首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The basic volcanic group exposed in the Kadiri schist belt includes high Mg-basalt, basalt, basaltic andestite and dacite. The basalts are tholeiitic in composition and high Mg-basalts, basaltic andesites and dacites show calc-alkaline affinity. Major and trace element characteristics suggest that the volcanic suite has been derived from an initial tholeiitic magma which has given rise to an early basaltic type and a later calc-alkaline type of rocks. An island arc and active continental margin tectonic setting was inferred for these rocks.  相似文献   

2.
青海省同仁地区位于秦、祁结合部,构造演化历史悠久.在该区隆务河两侧广泛发育着二叠、三叠纪地层,通过两套地层岩石组合分析,我们认为晚二叠世晚期至早三叠世早期该区属于半深海浊积扇相沉积环境.在该区晚二叠世晚期地层中新发现一套火山岩,火山岩的岩石组合主要为玄武岩、安山岩、玄武安山岩等.根据岩石的常量元素特征,可以将本区火山岩分为两部分:下部岩石的SiO2含量为49.04%~52.43%,平均为51.28%,TiO2含量为0.67%~1.11%,平均为0.9%,ALK值为2.64%~3.6%.通过常量元素投点图分析,本组火山岩岩性偏基性,属于拉斑玄武岩系列,显示高钛玄武岩特征.上部岩石的SiO2含量为56.25%~60.36%,平均为58.76%,TiO2含量为0.52%~0.63%,平均为0.58%,ALK值在5.26%~5.54%之间.岩性偏中性,属于钙碱性系列,显示低钛玄武岩特征.火山岩的稀土元素也有明显差异,下部稀土总量较低,∑REE=(61.7~97.17)×10-6,(La/Lu)N比值平均为3.07,轻重稀土分馏不明显,显示与过渡型洋中脊玄武岩相似的特征;而上部稀土总量较高,∑REE=(107.51~143.32)×10-6,(La/Lu)N比值平均为7.78,轻重稀土分馏明显,稀土分配曲线显示与岛弧安山岩相似的特征.该区火山岩的微量元素比值蛛网图显示与岛弧钙碱性玄武岩-过渡类型玄武岩具有较强的相似性.构造环境判别显示出本区火山岩具有从拉张的过渡型洋中脊环境到闭合的岛弧环境的演化特征.  相似文献   

3.
In this paper, the concept of a geochemical structure (Yaroshevskii, 2004) was applied to describe chemical variations in the Early Carboniferous volcanic complexes and their distribution over the tectonic zones of the Southern Urals and Transuralian region in order to clarify the geodynamic settings of their formation. The cluster analysis of a geochemical dataset including 325 analyses of volcanic rocks from the Magnitogorsk, Southern Ural, Transuralian, and Valer’yanovskii tectonic zones allowed us to reduce the geochemical diversity of rocks to eight large geochemical groups. Based on average compositions, these geochemical groups (clusters) can be classed with the following rocks: (1) low-K tholeiitic basalts, (2) high-Ti subalkaline basalts, (3) high-Al subalkaline basalts, (4) subalkaline andesites, (5) subalkaline rhyolites, (6) Na subalkaline rhyolites, (7) potassic subalkaline rhyolites, and (8) high-Al potassic trachyandesibasalts. The distribution of these clusters in tectonic zones of the Southern Urals and Transuralian makes it possible to organize these complexes into four groups. The first group includes a differentiated series from high-Ti subalkaline basalts to sodic subalkaline rhyolites with the predominance of aluminous subalkaline basalts and subalkaline andesites. This group is most widespread in the Magnitogorsk and Valer’yanovskii zones. The second group corresponds to a differentiated series from low-K basalts to Na subalkaline rhyolites with a strong prevalence of high-Ti subalkaline basalts and less abundant aluminous subalkaline basalts. This group is widespread in the Eastern Ural zone. The third group includes subalkaline andesites and rhyolites with subordinate ultrapotassic rhyolites and trachyandesibasalts, which compose the Uya-Novoorenburg suture. The fourth group comprises high-Ti subalkaline basalts occurring in the Transuralian zone. Such a distinct distribution of the geochemical types of volcanic rocks is well consistent with concepts on the formation of the Southern Ural volcanic belts at the East European paleocontinent margin in a Californian-type setting. The Valer’yanovskii belt was formed at the active margin of the Kazakhstan paleocontinent.  相似文献   

