首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Kyser, O'Neil, and Carmichael (1981, 1982) measured the 18O values of coexisting minerals from peridotite nodules in alkali basalts and kimberlites, interpreting the nodules as equilibrium assemblages. Using Ca-Mg-Fe element-partition geothermometric data, they proposed an empirical18O/16O geothermometer: T(°C)=1,151–173–68 2, where is the per mil pyroxene-olivine fractionation. However, this geothermometer has an unusual crossover at 1,150 °C, and in contrast to what might be expected during closed-system equilibrium exchange, the most abundant mineral in the nodules (olivine) shows a much greater range in 18O (+4.4 to +7.5) than the much less abundant pyroxene (all 50 pyroxene analyses from spinel peridotites lie within the interval +5.3 to +6.5). On 18O-olivinevs. 18O-pyroxene diagrams, the mantle nodules exhibit data arrays that cut across the 18O=zero line. These arrays strongly resemble the non-equilibrium quartzfeldspar and feldspar-pyroxene 18O arrays that we now know are diagnostic of hydrothermally altered plutonic igneous rocks. Thus, we have re-interpreted the Kyser et al. data as non-equilibrium phenomena, casting doubt on their empirical geothermometer. The peridotite nodules appear to have been open systems that underwent metasomatic exchange with an external, oxygen-bearing fluid (CO2, magma, H2O, etc.); during this event, the relatively inert pyroxenes exchanged at a much slower rate than did the coexisting olivines and spinels, in agreement with available exchange-rate and diffusion measurements on these minerals. This accounts for the correlation between 18O pyroxene-olivine and the whole-rock 18O of the peridotites, which is a major difficulty with the equilibrium interpretation.Contribution No. 3978, Publications of the Division of Geological and Planetary Sciences, California Institute of Technology  相似文献   

2.
Field and textural relationships have indicated the tectonic emplacement of the Norwegian garnet peridotites as relatively cold intrusions into their present environment. Mineralogical data demonstrate considerable heterogeneity. Olivines and orthopyroxenes in garnet rich peridotites are significantly more ferriferous than those in garnet free peridotites. Mineralogical features indicate that the mineral assemblages have been equilibrated at subsolidus temperatures. However, the hypothesis that these garnet peridotites have resulted from the eclogite facies metamorphism in deep levels of the crust of other peridotite mineral facies assemblages is considered and rejected.Statistical analysis of the bulk rock composition data has substantiated the existence of a very strong linear composition trend, two end members being sufficient to account for almost the whole range of composition variation.The hypothesis favoured is that these peridotites have been involved in partial melting processes in the upper mantle. The Kalskaret garnet peridotite occurrence is considered to represent a case where the picritic partial melt fraction has not been completely liberated but has remained trapped and mixed with the dunitic residual fraction.  相似文献   

3.
Oxygen fugacity (fO2) affects melting, metasomatism, speciation of C–O–H fluids and carbon-rich phases in the upper mantle. fO2 of deep off-craton mantle is poorly known because garnet-peridotite xenoliths are rare in alkali basalts. We examine the redox and thermal state of the lithospheric mantle between the Siberian and North China cratons using new Fe3+/ΣFe ratios in garnet and spinel obtained by M?ssbauer spectroscopy, major element data and PT estimates for 22 peridotite xenoliths as well as published data for 15 xenoliths from Vitim, Russia. Shallow spinel-facies mantle is more oxidized than deep garnet peridotites (average, ?0.1 vs. ?2.5 ΔlogfO2(FMQ)). For intermediate garnet–spinel peridotites, fO2 estimates from spinel-based oxybarometers are 1.5–3.2 ΔlogfO2(FMQ) lower than those from garnet-based oxybarometers. These rocks may be out of phase and chemical inter-mineral equilibrium because the spinel–garnet reaction and concomitant changes in mineral chemistry do not keep up with PT changes (e.g., lithospheric heating by recent volcanism) due to slow diffusion of trivalent cations and because gar-, gar-spl and spl-facies rocks may coexist on centimeter–meter scale. The spinel-based fO2 estimates may not be correct while garnet-based fO2 values provide conditions before the heating. The T (780–1,100?°C) and fO2 ranges of the Vitim xenoliths overlap those of coarse garnet and spinel cratonic peridotites. However, because of a higher geothermal gradient, the deepest Vitim garnet peridotites are more reduced (by 0.5–2.0 ΔlogfO2(FMQ)) than cratonic garnet peridotites at similar depths, and the “water maximum” conditions (>80?% H2O) in the off-craton mantle exist in a more shallow and narrow depth range (60–85?km) than in cratonic roots (100–170?km). The base of the off-craton lithospheric mantle (≥90?km) at 2.5?GPa and 1,150?°C has fO2 of ?3.0 ?logfO2(FMQ), with dominant CH4 and H2O and minor H2 in the fluid. Melting near the base of off-craton mantle lithosphere may be induced by increasing water share in migrating fluids due to oxidation of methane.  相似文献   

