首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the light of progressive depletion of groundwater reservoir and water quality deterioration of the Independence aquifer, an investigation on chemical data of dissolved major and minor constituents in 246 recent groundwater samples was performed. The main objective was the detection of processes responsible for the geochemical evolution and mineralization throughout the area. Multivariate techniques revealed different sources of solutes (a) dissolution of calcium and magnesium carbonate minerals, (b) weathering of acid volcanic minerals, (c) alteration of manganese containing alkaline silicates, (d) leaching of halite deposits of meteoric origin, (e) contamination from agricultural and urban wastewaters, and (f) evaporative effects due to intensive irrigation. Although nitrate contamination is associated with pollution from intensive cultivated areas, natural contamination plays an important role in the study area. The investigation reveals that weathering of acid volcanic rocks (rhyolite) and oxidation of arsenic bearing sulfide minerals are the responsible processes for high fluorine (up to 16 mg/l) and arsenic (up to 0.12 mg/l) contents, respectively, exceeding the Mexican maximum admissible concentration for drinking water. Except for kaolinite, all recharge processes are dissolution oriented (CO2, calcite, dolomite, K-feldspar, plagioclase). Silicate precipitation (amorphous silica and chalcedony) is of growing importance in discharge zones. Cation exchange is not an important issue in the whole study area.  相似文献   

2.
In this study, the changes in the chemical composition of the groundwater along a flow path were examined by using the water samples collected from unconfined, semi-confined and confined parts of the Karasu karstic aquifer. It was determined that transport of bicarbonate, calcium, and magnesium was dominant in unconfined and semi-confined parts of the aquifer, whereas calcite and dolomite precipitate in the confined parts. On the other hand, gypsum dissolution is present in all parts of the aquifer. In addition, the computed saturation indices explain the occurrences and precipitation of travertines in the Goksu Valley, which is the discharge area for the aquifer. Electronic Publication  相似文献   

3.
人类活动影响下娘子关岩溶水系统地球化学演化   总被引:17,自引:5,他引:12  
王焰新  高旭波 《中国岩溶》2009,28(2):103-102
娘子关泉是我国北方最大的岩溶泉之一,也是阳泉市工农业生产和人民生活的重要供水水源。地下水地球化学演化分析表明,在地下水由补给区向排泄区运移过程中,除固有的水岩相互作用外,由于受采矿活动和地表水入渗补给的影响,岩溶水由低离子含量的HCO3-SO4或HCO3型水逐渐成为SO4型、SO4-HCO3型和SO4-HCO3-Cl型水。在泉群集中排泄区,区域流动系统与局部流动系统的地下水发生混合作用,最终形成了水质相对良好的HCO3-SO4型或SO4-HCO3型岩溶泉水。在此过程中,地下水对方解石和白云石也由最初的溶解作用演变为沉淀再结晶。尽管石膏呈持续溶解现象,但在采煤活动严重影响区域,石膏的沉淀也可能出现。地球化学模拟表明,在岩溶含水层中,地下水首先以方解石(白云石)的溶解为主;随着石膏溶解数量的增加,方解石(白云石)的溶解开始受到抑制,进而发生沉淀,石膏的溶解成为控制地下水水化学的主导过程。当矿坑水混入时,地下水相对石膏过饱和,地下水对碳酸盐岩含水介质的溶蚀能力得到增强。随着水岩反应的演进,铁氢氧化物大量沉淀,通过共沉淀和吸附作用去除了地下水中的重金属类污染物。   相似文献   