4.
Mafic-ultramafic rocks of Archaean age constitute a significant component of the Eastern Indian Craton. These occur in two different modes. In the eastern belt these occur as a long, linear enclave within the Singhbhum granite and the primary banding in them is subvertical. In the more extensive western belt along the periphery of the Singhbhum granite, the disposition of the primary banding is subhorizontal. The major rock type in both the belts is meta-basalt with minor peridotitic komatiite and basaltic komatiite occurring in the eastern belt. Rare ultramafic rocks with cumulate textures are present in both the belts. The larger volume of the basaltic rocks preclude the possibility of their being derived by fractional crystallization of the high-MgO components. On the basis of trace element and REE characters the rocks may be classified into three groups. One of the groups shows a tholeiitic trend and include samples mostly from the eastern belt while the second consisting mostly of samples from the western belt shows a calc-alkaline trend. The third group includes samples having elemental ratios intermediate between these two groups. Zr/Nb ratios for the tholeiitic and calc-alkaline samples are different suggesting their sources to be different. The tholeiitic samples have been generated from a source having chondritic REE characters, while the calc-alkaline samples have been generated from a source with LREE enriched character. The high-MgO components in both the groups are suggested to represent high degrees of melting compared to the basalts in each group. It is further suggested that the tholeiitic basalts have been generated relatively early from a chondritic source. Down-buckling of this material has added LREE enriched melts to the source, thereby changing its character into a LREE enriched one. Melting of a source with such changed character has subsequently produced the calc-alkaline melts. Rocks with variable but intermediate characters between these two groups have been generated as a result of contamination between these two groups.  相似文献   

5.
The Zedang and Luobusa ophiolites are located in the eastern section of the Yalung Zangbo ophiolite belt,and they share similar geological tectonic setting and age.Thus,an understanding of their origins is very important for discussion of the evolution of the Eastern Tethys Ocean.There is no complete ophiolite assemblage in the Zedang ophiolite.The Zedang ophiolite is mainly composed of mantle peridotite and a suite of volcanic rocks as well as siliceous rocks,with some blocks of olivinepyroxenite.The mantle peridotite mainly consists of Cpx-harzburgite,harzburgite,some lherzolite,and some dunite.A suite of volcanic rocks is mainly composed of caic-aikaline pyroclastic rocks and secondly of tholeiitic pillow lavas,basaltic andesites,and some boninitic rocks with a lower TiO2 content (TiO2 < 0.6%).The pyroclastic rocks have a LREE-enriched REE pattern and a LILE-enriched (compared to HFSE) spider diagram,demonstrating an island-arc origin.The tholeiitic volcanic rock has a LREE-depleted REE pattern and a LILE-depleted (compared to HFSE) spider diagram,indicative of an origin from MORB.The boninitic rock was generated from fore-arc extension.The Luobusa ophiolite consists of mantle peridotite and mafic-ultramaflc cumulate units,without dike swarms and volcanic rocks.The mantle peridotite mainly consists of dunite,harzburgite with low-Opx (Opx < 25%),and harzburgite (Opx > 25%),which can be divided into two facies belts.The upper is a dunite-harzburgite (Opx < 25%) belt,containing many dunite lenses and a large-scale chromite deposit with high Cr203; the lower is a harzburgite (Opx >25%) belt with small amounts of dunite and lherzolite.The Luobusa mantle peridotite exhibits a distinctive vertical zonation of partial melting with high melting in the upper unit and low melting in the lower.Many mantle peridotites are highly depleted,with a characteristic U-shaped REE pattern peculiar to fore-arc peridotite.The Luobusa cumulates are composed of wehrlite and olivine-pyroxenite,of the P-P-G ophiolite series.This study indicates that the Luobusa ophiolite was formed in a fore-arc basin environment on the basis of the occurrence of highly depleted mantle peridotite,a high-Cr2O3 chromite deposit,and cumulates of the P-P-G ophiolite series.We conclude that the evolution of the Eastern Tethys Ocean involved three stages:the initial ocean stage (formation of MORB volcanic rock and dikes),the forearc extension stage (formation of high-Cr203 chromite deposits and P-P-G cumulates),and the islandarc stage (formation of caic-alkaline pyroclastic rocks).  相似文献   