4.
The exchange of Ca and Mg between olivine and clinopyroxene has been studied in the CFMS system. Experiments were conducted in a piston-cylinder apparatus in the temperature range of 1,100–1,300° C and the pressure range 10–30 kbar. Results confirm the previous suggestion (Adams and Bishop 1982) that this reaction has a sufficiently large V° to be used as a geobarometer in several basic and ultrabasic systems. Experimental results were corrected for compositional effects using recent activity-composition models for quadrilateral pyroxenes and olivines. The corrected results indicate that the exchange reaction has aH 1 bar of 34,900 J, a S° of -7.25J/deg, and a V° of -0.489 J/bar. Corrected results agree well with calculations based on the thermodynamic properties of the endmembers.Application of the olivine-clinopyroxene geobarometer to many systems will require additional calibration of non CFMS components. Preliminary pressure estimates based on simple assumptions about the activity relations of these components have been made for spinel lherzolites from southwestern United States and coarse and porphyroclastic garnet lherzolites from southern Africa. A geotherm calculated from spinel lherzolites near the Rio Grande rift is consistent with a geophysical geotherm based on near-surface heat-flow measurements of 100 mW/m2 or greater. Results on garnet lherzolites yield a southern African geotherm with no inflection which falls at somewhat higher temperatures than pyroxene geotherms calculated for the same area.  相似文献   

5.
Kyser, O'Neil, and Carmichael (1981, 1982) measured the 18O values of coexisting minerals from peridotite nodules in alkali basalts and kimberlites, interpreting the nodules as equilibrium assemblages. Based mainly on the systematics revealed in 18O-olivinevs. 18O-pyroxene diagrams, we have re-interpreted the Kyser et al. data as non-equilibrium phenomena. On such- diagrams, the mantle nodules exhibit data arrays that cut across the 18O=zero line; these arrays strongly resemble the non-equilibrium quartz-feldspar and feldspar-pyroxene 18O arrays that we now know arediagnostic of hydrothermally altered plutonic igneous rocks. Thus, the peridotites appear to have been open systems that underwent metasomatic exchange with an external, oxygen-bearing fluid (CO2 magma, H2O, etc.); during this event, the relatively inert pyroxenes exchanged at a much slower rate than did the coexisting olivines and spinels. This accounts for the correlation between 18O pyroxene-olivine and the whole-rock 18O of the peridotites, which is a major difficulty with the equilibrium interpretation. The metasomatic18O-enrichments of the peridotites can be related to metasomatic enrichments in LIL elements and the development of amphibole and phlogopite. This type of precursor metasomatic activity can explain the development of alkali basalt magmas, as well as leucitites and nephelinites (all of which tend to be slightly18O-rich relative to MORB, with 18O=+6 to +7.5). Fluids with appropriate 18O values to explain the open-system metasomatic effects can be produced by exchange with ancient subducted oceanic crust (eclogite). However, fluid/rock ratios of about 0.4 to 2.5 are required, indicating that this cannot be a mantle-wide phenomenon. Also, these non-equilibrium effects are apparently transient phenomena, probably associated with the eruptive events that brought the nodules to the surface; at characteristic mantle temperatures, the effects would likely disappear in a few tens of millions of years, or less, implying that the ultramafic nodules are not typical samples of the upper mantle.Contribution No. 4156, Publications of the Division of Geological and Planetary Sciences, California Institute of Technology  相似文献   