4.
江汉平原东北部地区高铁锰地下水成因与分布规律   总被引:1,自引:0,他引:1       下载免费PDF全文
肖港地区位于江汉平原东北部,属于大别山连片贫困区和贫水区,地下水资源较贫乏,且地下水水质不佳,水中铁锰离子含量普遍超过了国家饮用水标准。为查明高铁锰地下水成因及空间分布规律,服务区内地下水开发利用及安全供水问题,系统采集区内岩石、土壤和地下水样品,测试岩土与地下水中铁锰的含量,分析地下水中铁锰含量与含水层沉积物的铁锰含量、地下水的氧化还原条件和酸碱度之间的关系。结果表明:江汉平原东北部地区地下水中铁锰超标现象普遍存在,其中锰的超标率大于铁,第四系孔隙潜水超标最严重,铁锰最大浓度分别达到44.88 mg/L和19.21 mg/L。研究区岩土中铁锰氧化物为地下水中铁锰提供了物质来源,弱酸性、强还原环境为沉积物中铁锰的溶解释放提供了有利条件,总体上从研究区东西两侧(补给、径流区)向中部第四系孔隙潜水含水层(排泄区),沿地下水流向Eh值、pH值逐渐减小,铁锰含量逐渐增大,形成北北东向带状分布的高铁锰地下水区。  相似文献   

5.
Evaporative process plays a dominant role in determining the water chemistry of the springs at Teels Marsh, a closed basin in western Nevada. Analysis of the spring waters indicates that calcium, magnesium, sulfate, and silica are removed from solution during dry periods, even though groundwater is undersaturated with respect to gypsum, amorphous silica, and sepiolite. The removal mechanism is precipitation of authigenic phases such as gypsum above the water table, in the vadose zone.In episodes of rain and snowfall in which none of the waters enters the phreatic zone, ions in the rain and snow accumulate near the ground surface. This accumulation of material, together with the sparse rain and snowfall, inhibits chemical weathering of silicate minerals. Only at high elevations in the basin is there sufficient fluxing of water through the alluvium for silicate weathering to make a significant contribution to the sodium content of the springs. When a sufficiently heavy rainfall occurs, salts are partially dissolved and the ions transported to the permanent groundwater. The kinetics of dissolution of secondary phases in the vadose zone exert an important control on the composition of the springs.  相似文献   

6.
Surface water and groundwater samples were collected from 20 locations, situated in the vicinity of the abandoned coal mine fields south of Bochum. The main objective of this research is to assess the environmental impacts of these mines on the surface water and groundwater quality as well as to determine the factors controlling these impacts. The water samples were collected from stream sources, groundwater, surface water and engineered channels during April 2011. Physicochemical parameters were measured during fieldwork. Water samples were analysed for major ions and aluminium, iron, manganese, ferrous iron, zinc and hydrogen sulphide. The hydrochemistry of the surface water and the groundwater of this area is characterized by near-neutral to alkaline conditions, represented by predominance of calcium bicarbonate and sometimes calcium sulphate water types. Hence, the surface water and the groundwater quality in this region is significantly affected by abandoned coal mines. These effects resulted from oxidation of iron disulphide minerals that release iron, sulphate and hydrogen. The presence of carbonate-rich materials, which contained within the landfilling materials, has led the releasing of calcium, magnesium and bicarbonate. These materials could be the main source responsible for raising the alkalinity of the affected water. The environmental hazard of the abandoned coal mines in this area is related to the high concentration of Fe especially in the groundwater that possess the highest Fe concentration compared to other water sources: the Fe is 18 times larger than the allowed value in drinking water. Significant spatial variations of the water pollution were noted in this study. For this reason, the environmental hazards of the abandoned coal mines in Germany should be considered at closure of coal mines in the near future. Otherwise, these mines will be sources of environmental threats unless all necessary measures are taken to reduce their impact.  相似文献   

7.
The aim is to define the mechanism of chemical reactions that are responsible for the salinization of the Azraq basin along groundwater flow path, using inverse modeling technique by PHREEQC Interactive 2.8 for Windows. The chemical analysis of representative groundwater samples was used to predict the causes of salinization of groundwater. In addition, the saturation indices analysis was used to characterize the geochemical processes that led to the dissolution of mineral constituents within the groundwater aquifer system. According to the modeling results, it was noted that the groundwater at the recharge area was undersaturated with respect to calcite, dolomite, gypsum, anhydrite, and halite. Thus, the water dissolved these minerals during water rock interaction, and therefore, the concentration of Ca, Mg, Na, and SO4 increased along the groundwater flow path. Furthermore, the groundwater at the discharge area was oversaturated with respect to calcite and dolomite. This meant that the water would precipitate these minerals along the flow path, while the water was undersaturated with respect to gypsum and halite throughout the simulated path; this showed the dissolution processes that take place during water-rock interaction. Therefore, the salinity of the groundwater increased significantly along the groundwater flow paths.  相似文献   