6.
Despite the fact that some greenstone belts preserve the record of contemporaneous komatiitic and tholeiitic volcanism, a genetic link between the two is not widely accepted. The significance of a compositional gap seperating these magma types and differences in their respective degree of light rare earth element (LREE) enrichment, cited as evidence against a derivative relationship, are complicated by the possibility of crustal assimilation by magmas of komatiitic affinity. In the Archean La Grande Greenstone belt of northern Quebec a succession of metamorphosed tholeiitic basalts and younger, high-Mg, LREE-enriched andesites are preserved. The tholeiites are differentiated basaltic rocks whose chemical compositions appear to have been controlled by low pressure, gabbroic fractional crystallization and are similar to Type 1 MORB. Parental magmas were probably high-Mg liquids of compositions similar to komatiitic basalts which also occur in the greenstone belt. These high-Mg liquids are believed to be themselves the product of high pressure, OLIV+OPX fractional crystallization of more magnesian primary liquids of komatiitic composition. The higher La/Sm ratios of komatiitic basalts and tholeiites relative to komatiites in this belt, can be explained by small degrees of crustal assimilation. In the central part of the belt, late-stage, mafic igneous rocks have chemical compositions similar to Archean examples of contaminated volcanic rocks (e.g., Kambalda, Australia). These late-stage lavas consist of basalts and andesites with high-Mg, Ni and Cr abundances, LREE-enriched profiles and low Ti abundances. They are believed to be the products of crustal assimilation and crystallization of OPX-PLAG-CPX from high-Mg liquids of komatiitic affinity. The volcanic stratigraphy records the progressive effects of crustal contamination through time. A light sialic crust may have initially acted as a density barrier, preventing the eruption of primary high-Mg liquids and forcing fractionation at depth which produced more buoyant compositions. With subsequent thinning of the crust, the density barrier presumably failed, and primary liquids migrated directly toward the surface. Reaction of these liquids with tonalitic crust produced contaminated differentiates.  相似文献   

7.
依据中基性火山岩主量和微量元素地球化学特征的差异,白勉峡组可分两部分,一部分火山岩TiO_2大于1%,变质程度较高,主要分布在下段;另一部分火山岩TiO_2小于1%,变质程度较浅,主要分布在上段.下段火山岩属拉斑玄武岩系列,上段主体属钙碱系列,稀土总量高(∑REE=83.4~180.8μg/g),轻重稀土分异较低(LREE/HREE=2.17~5.85),有弱的Eu负异常(δEu=0.79~1.01),微量元素原始地幔蛛网图显示有弱的Nb、Ta亏损,具有板内火山岩的地球化学特点,形成于板内裂谷环境.上段火山岩稀土总量低(∑REE=40.3~82.4μg/g),轻重稀土分异较高(LREE/HREE=2.3~7.6),无Eu负异常(δEu=0.90~1.11),微量元素原始地幔蛛网图发育明显的Nb-Ta槽和Zr-Hf槽,Ti、Sr发育较强的低谷,具有典型岛弧玄武岩的地球化学特点,形成于岛弧或大陆边缘弧环境.三湾组玄武岩和安山岩稀土元素分配型式呈LREE亏损的左倾型或呈近平坦型,类似于N-MORB,明显不同于白勉峡组,岩石组合和地球化学特点类似于弧后盆地火山岩.火山岩及相关侵入岩LA-ICPMS锆石U-Pb定年及元素及Sr-Nd同位素地球化学研究揭示,白勉峡组下段火山岩形成时代可能为1144Ma,其源区为与洋岛玄武岩类似的软流圈地幔源区,部分熔融发生在石榴子石二辉橄榄岩稳定区,岩浆在演化过程中经历了一定分离结晶作用(分离结晶矿物为斜长石+单斜辉石)和地壳混染作用.白勉峡组上段火山岩形成时代可能为437Ma,有可能跨到晚古生代,其源区为受俯冲作用改造的富集地幔区,部分熔融亦发生于石榴子石二辉橄榄岩稳定区.三湾组中基性火山岩源于N-MORB近似的亏损地幔源区.白勉峡组下段代表中元古代末板内拉张事件的地质记录,白勉峡组上段和三湾组目前的火山岩样品可能代表了古生代同一洋陆转化的地质记录.  相似文献   