6.
Ferric iron in mantle-derived garnets   总被引:4,自引:0,他引:4  
The oxidation state of a mantle assemblage may be defined by heterogeneous reactions between oxygen and iron-bearing minerals. In spinel lherzolites, the presence of Fe3+ in spinel allows use of the assemblage olivine-orthopyroxene-spinel to define f O 2 at fixed T and P. As a first step towards establishing an analogous reaction for garnet lherzolites, garnets from mantle-derived xenoliths from South Africa and the USSR have been analyzed with 57Fe Mössbauer spectroscopy at 298 and 77K to determine Fe3+/Fe2+ and the coordination state of iron. Garnets from South African alkremites (pyrope+Mg-spinel) and eclogites, as well as garnet-spinel and low-temperature garnet lherzolites from both South Afica and the USSR, have Fe3+/Fe<0.07. In contrast, garnets from high-temperature garnet lherzolites from within the Kaapvaal craton of South Africa have Fe3+/Fe>0.10. Ferric iron is octahedrally coordinated, and ferrous iron is present in the dodecahedral site in all samples. The occurrence of significant Fe3+ in these garnets necessitates caution in the use of geothermometers and geobarometers that are applied to mantle samples. For example, the presence of 12% of the Fe as Fe3+ in garnets can increase temperatures calculated from existing Fe/Mg geothermometers by>200°C. The concomitant increase in pressures calculated from geobarometers that use the Al content in orthopyroxene coexisting with garnet are 10–15 kbar. Results of calculations based on heterogeneous equilibria between garnet, olivine, and pyroxene are consistent with the derivation of the peridotite samples from source regions that are relatively oxidized, between the f O 2 of the FMQ (quartz-fayalite-magnetite) buffer and that of the WM buffer. No samples yield values of f O 2 as reduced as IW (iron-wüstite buffer).  相似文献   

7.
This paper describes a suite of peridotite xenoliths. some carrying diamonds at high grades, from the richly diamondiferous early Proterozoic (1180 Ma) Argyle (AK1) lamproite pipe, in northwestern Australia. The peridotites are mostly coarse garnet lherzolites but also include garnet harzburgite, chromite — garnet peridotite, a garnet wehrlite, and an altered spinel peridotite with extremely Cr-rich chromite. In all cases the garnet has been replaced by a kelyphite-like, symplectic intergrowth of Alrich pyroxenes, Al-spinel and secondary silicates. The peridotites have refractory compositions characterized by high Mg/(Mg+Fe) and depletion in lithophile elements (Al2O3 and CaO < 1%, Na2O0.03%) and high field strength cations such as Ti, Zr, Y, and Yb. Olivines have high Mg/(Mg+Fe) (Mg 91–93 ) and, like olivine inclusions in diamonds from the Argyle pipe, contain detectable amounts of Cr2O3 (0.03%–0.07%) but have very low CaO contents (typically 0.04%–0.05%). Enstatites (Mg 92–94 ) have comparatively high Cr2O3 (0.2%–0.45%) and Na2O (up to 0.18%) but very low Al2O3 contents (0.5%–0.7%). Diopsides (Mg 92–94 , Ca/(Ca+Mg+Fe)=0.37–0.43) are Cr-rich (0.7%–1.9% Cr2O3) and have low Al2O3 (0.7%–2.2%) and Na2O (0.5%–1.6%) contents. Many have high K2O contents, typically 0.1%–0.4% but up to 1.3% K2O in one xenolith. The chromite coexisting with former garnet is Mg-and Cr-rich [Mg/(Mg+Fe2+)=0.68–0.72, Cr/(Cr+Al)=0.72–0.79] whereas chromite in the spinel peridotite is even more Cr-rich (65% Cr2O3, Cr/(Cr+Al)=0.85, resembling inclusions in diamond. One highly serpentinized former garnet peridotite contains a Cr-rich (up to 13% Cr2O3) titanate resembling armalcolite but containing significant K2O (1%–2.5%), CaO (0.6%–2.2%), ZrO2 (0.1%–0.8%), SrO (0.1%–0.3%), and BaO (up to 0.58%): this appears to have formed as an overprint of the primary mineralogy. Temperatures and pressures estimated from coexisting pyroxenes and reconstructed garnet compositions indicate that the garnet lherzolites equilibrated at 1140°–1290° C and 5.0–5.9 GPa (160–190 km depth), within the stability field of diamond. Oxygen fugacties within the diamond forming environment are estimated from spinel-bearing assemblages to be reducing, with f O2 between MW and IW. The presence of significant K in the diopsides from the peridotite xenoliths and in diopsides from heavy mineral concentrate from the Argyle pipe implies metasomatic enrichment of the subcontinental lithosphere within the diamond stability field. The P-T conditions estimated for the Argyle peridotites demonstrate that diamondiferous lamproite magmas incorporate mantle xenoliths from similar depths to kimberlites in cratonic settings, and imply that Proterozoic cratonized orogenic belts can have lithospheric roots of comparable thickness to beneath Archaean cratons. These roots lie at the base of the lithosphere within the stability field of diamond. The xenoliths, the calcic nature of chrome pyropes from heavy mineral concentrate, and the diamond inclusion assemblage indicate that the lighosphere beneath the Western Australian lamproites is mostly depleted lherozolite rather than the harzburgite commonly found beneath Archaean cratons. Nevertheless, the dominance of eclogitic paragenesis inclusions in Argyle diamonds indicates a significant proportion of diamondiferous eclogite is also present. The form, mineral inclusion assemblage, and the C-isotopic composition of diamonds in the peridotite xenoliths suggest that disaggregated diamondiferous peridotites are the source of the planar octahedral diamonds which constitute a minor component of the Argyle production. These diamonds are believed to have formed from mantle carbon in reduced, refractory peridotite (Iherzolite-harzburgite) in contrast to the predominant strongly 13C-depleted eclogitic suite diamonds which contain a recycled crustal carbon component. The source region of the lamproites has undergone long-term (2 Ga) enrichment in incompatible elements.  相似文献   