8.
经过野外现场调查和取样分析及室内研究得知南阳油田地下水已遭受不同程度的有机物污染,且污染范围可能进一步向油田南部扩散。根据近似地下水流线方向上地下水中总油质量浓度和Fe,Mn等无机组分的变化势态,结合含水介质化学分析结果,发现硫酸盐、Fe和Mn可作为地下水有机污染和地球化学标志物。在含水介质中Fe和Mn质量浓度较高的地方,地下水有机污染物降解速度快,含水介质中Fe和Mn的氧化物和氢氧化物的还原作用导致了含水层介质中Fe和Mn的缺乏和地下水中溶解Fe和Mn的积聚;在含水介质中Fe和Mn质量浓度低的地方,地下水中的有机物质量浓度并没有降低,相应地地下水中溶解Fe和Mn的质量浓度也很低。同时,由于有机污染物的存在使地下水中硫酸盐被还原,导致城下水中硫酸盐质量浓度偏低,且地下水中Fe对有机物污染的敏感性比Mn强。  相似文献   

9.
To reveal the geochemical characters of water coproduced with coalbed gas and shallow groundwater,water samples were collected from 12 wells of coalbed methane and 7 wells of shallow groundwater.The pH,CODMn,fCO2,total dissolved solids (TDS),total hardness,and concentrations of metasilicic acid,sodium and kalium,calcium ion,magnesium ion,ammonium iron,bicarbonate ion,carbonate,chloride,sulfate ion,nitrate ion,fluoride,lithium,zinc,nickel,manganese,iron,boron,barium,etc.of the samples were measured.Research results showed the following:(1) Concentrations of TDS,chloride,fluoride,sodium and kalium,ammonium,iron,and barium in the water coproduced with coalbed gas exceeded the national standards of China; however,physical,chemical,and biological properties of shallow groundwater could meet the national standard.(2) The water produced from coalbed contained mainly Na-Cl·HCO3,with average TDS of 4588.5 ppm,whereas shallow groundwater contained a mixture of chemicals including Na.Mg.Ca-HCO3·SO4 and Na.Mg-HCO3·SO4,with average TDS of 663.8 ppm.(3) In general,it was observed that bicarbonate and sodium accumulated in a reducing environment and deeper system,while depletion of hydrogen ions and dissolution of sulfate,calcium,and magnesium occurred in a redox environment and shallow system.(4) Sodium and kalium,ammonium,chloride,and bicarbonate ions were the main ions found in the study area.  相似文献   

10.
Changes in water quality in the North Fork of the Humboldt River, Nevada are caused by weathering of waste rock from an inactive Carlin-type gold mine. Review of historical water-quality data, monthly water sampling, and continuous monitoring of water-quality parameters were used to quantify these impacts. River water pH, which ranged between 7 and 8, did not show statistically significant variation from upstream of the mine to downstream. Several constituents, most notably sulfate, calcium, and magnesium, showed statistically significant increases in dissolved-ion concentrations. These data, along with geochemical modeling, suggest that oxidation of sulfide minerals and in situ acid neutralization by carbonate host rocks are occurring. Large increases in dissolved-ion concentrations were observed twice a year—during spring snow melt and the onset of the winter precipitation season. These spikes are likely caused by flushing of pore waters that have reacted with waste rock during months-long periods when shallow groundwater recharge is not occurring.  相似文献   