8.
Late Miocene–Pliocene to Quaternary calc-alkaline lava flows and domes are exposed in southeast of Isfahan in the Urumieh Dokhtar magmatic belt in the Central Iran structural zone. These volcanic rocks have compositions ranging from basaltic andesites, andesites to dacites. Geochemical studies show these rocks are a medium to high K calc-alkaline suite and meta-aluminous. Major element variations are typical for calc-alkaline rocks. The volcanic rocks have SiO2 contents ranging between 53.8% and 65.3%. Harker diagrams clearly show that the dacitic rocks did not form from the basaltic andesites by normal differentiation processes. They show large ion lithophile elements- and light rare earth elements (LREE)-enriched normalized multielement patterns and negative Nb, Ti, Ta, and P. Condrite-normalized REE patterns display a steep decrease from LREE to light rare earth elements without any Eu anomaly. These characteristics are consistent with ratios obtained from subduction-related volcanic rocks and in collision setting. The melting of a heterogeneous source is possible mechanism for their magma genesis, which was enriched in incompatible elements situated at the upper continental lithospheric mantle or lower crust. The geochemical characteristics of these volcanic rocks suggested that these volcanic rocks evolved by contamination of a parental magma derived from metasomatized upper lithospheric mantle and crustal melts.  相似文献   

9.
东昆仑巴颜喀拉浊积盆地二叠纪火山岩   总被引:2,自引:0,他引:2  
东昆仑巴颜喀拉浊积盆地内沿扎拉依-哥琼尼洼断裂带及约古宗列断裂带的断夹块内出露有一套二叠纪马尔争组火山岩, 火山岩呈构造岩片形式产出, 扎拉依-哥琼尼洼断裂带火山岩岩石组合主要为玄武岩、玄武安山岩, 少量玄武岩具枕状构造, 岩石SiO2含量均匀, TiO2的含量较高, ALK的含量较低, 为拉斑系列的玄武岩, 玄武岩稀土总量较高, 稀土配分曲线为轻稀土富集型, 与洋岛型火山岩的稀土配分曲线相一致, 火山岩大离子亲石元素较富集, 高场强元素及重稀土元素较平坦, 稀土、微量元素特征及构造环境判别显示其形成于较富集的洋岛环境, 少数为洋中脊的构造环境.约古宗列断裂带火山岩岩石组合为玄武岩、玄武安山岩, 岩石SiO2含量较高, TiO2含量较低, 均 < 1%, 为钙碱性系列火山岩, 玄武安山岩的稀土配分曲线与扎拉依-哥琼尼洼断裂带一致, 而英安岩的轻稀土富集程度高, 与岛弧高钾安山岩的稀土配分曲线相吻合, 构造环境判别显示其形成于岛弧构造环境.根据扎拉依-哥琼尼洼断裂带两侧火山岩成分的差异以及断裂带两侧巴颜喀拉群碎屑物成分的差异, 可以把巴颜喀拉山三叠纪浊积盆地进一步划分为北亚带和南亚带.   相似文献   

10.
滇西南昌宁—孟连构造带火山岩地层学研究   总被引:6,自引:0,他引:6  
冯庆来  刘本培 《现代地质》1993,7(4):402-409
昌宁—孟连构造带火山岩非常发育,是重要的含矿岩系。在构造带南段,火山岩统称为依柳组,北段统称为平掌组下段,以往时代均归属早石炭世。本文工作表明,该区火山岩可分为两套:一套为早石炭世火山岩,分布于该构造带西部,以拉斑玄武岩系列为主,代表大洋中脊、洋岛残留物,仍称为依柳组;另一套为晚二叠世火山岩,分布于构造带中、东部,以碱性玄武岩系列为主,可能属亚速尔型洋岛火山岩范畴,而非大洋蛇绿岩套,新命名为老厂组。  相似文献   