8.
Sector zoning has been experimentally reproduced in CaMgSi2O6-CaTiAl2O6 clinopyroxene crystals by isothermal crystallization using seed crystals. Element partitioning in different growth sectors and between the core and rim portions in single crystals was analysed in relation to growth rate R and degree of supercooling T. The TiO2 and Al2O3 contents increase with increase in R and T, but when they are compared between different sectors in a single crystal grown at the same T, they correlate negatively with R. The order of faces in respect of contents of TiO2 and Al2O3 is (100)>(110)(010)(111) at T= 13° C and 18° C but changes to (110)>(100)>(010)>(111) at T= 25° C. The growth mechanism is concluded to be controlled by interface kinetics at T= 13–25° C for all these faces, while at T=45° C this relation holds for (100) and (010) faces, but not for (110) and (111), based on the growth rate versus supercooling relation and surface microtopographic observations. The interface kinetics play the essential role in the formation of sector zoning, when the layer growth mechanism takes place.  相似文献   

9.
Twenty spinel peridotite xenoliths from Pliocene alkali basaltic tuffs and lavas of the western Pannonian Basin (Hungary) have been analysed for bulk rock major and trace elements, electron probe mineral compositions, and REE and Sr, Nd isotopes on separated and leached clinopyroxenes. The xenoliths are texturally diverse, including protogranular, porphyroclastic, equigranular and poikilitic textures which can generally be correlated with geochemical features. Protogranular xenoliths are relatively undepleted in Ca, Al, Ti and Na, whereas poikilitic xenoliths are more refractory. LREE-depleted patterns. and MORB-like Nd and Sr values are associated with protogranular peridotites. In contrast, xenoliths with complex textures are generally LREE-enriched. Much of the isotopic variation in the suite (Sr=–20.4 to +10.4, +Nd=+1.8 to +13.7) can be related to interaction between protogranular mantle and melts resembling the host alkali basalts, but a third (high Sr) component may be due to Miocene subduction beneath the region.  相似文献   