11.
The purpose of this study is to achieve an understanding of the failure mechanisms which caused the Eaux-Bonnes landslide. The geological investigations carried out on the slope of the landslide showed that the sliding mass was cut by numerous faults. The factors controlling the landslide failure were complex, and it is known that neither earthquakes nor heavy precipitation could have triggered the disruption. The groundwater within the solid rock mass has been surveyed, because significant precipitation events during the 2 years preceding the beginning of the paroxysmal phase of the landslide could have led to an increase in pore water pressure along these fractures, thereby triggering the landslide. In order to achieve a full understanding of the failure mechanism, and to identify the origin of the groundwater, a hydrogeochemical survey was carried out over a period of 1 year. The results reveal the existence of high sulphate concentrations in the groundwater originating in springs located at the bottom of the landslide. The sulphate concentrations are correlated with high calcium concentrations, and clearly indicate the presence of gypsum in the vicinity of the lower reaches of the landslide. The presence of gypsum in this area of the Pyrenees suggests that deep groundwater played a role in triggering the landslide.  相似文献   

12.
Source of salinity in the groundwater of Lenjanat Plain,Isfahan, Iran   总被引:1,自引:1,他引:0  
The present study aimed at identifying the salinity source in the groundwater of Lenjanat Plain. To do so, non-isotopic geochemical methods were employed: groundwater samples were collected seasonally from 33 wells widespread in the area, and physicochemical parameters as well as major and minor elements were measured in the 132 samples. The data collected from the field and laboratory measurements were interpreted through statistical and hydrogeochemical graphs, mass ratios and saturation indexes obtained from modeling. The results revealed that hydrogeochemical properties of the study aquifer were controlled by rock/water interactions including ion exchange, dissolution of evaporation deposits (halite and gypsum) and precipitation/dissolution of carbonates. Based on the values of Cl/Br ratio in Lenjanat groundwater (329–4,492), dissolution of evaporation deposits in aquifer was the main cause for groundwater salinity. Considering the Lenjanat groundwater geochemical properties, the data confirm the reported Cl/Br ratios for groundwater affected by the dissolution of evaporation deposits (Cl/Br > 300) and overlaps with the range of Cl/Br ratios for domestic sewage effluent groundwater. Selecting the best chemical components and their ratios in non-isotopic geochemical methods provides an accurate distinction between sources of groundwater salinity.  相似文献   

13.
中国新疆矿床成矿系列类型   总被引:6,自引:0,他引:6  
研究认为在不同时代、不同地质构造单元中重复出现的矿床成矿系列,可称为矿床成矿系列类型。新疆主要矿床成矿系列类型带有鲜明的古生代造山带成矿作用特点,它们联系于新疆各造山带古生代地壳发展的拉张型过渡壳-洋壳-汇聚型过渡壳-古生代新陆壳的各特定阶段,与各阶段地质构造作用密不可分。矿床成矿系列类型本身也随着地壳发展、地壳成熟度的提高而有规律地演化  相似文献   

14.
伦会荣  李玉明 《山东地质》2013,(10):109-112
灰岩样品的主要成分为碳酸钙,而镁、钾、钠、铝、钛、铁、锰的含量非常低,测试的灵敏度要求很高。该文采用一次溶矿电感耦合等离子体法直接测试灰岩中的镁、钾、钠、铝、钛、铁、锰。实验表明:在5%的盐酸介质中测试镁、钾、钠、铝、钛、铁、锰能取得很好的效果。通过测试国家标准样品,与国家标准值相比较,分析结果基本一致,准确度和精密度均令人满意,镁、钾、钠、铝、钛、铁、锰元素的相对标准偏差≤0.07%。钙元素的标准偏差≤0.15%。  相似文献   