11.
The Sula Mountains greenstone belt is the largest of the late-Archaean greenstone belts in the West African Craton. It comprises a thick (5 km) lower volcanic formation and a thinner (2 km) upper metasedimentary formation. Komatiites and basalts dominate the volcanic formation and komatiites form almost half of the succession. All the volcanic rocks are metamorphosed to amphibolite grade and have been significantly chemically altered. Two stages of alteration are recognised and are tentatively ascribed to hydrothermal alteration and later regional amphibolite facies metamorphism. Ratios of immobile trace elements and REE patterns preserve, for the most part, original igneous signatures and these are used to identify five magma types. These are: low-Ti komatiites – depleted in light REE; low-Ti komatiites – with flat REE patterns; high-Ti komatiitic basalts – with flat REE; low-Ti basalts – depleted in light REE; high-Ti basalts – with flat REE patterns. Much of the variation between the magma types can be explained in terms of different melt fractions of the mantle source, although there were two separate mantle sources one light REE depleted, the other not. The interleaving of the basalts and komatiites produced by this melting indicates that the two mantle sources were melted simultaneously. The simplest model with which to explain these complex melting processes is during melting within a rising mantle plume in which there were two different mantle compositions. The very high proportion of komatiites in the Sula Mountains relative to other greenstone belts suggests either extensive deep melting and/or the absence of a thick pre-existing crust which would have acted as a “filter” to komatiite eruption. Received: 10 February 1998 / Accepted: 28 July 1998  相似文献   

12.
High-alumina basalts and basic andesites, which represent the most “primitive” magma types of the Cenozoic andesitic series of Sardinia, show a spatial chemical zonation with respect to REE. The basaltic rocks from the northern and south-central part of the island have REE patterns typical of calc-alkaline rocks with an enrichment of light REE and fractionation of heavy REE. In contrast, those from the southernmost part have a pattern similar to typical continental tholeiites with only a small light-REE enrichment and unfractionated heavy REE.The present data suggest that basaltic rocks may be formed by anatexis of upper-mantle material with mineral assemblages containing either garnet (calc-alkaline rocks) or spinel (rocks of tholeiitic affinities). The presence of garnet or spinel could merely reflect mineral phase transformation and indicates a different depth of fusion for the various types of basaltic rocks with those of tholeiitic affinities originating at a shallower depth than the calcalkaline rocks. The REE data are consistent with the generation of the basaltic rocks by partial melting of mantle peridotite overlying a subducted plate.  相似文献   

13.
Nine samples of blueschist facies metabasic rocks and four samples of associated metasedimentary lithologies were analysed for REE contents and Nd isotopic composition. Sampling includes the main rock types exposed on Groix, concentrating on those metabasic rocks with least dispersed Rb---Sr systems. The REE abundance patterns appear not to have suffered significant alteration since emplacement of the protolith magma despite subsequent blueschist facies metamorphism. The data, when integrated into a wider geochemical data-base, allow the identification and characterization of both tholeiitic and alkaline magma-types in the original igneous suite which was differentiated from depleted mantle sources. The basalts probably originated in an oceanic context. Some sediments are predominantly volcaniclastic, in which a continental crustal component may be recognized. Other sediments are closer in composition to continental crust with variable additions of tholeiitic or alkali-basalt debris. The volcanic-sedimentary assemblage on Groix is suggestive of ocean-island magmatic activity associated with a sedimentary sequence derived from a nearby continent.  相似文献   

14.
The Western Cordillera of Colombia (WCC) is part of the Basic Igneous Complex (BIC), which is one of the world's largest ophiolitic complexes, extending from Costa Rica through Panama and Colombia to Ecuador. Major and trace element data on 32 volcanic rocks from the central and northern parts of the Western Cordillera are presented; no data have been available to date for volcanic rocks from the northern parts of the Western Cordillera. Petrographical and geochemical investigations show that the rocks are altered and have undergone low-grade metamorphism. The subalkaline rocks are represented by tholeiitic basalts, calc-alkaline basic andesites, andesites, and one dacite. It is concluded that a mature oceanic island arc existed in the Cretaceous, in what is now the northern part of the Western Cordillera. The tectonics of the region, particularly the intensive imbrication of the chain, indicates the presence of a paleo-subduction zone with an oceanic island arc that accreted on the old continental margin. These new data, combined with new and previous data from the central part of the BIC of Colombia, suggest that volcanic rocks of the Western Cordillera can be interpreted as allochthonous slabs. These slabs were imbricated with back-arc and fore-arc sediments and tonalitic bodies during the closing of a back-arc basin in northwestern South America and accretion of an oceanic island arc. Oblique subduction accreted these different areas to the continental margin during Late Cretaceous and early Tertiary times. Two plate-tectonic models are proposed: a) development of the calc-alkaline volcanic rocks in the northern parts of the Western Cordillera, separated by tholeiitic rocks, formed along a transform fault represented by the tholeiitic basalts of the central and southern parts of the Western Cordillera; or b) development of an oceanic island arc along the Cretaceous continental margin of northwestern South America. In the central and southern parts of this island arc, accretion took place early and therefore only an island-arc tholeiitic suite was formed.  相似文献   