10.
The oxygen fugacity condition of equilibration has been carefully determined from a spinel lherzolite from Mongolia, olivine xenocrysts from chrome pyrope-bearing peridotite nodules from kimberlites of Yakutia, and basaltic samples from ocean floor, iron arcs and the continental areas. These indicate that the spinel lherzolites occurring within alkali basalts from Mongolia, equilibrated under an \(f_{O_2 } \) condition similar to that of WM buffer. The diamond and chrome pyrope-bearing peridotites from the kimberlite pipes equilibrated between IW and WM buffers. Some of the ilmenite-bearing peridotite crystallized under \(f_{O_2 } \) conditions similar to that between WM and QFM buffers and chondrites equilibrated below the QFI buffer. It is concluded that during geochemical processes in the upper mantle the \(f_{O_2 } \) conditions vary broadly, and are similar to that between FMQ and IW buffers. There is a dramatic change in the composition of the kimberlitic fluid, which is CH4-bearing at an early stage, but is in equilibrium with H2O and CO2 at a later stage. This is related to mass transfer of fluids from the lower part of the mantle with a low oxidation state to the upper part having a higher \(f_{O_2 } \) condition.  相似文献   

11.
Redox states of lithospheric and asthenospheric upper mantle   总被引:31,自引:7,他引:24  
The oxidation state of lithospheric upper mantle is heterogeneous on a scale of at least four log units. Oxygen fugacities ( ) relative to the FMQ buffer using the olivine-orthopyroxene-spinel equilibrium range from about FMQ-3 to FMQ+1. Isolated samples from cratonic Archaean lithosphere may plot as low as FMQ-5. In shallow Proterozoic and Phanerozoic lithosphere, the relative is predominantly controlled by sliding Fe3+-Fe2+ equilibria. Spinel peridotite xenoliths in continental basalts follow a trend of increasing with increasing refractoriness, to a relative well above graphite stability. This suggests that any relative reduction in lithospheric upper mantle that may occur as a result of stripping lithosphere of its basaltic component is overprinted by later metasomatism and relative oxidation. With increasing pressure and depth in lithosphere, elemental carbon becomes progressively refractory and carbon-bearing equilibria more important for control. The solubility of carbon in H2O-rich fluid (and presumably in H2O-rich small-degree melts) under the P,T conditions of Archaean lithosphere is about an order of magnitude lower than in shallow modern lithosphere, indicating that high-pressure metasomatism may take place under carbon-saturated conditions. The maximum in deep Archaen lithosphere must be constrained by equilibria such as EMOG/D. If the marked chemical depletion and the orthopyroxene-rich nature of Archaean lithospheric xenoliths is caused by carbonatite (as opposed to komatiite) melt segregation, as suggested here, then a realistic lower limit may be given by the H2O +C=CH4+O2 (C-H2O) equilibrium. Below C –H2O a fluid becomes CH4 rather than CO2-bearing and carbonatitic melt presumably unstable. The actual in deep Archaean lithosphere is then a function of the activities of CO2 and MgCO3. Basaltic melts are more oxidized than samples from lithospheric upper mantle. Mid-ocean ridge (MORB) and ocean-island basalts (OIB) range between FMQ-1 (N-MORB) and about FMQ +2 (OIB). The most oxidized basaltic melts are primitive island-arc basalts (IAB) that may fall above FMQ+3. If basalts are accurate probes of their mantle sources, then asthenospheric upper mantle is more oxidized than lithosphere. However, there is a wide range of processes that may alter melt relative to that of the mantle source. These include partial melting, melt segregation, shifts in Fe3+/Fe2+ melt ratios upon decompression, oxygen exchange with ambient mantle during ascent, and low-pressure volatile degassing. Degassing is not very effective in causing large-scale and uniform shifts, while the elimination of buffering equilibria during partial melting is. Upwelling graphite-bearing asthenosphere will decompress along -pressure paths approximately parallel to the graphite saturation surface, involving reduction relative to FMQ. The relative will be constrained to below the CCO equilibrium and will be a function of . Upwelling asthenosphere whose graphite content has been exhausted by partial melting, or melts that have segregated and chemically decoupled from a graphite-bearing residuum will decompress along -decompression paths controlled by continuous Fe3+-Fe2+ solid-melt equilibria. These equilibria will involve increases in relative to the graphite saturation surface and relative to FMQ. Melts that finally segregate from that source and erupt on the earth's surface may then be significantly more oxidized than their mantle sources at depth prior to partial melting. The extent of melt oxidation relative to the mantle source may be directly proportional to the depth of graphite exhaustion in the mantle source.  相似文献   

