H  i mass of at least  1.8 × 1010 M  , most of which is associated with NGC 6845A, the largest galaxy of the group. We investigate the tidal interaction between NGC 6845A and B by studying the kinematics of distinct H  i components and their relation to the known H  ii regions. No H  i emission is detected from the two lenticular galaxies, NGC 6845C and D. A previously uncatalogued dwarf galaxy, ATCA  J2001−4659  , was detected 4.4 arcmin NE from NGC 6845B and has an H  i mass of  ∼5 × 108 M  . No H  i bridge is visible between the group and its newly detected companion. Extended 20-cm radio continuum emission is detected in NGC 6845A and B as well as in the tidal bridge between the two galaxies. We derive star formation rates of  15–40 M yr−1  .  相似文献   

11.
The single glitch observed in PSR B1821−24, a millisecond pulsar in M28, is unusual on two counts. First, the magnitude of this glitch is at least an order of magnitude smaller  (Δν/ν∼ 10−11)  than the smallest glitch observed to date. Secondly, all other glitching pulsars have strong magnetic fields with   B ≳ 1011 G  and are young, whereas PSR B1821−24 is an old recycled pulsar with a field strength of  2.25 × 109 G  . We have earlier suggested that some of the recycled pulsars could actually be strange quark stars. In this work, we argue that the crustal properties of such a strange pulsar are just right to give rise to a glitch of this magnitude, explaining the scarcity of larger glitches in millisecond pulsars.  相似文献   

12.
We present 13 CO J  = 1 − 0 line observations of the H  ii region complex W51B located in the high-velocity (HV) stream. These observations reveal a filamentary and clumpy structure in the molecular gas. The mean local standard of rest (LSR) velocity ∼ + 65 km s−1 of the molecular gas in this region is greater than the maximum velocities allowed by kinematic Galactic rotation curves. The size and mass of the molecular clouds are ∼ 48 × 17 pc2 and ∼ 2.4 × 105 M⊙ respectively. In a position–velocity diagram, molecular gas in the southern part comprises a redshifted ring structure with v LSR=+ 60 to +73 km s−1. The velocity gradient of this ring is ∼ 0.5 km s−1 pc−1, and the mass is ∼ 6.2 × 104 M⊙. If we assume that the ring is expanding with a uniform velocity, the expansion velocity, radius and kinetic energy are ∼ 7 km s−1, ∼ 13 pc and ∼ 3.0 × 10 49 erg respectively. The kinetic energy and mass spectrum of the ring could be explained by an expanding cylindrical cloud with a centrally condensed mass distribution. The locations of two compact H  ii regions, G49.0−0.3 and G48.9−0.3, coincide with the two molecular clumps in this ring. We discuss star formation, and the mechanism that produced the ring structure.  相似文献   

13.
We present and discuss optical, near-infrared and H  i measurements of the galaxy Markarian 1460 at a distance of 19 Mpc in the Ursa Major Cluster. This low-luminosity ( M B =−14) galaxy is unusual because (i) it is blue ( B − R =0.8) and has the spectrum of an H  ii galaxy, (ii) it has a light profile that is smooth and well fitted by an r 1/4 and not an exponential function at all radii larger than the seeing, and (iii) it has an observed central brightness of about μ B =20 mag arcsec−2 , intermediate between those of elliptical galaxies (on the bright μ B side) and normal low-luminosity dwarf irregular (on the low μ B side) galaxies. No other known galaxy exhibits all these properties in conjunction. On morphological grounds this galaxy looks like a normal distant luminous elliptical galaxy, since the Fundamental Plane tells us that higher luminosity normal elliptical galaxies tend to have lower surface-brightnesses. Markarian 1460 has 2×107 M of H  i and a ratio M (H  i )/ L B of 0.2, which is low compared to the typical values for star-forming dwarf galaxies. From the high surface-brightness and r 1/4 profile, we infer that the baryonic component of Markarian 1460 has become self-gravitating through dissipative processes. From the colours, radio continuum, H  i and optical emission line properties, and yet smooth texture, we infer that Markarian 1460 has had significant star formation as recently as ∼1 Gyr ago but not today.  相似文献   

14.
Large glitches were recently observed in the spin rates of two pulsars, B1046−58 and B1737−30. The glitches were characterized by fractional increases in rotation rate of 0.77 and  1.44×10−6  respectively. PSR B1737−30 is the most frequently glitching pulsar and this is the largest glitch so far observed from it. Most of the jump in the spin-down rate accompanying these glitches decayed away on short time-scales of a few days. For PSR B1737−30, there appears to be a cumulative shift in spin-down rate resulting from its frequent glitches. This probably accounts for its braking index of  −4±2  suggested by the available data, while a value of  2.1±0.2  is obtained for B1046−58.  相似文献   

15.
Six glitches have been recently observed in the rotational frequency of the young pulsar PSR B1737−30 (J1740−3015) using the 25-m Nanshan telescope of Urumqi Observatory. With a total of 20 glitches in 20 yr, it is one of the most frequently glitching pulsars of the ∼1750 known pulsars. Glitch amplitudes are very variable with fractional increases in rotation rate ranging from 10−9 to 10−6. Interglitch intervals are also very variable, but no relationship is observed between interval and the size of the preceding glitch. There is a persistent increase in     , opposite in sign to that expected from slowdown with a positive braking index, which may result from changes in the effective magnetic dipole moment of the star during the glitch.  相似文献   