15.
New geochemical data on volcanic rocks and the first U-Pb zircon ages for the Kalikorva structure made it possible to determine the time and conditions of their formation and constrain geodynamic models. The lower sequences of the Kalikorva structure is dominated by metatholeiites with high MgO, Cr, and Ni contents, high Mg#, and REE distribution patterns close to the mantle level. They contain rare komatiite interlayers and lenses of pyroxenites and peridotites and can be considered as products of the deep melting of mantle material. At the same time, the tholeiitic metabasalts bear island-arc signatures and are intercalated with metagraywackes and metadacites (adakites). This rock association could be formed under spreading conditions at the beginning of an island-arc regime. The upper sequence is dominated by metagraywackes and contains diverse rocks with both MORB (tholeiitic and komatiitic basalts) and island-arc (calc-alkaline andesite and dacites, subalkaline basalts, and picritic basalts) affinity, which is typical of back-arc basins. The U-Pb dating of zircons from the metadacites and detrital zircons from the metagraywackes of the Kalikorva structure yielded similar ages of 2785 ± 13 and 2766 ± 21 Ma, respectively. They coincide with the age of the late volcanic complex of the Hisovaara Group of the Hisovaara structure (2780 Ma). Both complexes include island-arc associations with subduction signatures and contain adakites, Nb-Ti basalts, and basaltic andesites. The metagraywackes and metadacites of the Chupa sequence of the Belomorian mobile belt are older than the similar rocks of the Kalikorva complex and have an age of 2870 ± 30 Ma. Ages of 2735 ± 20 Ma and 2720 ± 4 Ma were previously obtained for the metaandesites of the Kichany volcanogenic complex, which could be an even younger volcanic arc.  相似文献   

16.
胡军  王核  黄朝阳 《岩石学报》2016,32(6):1699-1714
甜水海地块西段的种羊场地区发育一套互层状产出的玄武岩-玄武安山岩-流纹岩,本文对其进行了岩石学、同位素年代学和地球化学研究。结果表明,流纹岩LA-ICP-MS锆石U-Pb定年获得三组年龄:343.5±4.1Ma表明火山岩的形成时代为早石炭纪,2439±26Ma和1988±36Ma说明甜水海地块存在前寒武纪结晶基底。其中玄武质岩石岩性从拉斑系列、钙碱性系列向碱性系列过渡,呈现出E-MORB(OIB)、大陆板内拉张和岛弧的混合特征,与典型弧后盆地Okinawa玄武岩有一定的差异,表明其可能是异常陆缘弧后盆地拉张裂解的产物。玄武质岩石和流纹岩的主量元素、稀土元素和微量元素比值对的差异表明它们不是同源岩浆演化的产物,玄武质岩石的源区为类似E-MORB(OIB)的岩石圈地幔,且发生了部分熔融,原始岩浆上升过程中经历了矿物分离结晶和地壳混染作用。流纹岩属于高硅高碱的钙碱性火山岩,是上地壳部分熔融的产物。种羊场早石炭纪火山岩可能代表了古特提洋西端早期扩张的记录,为西昆仑-喀喇昆仑地区晚古生代多岛洋格局提供了新的证据。  相似文献   