12.
18O/16O, 34S/32S, and D/H ratios as well as vacuum-fusion H2O+ contents were measured for late Tertiary volcanic basaltic rocks ranging in composition from quartz tholeiites and alkali olivine basalts to melilite-bearing olivine nephelinites and for peridotite xenoliths from the Northern Hessian Depression of W.-Germany. Measured Oisotope ratios in both basalts and peridotites were corrected for variable degree of post-eruption, secondary alteration. The ranges and means of corrected 18O values ( SMOW) for the North Hessian lavas and peridotites are: (i) 8 tholeiites: ca. +6.1 to +7.3 (¯x=+6.6), (ii) 21 alkali olivine basalts: ca. +5.4 to +7.6 (¯x=+6.5), (iii) 19 nepheline basanites, limburgites, and olivine nephelinites: ca. +5.3 to +8.0 (¯x=+6.6), and (iv) 23 peridotites: +5.1 to 7.0 (¯x+6.0). The 34S values ( CDT) for the tholeiites range from –0.6 to +1.4 (¯x=–0.03) and for the alkali basalts range from +0.9 to +8.6 (¯x=+2.5). The approximate D value ( SMOW) of the pristine basalts and peridotites is estimated to have been ca. –90The quartz tholeiites appear to have had a different genetic history than the alkali basalts. Supported by chemical evidence, the 18O and 87Sr enrichment observed in the tholeiites suggests low crustal contamination of parental olivine tholeiite melts, derived from a depleted mantle source. The contamination by crustal partial melts may have occurred in granulitic lower crust during differentiation. By contrast the high 18O and 34S values observed for the alkali basalts and peridotites are best explained in terms of metasomatic alteration of the mantle source region by fluids enriched in 18O, K, and incompatible trace elements prior to partial melting. The 18O-K relationships for the peridotites indicate that the mantle beneath the Northern Hessian Depression has had a complex stable isotope history involving at least two distinct metasomatic events. The earlier event involved a CO2-rich fluid which modified 18O/16O ratios without altering the mineralogical character of the mantle peridotite. The second event involved an aqueous fluid, which mainly altered the clinopyroxene and introduced phlogopite (plus possibly apatite, carbonate, and amphibole). It superimposed an 18O and K enrichment upon a previously altered mantle.  相似文献   

13.
Ferric iron contents of coexisting ortho- and clinopyroxene from spinel lherzolite xenoliths were measured with Mössbauer spectroscopy and found to be significant. In orthopyroxene, the range in Fe3+/Fe is from 0.04 to 0.14; in clinopyroxene, the range is from 0.12 to 0.24. Reactions involving coexisting olivine, orthopyroxene, and clinopyroxene, where either the esseneite (CaFe3+ AlSiO6) or the acmite (NaFe3+Si2O6) component in the clinopyroxene is considered, are used to calculate oxygen fugacities. These oxygen fugacities agree well with those calculated with the olivine-orthopyroxene-spinel oxybarometer. Because these reactions do not involve garnet, spinel, or plagioclase, they may be applied to lherzolites to give internally-consistent oxygen fugacities across the pressure-dependent facies boundaries between plagioclase, spinel, and garnet lherzolite. Another application of this method is to predict the Fe3+/Fe in clinopyroxene coexisting with olivine and orthopyroxene given pressure, temperature, , and the compositions of the coexisting phases in either experimental or natural assemblages. At values of equal to those of the synthetic fayalite-magnetite-quartz buffer, for example, 15–35% of the iron in the clinopyroxenes from these xenoliths would be ferric. The simplifying assumption that all Fe is divalent in silicate phases at geologically — reasonable oxygen fugacities must be re-evaluated.  相似文献   