15.
Tunnels play a key role in many transportation concepts. The swelling of clay–sulfate rocks leads to serious damage to many tunnels crossing such rock, producing great difficulties and high extra costs in tunnel engineering. The swelling is caused by the transformation of the sulfate mineral anhydrite into gypsum, entailing a 60% volume increase. The transformation involves anhydrite dissolution in water, transport of the solution with groundwater flow, and gypsum precipitation at a different location. Therefore, the knowledge of groundwater flow systems at the tunnel and adjacent areas is essential to better understand the swelling processes. The present study investigates the groundwater flow systems at the Chienberg tunnel in Switzerland before and after the tunnel excavation, based on numerical flow modeling. The models include faults and the hydrostratigraphic layering in the subsurface to assess the role of the hydrogeological setting. The results of this study indicate effects on groundwater flow caused by the tunneling, which may trigger rock swelling by favoring anhydrite dissolution and gypsum precipitation, including (1) increase of flow rates around the tunnel, (2) broadened, shifted and more distributed capture zones leading to a change in origin and age of groundwater, (3) access of groundwater from preferential flow paths (e.g. faults) due to the drainage effect of the tunnel, and (4) change in geochemical equilibrium conditions because of decreased pore water pressures in the tunnel area.  相似文献   

16.
Freshwater carbonates (tufas) develop today from the Arctic to the tropics, many being localized about springs and upper water courses. Some Quaternary tufas, especially in the Mediterranean region, extend over tens of square kilometres and exceed 30 m in thickness. Radiometric dating of Holocene deposits shows that many have accumulated at an average rate of 1 mm year?1. However, local precipitation may be much faster and some Holocene deposits may even have outpaced their tropical marine carbonate counterparts. Recently, the study of active sites has attempted to quantify the precipitation mechanisms which lead to tufa deposition. However, field observation and sampling procedures suffer from the inherent disadvantages of uncontrolled fluctuations in environmental conditions during the study programme. These disadvantages compromise any interpretations, particularly where controls on spar versus micrite precipitation are concerned. Many of these problems have been overcome in the current study by the construction and operation of laboratory mesocosm flumes which simulate the natural conditions (e.g. pH, flow rate, ambient temperature and daylight) in which freshwater carbonate (tufa) is deposited. Three mesocosms were supplied with natural river water from tufa precipitating streams and two mesocosms were supplied with UV‐treated (sterile) river water from the same source. One of the untreated flume mesocosms was linked with a calcium reactor, which replaced calcium ions removed during the precipitation process in order to maintain tufa growth over extended experimental runs. Low‐magnesium calcite precipitates (both rhombic sparite grown from long‐crystallite dendrites and short‐crystallite dendrite triad precursors) and micrite peloids (grown from spherulitic precursors) were precipitated in intimate association with biofilm (extracellular polymeric substances) within the four mesocosms supplied with natural river water. Virtually, no tufa‐like precipitate was obtained from the flumes supplied with UV‐treated river water. A second extended run flume experiment was also carried out for comparison purposes using a calcium hydroxide solution in deionized water. Collectively, these experiments provide convincing evidence confirming that the presence of a microbial biofilm strongly influences the precipitation of carbonates in riverine freshwater settings. In particular, experimental results show that micro‐peloidal micrite and short‐crystallite calcite dendrites are only produced in the presence of microbial extracellular polymeric substances.  相似文献   

17.
吕晓立  刘景涛  周冰  朱亮 《中国地质》2020,47(6):1765-1775
以新疆塔城盆地80组地下水样品水化学组分测试结果为依据,结合区域地质、水文地质调查资料,研究塔城盆地地下水中铁、锰分布特征及其成因。结果表明,研究区浅层地下水中铁、锰浓度总体较低,局部超标,其空间分布特征基本一致。对比2017年发布的地下水质量标准,地下水中铁、锰超标率依次为25%和5%,深层承压水铁、锰含量均未超标。地下水中铁锰离子浓度受原生地质环境所控,同时叠加人类活动影响,城镇周边人口密集区尤其是排污沟渠附近地下水中耗氧量、溶解性总固体、铁、锰含量明显升高。地下水中铁锰超标连片区域呈条带状或斑块状分布于塔城盆地北部山区、中部冲积平原区以及南部低山丘陵区的铜钼成矿带,受人类活动影响,在塔城市、额敏县及其周边的地表水和地下水重污染区分布有地下水铁、锰重污染点,污染物特别是有机污染物排放所引起的还原环境促使地层中难溶的铁锰矿物的溶解释放。地层中,尤其是矿床及周边地层中高含量的铁锰是地下水中铁锰的重要来源,沉积层中富含丰富的有机质同时叠加人类活动输入所形成的还原条件是研究区地下水中铁、锰迁移和富集的主控因素。  相似文献   