17.
分布于甘肃省榆中县兴隆山地区的兴隆山岩群为一套浅变质火山岩与浅变质碎屑岩所组成的岩石组合,其火山岩主要出露于兴隆山岩群中岩组和上岩组。兴隆山岩群火山岩岩性主要为变质玄武岩,具有低w(K2O)、w(Na2O+K20)和w(TiO2)的特点,且w(TiO2)和w(P2O5)接近于洋中脊玄武岩的平均质量分数,为亚碱性的拉斑玄武岩系列,火山岩稀土元素总量低,轻、重稀土元素分馏不明显,稀土元素配分曲线为轻稀土元素略亏损、重稀土元素平坦型,与洋中脊玄武岩的配分曲线类似,火山岩大离子亲石元素相对富集,高场强元素和重稀土元素平坦,稀土元素、微量元素特征及构造环境判别显示兴隆山岩群的火山岩形成于中元古代秦祁昆多岛洋中部略富集的E型洋中脊的海底扩张环境。  相似文献   

18.
A coherent ophiolitic complex of pyroxenite, serpentinite, metagabbro, mafic volcanics, felsic volcanics and sediments crops out in NW Maine, adjacent to the Chain Lakes massif. The complex (here informally referred to as the Boil Mountain ophiolitic complex) is about 500 m.y. old. The volcanic sequence is not typical of ophiolites in that it contains a large proportion of felsic volcanics. The mafic volcanics are divided into two geochemical groups. A stratigraphically lower group is depleted in Ti, Zr, Y, Cr and REE contents similar to basalts from supra-subduction zone ophiolites. An upper mafic group has trace element contents similar to normal mid-ocean ridge basalts. The felsic volcanics are mostly rhyolitic and similar to low-K rhyolites found in the forearc of the Marianas trench and in an island arc sequence in the Klamath Mountains, California. The flat REE patterns of the felsic volcanic rocks are similar to those found in siliceous rocks in the Oman ophiolite. The presence of thick sequences of felsic volcanics, the abundance of pyroxenite, the low Ti, Zr and REE contents of some mafic rocks, the flat REE patterns of the felsic volcanics, and the composition of clinopyroxene all suggest the complex was formed in the vicinity of a subduction zone. The complex may be correlated with ophiolitic fragments in the eastern part of the Dunnage Zone in Newfoundland, rather than the main ophiolite belt of the western Appalachians.  相似文献   

19.
月照-琵琶寺地区的变质火山岩出露于甘肃武都县境内,夹在泥盆系和前震旦碧口群地层之间.按地球化学分类,火山岩可划分为双峰式和碱性两个系列.双峰式火山岩系由低K富Na拉斑玄武岩和酸性英安岩、流纹岩组成.该玄武岩具有类似MORB的微量元素特征,平坦的稀土配分模式,但富Th贫Nb显示其受到陆壳混染的影响.该套火山岩总体特征指示其为大陆裂谷向成熟洋盆转化阶段的产物,从而推测本区火山岩可能为勉略古洋盆西延的分支产物.  相似文献   

20.
N. I. Volkova  V. I. Budanov 《Lithos》1999,47(3-4):201-216
The Fan–Karategin metamorphic belt, South Tianshan, Tajikistan, is regarded to be an ancient subduction–accretionary complex and is composed of three tectonostratigraphic units which display lithologies consistent with different tectonic settings. The mafic schists, which make up the major part of the older unit of the belt, contain both alkali and tholeiitic metabasalts. On the basis of rare-earth and other immobile element characteristics, the alkali metabasalts are akin to within-plate ocean island basalts, whereas the tholeiitic metabasalts resemble E-type MORB. The association is interpreted to have been formed on seamount-like structures under a within-plate plume. Bedded cherts and marbles in the unit are regarded as ancient pelagic sediments and carbonate caps developed upon basaltic seamounts, respectively. Dismemberment of the seamount-related basalts and pelagic sediments and the high-P/low-T prograde metamorphism of the unit rocks up to transitional blueschist/greenschist facies was the result of paleoseamount submergence into a subduction zone. This unit is tectonically overlain by arc-derived metavolcanic unit and a disrupted, mainly clastic unit of Upper Ordovician–Lower Silurian age. Metavolcanic and metasedimentary rocks of the two upper units have geochemical characteristics compatible with subduction-related origin. The lithological assemblages of the individual units and their juxtaposition suggest an origin involving collision–accretionary processes. The Fan–Karategin belt is a subduction–accretionary complex which formed during subduction of oceanic crust under a volcanic arc and was subjected to tectonic juxtaposition and imbrication of seamount, deep-sea, trench and volcanic arc sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号