14.
Compositional dependence of apparent partition coefficient of iron and magnesium between coexisting garnet and clinopyroxene from Mt. Higasiakaisi is studied by means of a multicomponent regular solution model. It is shown that garnet and clinopyroxene solid solutions are positively non-ideal, and the non-ideal parameters according to the symmetric regular solution model are 2.58 kcal and 2.39 kcal, respectively, assuming the equilibration temperature of the mass to be 550° C.Notations a i h activity of component i in phase h - ij interaction parameter of component i and j in a solid solution - i activity coefficient of component i - X i mole fraction of component i - K partition coefficient of Fe and Mg between coexisting garnet and clinopyroxene - K apparent partition coefficient of Fe and Mg between coexisting garnet and clinopyroxene - G 0 difference in free energy of the partition reaction - H 0 difference in enthalpy of the partition reaction - S 0 difference in entropy of the partition reaction - R gas constant - G garnet - Alm almandine component - Py pyrope component - Gr grossular component - Sp spessartine component - CPx clinopyroxene - Hd hedenbergite component - Di diopside component - Jd jadeite component - Ts Tschermac's molecule component Deceased on April 17, 1974.  相似文献   

15.
An analytical approach to the analysis of zoning profiles in minerals is presented that simultaneously accounts for all of the possible continuous reactions that may be operative in a given assemblage. The method involves deriving a system of simultaneous linear differential equations consisting of a Gibbs-Duhem equation for each phase, a set of linearly independent stoichiometric relations among the chemical potentials of phase components in the assemblage, and a set of equations describing the total differential of the slope of the tangent plane to the Gibbs free energy surface of solid solution phases. The variables are the differentials of T, P, chemical potentials of all phase components, and independent compositional terms of solid solution phases. The required input data are entropies, volumes, the compositions of coexisting phases at a reference P and T, and an expression for the curvature of the Gibbs functions for solid solution phases. Results derived are slopes of isopleths (dP/dT, dX/dT or dX/dP) which can be used to contour P-T diagrams with mineral composition.To interpret mineral zoning, T and P can be expressed as functions of n independent composition parameters, where n is the variance of the mineral assemblage. The total differentials of P and T are differential equations that can be solved by finite difference techniques using the derivatives obtained from the analytical formulation of phase equilibria.Results calculated from Zone I and Zone IV garnets of Tracy et al. (1976) indicate that Zone I garnets grew while T increased (T+72° C) and P decreased sharply (P–3 kb). Zone IV garnets zoned in response to decreasing T (T–17° C) and P (P–1 kb). A P-T path calculated for a zoned garnet from the Greinerschiefer series, western Tauern Window, Austria, also indicates growth during decompression (–3kb) and heating (T+15° C). A P-T path calculated for the Wissahickon schist (Crawford and Mark 1982) indicates growth during cooling and compression (T–25 C, P+2.2 kb). The calculated P-T paths differ according to structural environment and can be used to relate mineral growth to tectonic processes.  相似文献   

16.
This comment addresses the interpretation of oxygen fugacitydata for spinel peridotite xenoliths from five Mexican volcanicfields presented by Luhr & Aranda-Gomez (Journal of Petrology,38, 1075–1112, 1997). The postulated east–west increaseof the FMQ (‘relative oxygen fugacity’, where FMQis fayalite–magnetite–quartz) values is inherentto the method and therefore of questionable geological significance.Increases in FMQ do not necessarily mirror oxidation processesin the mantle controlled by subduction-related fluids. KEY WORDS: mantle metasomatism; Mexico; peridotite xenoliths; relative oxygen fugacity  相似文献   

17.
Temperature dependencies of magnetic rotation were measured in micron-sized silicates dispersed in ethanol for two different samples of kaolinite. Magnetic rotation proceeded by balance between thermal agitation energy and magnetic anisotropy energy. Measurements were performed between 195 and 343 K. The field intensity required to achieve magnetic alignment of microcrystals increases with temperature, because of the temperature dependence of paramagnetic anisotropy, and the temperature dependence of thermal agitation energy. The results indicate that the values of magnetic anisotropy of nonmagnetic materials might partially derive from the paramagnetic moments, which derive from paramagnetic impurity ions. The present experiment provides a technical basis for determining the precise values of diamagnetic anisotropy ()DIA from minerals which have a concentration of paramagnetic ions and do not form a single crystal large enough to allow bulk measurements. The values of ()DIA can be obtained by extrapolating the –T relations, which follow the Curie law, to the temperature limits.  相似文献   