16.
We present Australia Telescope Compact Array (ATCA) observations of the supernova remnant (SNR) G296.8–00.3. A 1.3-GHz continuum image shows the remnant to have a complex multi-shelled appearance, with an unusual rectangular strip running through its centre. H I absorption yields a kinematic distance to the remnant of 9.6 ± 0.6 kpc, from which we estimate an age in the range (2–10) × 103 yr. The ATCA's continuum mode allows a measurement of the Faraday rotation across the band, from which we derive a mean rotation measure towards the SNR of 430 rad m−2. We consider possible explanations for the morphology of G296.8–00.3, and conclude that either it has a biannular structure, as might be produced through interaction with an asymmetric progenitor wind, or its appearance is caused by the effects of the surrounding interstellar medium.   We argue that the adjacent pulsar J1157–6224 is at a similar distance to the SNR, but that a physical association is highly unlikely. The pulsar is the only detectable source in the field in circular polarization, suggesting a method for finding pulsars during aperture synthesis.  相似文献   

17.
We have observed the supernova remnant (SNR) G290.1−0.8 in the 21-cm H  i line and the 20-cm radio continuum using the Australia Telescope Compact Array (ATCA). The H  i data were combined with data from the Southern Galactic Plane Survey to recover the shortest spatial frequencies. In contrast, H  i absorption was analysed by filtering extended H  i emission, with spatial frequencies shorter than 1.1 kλ. The low-resolution ATCA radio continuum image of the remnant shows considerable internal structure, resembling a network of filaments across its 13-arcmin diameter. A high-resolution ATCA radio continuum image was also constructed to study the small-scale structure in the SNR. It shows that there are no structures smaller than ∼17 arcsec, except perhaps for a bright knot to the south, which is probably an unrelated object. The H  i absorption study shows that the gas distribution and kinematics in front of SNR G290.1−0.8 are complex. We estimate that the SNR probably lies in the Carina arm, at a distance 7 (±1) kpc. In addition, we have studied nearby sources in the observed field using archival multiwavelength data to determine their characteristics.  相似文献   

18.
We have observed two fields – Field I     ,     and Field II     ,     – with the Giant Metrewave Radio Telescope (GMRT) at 330 MHz. In the first field, we have studied the candidate supernova remnant (SNR) G3.1−0.6 and, based on its observed morphology, spectral index and polarization, confirmed it to be an SNR. We find this supernova to have a double ring appearance with a strip of emission on its western side passing through its centre.
We have discovered two extended curved objects in the second field, which appears to be part of a large shell-like structure. It is possibly the remains of an old supernova in the region. Three suspected SNRs, G356.3−0.3, G356.6+0.1 and G357.1−0.2, detected in the MOST 843-MHz survey of the GC region appear to be located on this shell-like structure. While both G356.3−0.3 and G356.6+0.1 seem to be parts of this shell, G357.1−0.2, which has a steeper spectrum above 1 GHz, could be a background SNR seen through the region. Our H  i absorption observation towards the candidate SNR G357.1−0.2 indicates that it is at a distance of more than 6 kpc from us.  相似文献   

19.
By measuring the decaying shape of the scatter-broadened pulse from the bright distant pulsar PSR J1644−4559, we probe waves scattered at relatively high angles by very small spatial scales in the interstellar plasma, which allows us to test for a wavenumber cutoff in the plasma density spectrum. Under the hypothesis that the density spectrum is due to plasma turbulence, we can thus investigate the (inner) scale at which the turbulence is dissipated. We report observations carried out with the Parkes radio telescope at 660 MHz from which we find strong evidence for an inner scale in the range 70–100 km, assuming an isotropic Kolmogorov spectrum. By identifying the inner scale with the ion inertial scale, we can also estimate the mean electron density of the scattering region to be 5–10 cm−3. This is comparable with the electron density of H  ii region G339.1−0.4, which lies in front of the pulsar, and so confirms that this region dominates the scattering. We conclude that the plasma inside the region is characterized by fully developed turbulence with an outer scale in the range 1–20 pc and an inner scale of 70–100 km. The shape of the rising edge of the pulse constrains the distribution of the strongly scattering plasma to be spread over about 20 per cent of the 4.6 kpc path from the pulsar, but with similarly high electron densities in two or more thin layers, their thicknesses can only be 10–20 pc.  相似文献   

20.
The timing properties of the 4.45 s pulsar in the Be X-ray binary system GRO J1750−27 are examined using hard X-ray data from INTEGRAL and Swift during a type II outburst observed during 2008. The orbital parameters of the system are measured and agree well with those found during the last known outburst of the system in 1995. Correcting the effects of the Doppler shifting of the period, due to the orbital motion of the pulsar, leads to the detection of an intrinsic spin-up that is well described by a simple model including     and     terms of  −7.5 × 10−10 s s−1  and  1 × 10−16 s s−2  , respectively. The model is then used to compare the time-resolved variation of the X-ray flux and intrinsic spin-up against the accretion torque model of Ghosh & Lamb; this finds that GRO J1750−27 is likely located 12–22 kpc distant and that the surface magnetic field of the neutron star is  ∼2 × 1012  G. The shape of the pulse and the pulsed fraction shows different behaviour above and below 20 keV, indicating that the observed pulsations are the convolution of many complex components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号