18.
在高放废物处置库场地选择和性能评价中,地下水化学特征是最重要的因素之一。文中以野外水文地球化学调查资料为基础,应用水文地球综合分析方法和地下水地球化学模拟技术,探讨中国高放废物处置库甘肃北山野马泉预选区地下水化学特征、时空分布规律及水岩作用机理。主要结论是:野马泉地区地下水以咸水为主, 具有高矿化的特征,水化学类型以Cl·SO4 Na和SO4·Cl Na型为主,pH值大多在7~8 之间;地下水化学成分显示出明显的分带特征;地下水对石盐和石膏欠饱和,对黄铁矿以及铝硅酸盐过饱和;方解石、钠长石在补给区地下水中呈不饱和状态,在排泄区地下水中呈饱和状态。由水岩作用模拟可知,沿水流路径地下水溶解岩石中的钠长石、黑云母、石盐等矿物,溶解二氧化碳,沉淀析出方解石、伊利石和萤石等矿物;发生明显地下水蒸发作用、二氧化碳溶解作用和Ca2+/ Na+离子交换作用, 说明溶滤、沉淀、离子交换和蒸发浓缩作用是区内地下水化学行为的控制因素。  相似文献   

19.
为研究城市化作用下的岩溶区地下水水质演变状况,基于2008-2012年对老龙洞地下河的pH值、电导率、水温、K+、Na+、Ca2+、Mg2+、HCO3-、Cl-、NO3-、SO42-、PO43-等水物理化学指标的连续监测,分析了老龙洞地下河流域水质的演变趋势,并对2011年8月的单场降雨条件下地下河水质的动态变化进行主成分分析(PCA)。结果表明,在城市化过程中,地下河水Na+、Cl-、PO43-、Ca2+、Mg2+、HCO3-等离子浓度受人类活动影响而明显上升,NO3-、SO42-浓度则因为城市化效应增强和农业活动强度的降低而下降。老龙洞地下河水补给来源复杂,其中碳酸盐岩地质背景、人类活动及水土流失对地下河水质变化起着决定作用。城市化水平的提高、区域环境的变化,使得老龙洞地下河的水质也处于不断变化中,从硝酸盐、硫酸盐的年际变化看,地下河水质已有较大改善。   相似文献   

20.
Overextraction of groundwater is widely occurring along the coast where good quality groundwater is at risk, due to urbanization, tourist development and intensive agriculture. The Sabratah area at the northern central part of Jifarah Plain, Northwest Libya, is a typical area where the contamination of the aquifer in the form of saltwater intrusion, gypsum/anhydrite dissolution and high nitrate concentrations is very developed. Fifty groundwater samples were collected from the study area and analysed for certain parameters that indicate salinization and pollution of the aquifer. The results demonstrate high values of the parameters electrical conductivity, sodium, potassium, magnesium, chloride and sulphate which can be attributed to seawater intrusion. The intensive extraction of groundwater from the aquifer reduces freshwater outflow to the sea, creates drawdown cones and lowering of the water table to as much as 30 m below mean sea level. Irrigation with nitrogen fertilizers and domestic sewage and movement of contaminants in areas of high hydraulic gradients within the drawdown cones probably are responsible for the high nitrate concentration towards the south of the region. Seawater intrusion and deep salt water upconing result in general high SO4 2? concentrations in groundwater near the shoreline, where localized SO4 2? anomalies are also due to the dissolution of sebkha deposits for few wells in the nearby sebkhas. Upstream, the increase in SO4 2? concentrations in the south is ascribed to the dissolution of gypsum at depth in the upper aquifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号