18.
Current models for the formation of natural diamond involve either oxidation of a methane-bearing fluid by reaction with oxidized mantle, or reduction of a carbonate-bearing fluid (or melt) by reaction with reduced mantle. Implicit in both models is the ability of the mantle with which the fluid equilibrates to act as an oxidizing or reducing agent, or more simply, to act as a source or sink of O2. If only redox reactions involving iron are operating, the ability of mantle peridotite to fulfill this role in diamond formation may not be sufficient for either model to be viable. Using the recent experimental recalibration of olivine–orthopyroxene–garnet oxybarometers of Stagno et al. (2013), we re-evaluated the global database of ~200 garnet peridotite samples for which the requisite Fe3+/Fe2+ data for garnet exist. Relative to the previous calibration of Gudmundsson and Wood (1995), the new calibration yields somewhat more oxidized values of Δlog fO2 (FMQ), with the divergence increasing from <0.5 units of log fO2 at ~3 GPa to as much as 1.5 units at 5–6.5 GPa. Globally, there is a range of ~4 log units fO2 for samples from the diamond stability field at any given pressure. Most samples are sufficiently reduced such that diamond, rather than carbonate, would be stable, and CHO fluids at these conditions would be H2O-rich (>60 mol%), with CH4 being the next most abundant species. To ascertain the capacity for mantle peridotite to act as a source or sink of O2, we developed a new model to calculate the fO2 for a peridotite at a given P, T, and Fe3+/Fe2+. The results from this model predict 50 ppm or less O2 is required to shift a depleted mantle peridotite the observed four log units of fO2. Coupled with the observed distribution of samples at values of fO2 intermediate between the most reduced (metal-saturated) and most oxidized (carbonate-saturated) possible values for diamond stability, these results demonstrate that peridotites are very poor sinks or sources of O2 for possible redox reactions to form diamond. A corollary of the poor redox buffering capacity of cratonic peridotites is that they can be employed as faithful indicators of the redox state of the last metasomatic fluid that passed through them. We propose that diamond formation from CHO fluids is a predictable consequence either of isobaric cooling or of combined cooling and decompression of the fluid as it migrates upward in the lithosphere. This establishes a petrological basis for the observed close connection between subcalcic garnet and diamond: based on high solidus temperatures of harzburgite and dunite effectively precluding dilution of CHO fluids through incipient melts, such highly depleted cratonic peridotites are the preferred locus of diamond formation. Due to a rapid increase in solidus temperature with increasing CH4 content of the fluid, diamond formation related to reduced CHO fluids may also occur in some cratonic lherzolites.  相似文献   

19.
The oxygen fugacities of 48 mantle xenoliths from 5 localities in southern Siberia (USSR) and Mongolia have been determined. Ferric iron contents of spinels were measured by 57Fe Mössbauer spectroscopy and oxygen fugacities calculated from spinel-olivineorthopyroxene equilibrium. The samples studied represent the major types of upper mantle lithologies including spinel and garnet peridotites and pyroxenites, fertile and depleted peridotites and anhydrous and metasomatized samples which come from diverse tectonic settings. Extensive geochemical and isotope data are also available for these samples. Oxygen fugacity values for most central Asian xenoliths fall within the range observed in peridotite xenoliths from other continental regions at or slightly below the FMQ buffer. However, xenoliths from the Baikal rift zone are the most reduced among xenoliths for which Mössbauer data on spinels are available. They yield fO2 values similar to those in oceanic peridotites and MORBs, while xenoliths in other occurrences have higher fO2s. In general, the continental lithosperic mantle is more oxidized than MORB-like oceanic mantle. This difference seems to be due to incorporation of oxidized material into some parts of the subcontinental mantle as a result of subduction of oceanic crust. Garnet- and garnet-spinel lherzolites from the Baikal rift area have slightly higher oxygen fugacities than shallower spinel lherzolites. Oxygen fugacity does not appear to be correlated with the degree of depletion of peridotites, and its values in peridotites and pyroxenites are very much alike, suggesting that partial melting (at least at moderate degrees) takes place at essentially the same fO2s that are now recorded by the residual material. Modally (amphibole- and phlogopitebearing) and cryptically metasomatized xenoliths from the Baikal rift zone give the same fO2 values as depleted anhydrous peridotites, suggesting that solid-melt-fluid reactions in the continental rift mantle also take place without substantial change in redox state. This is in contrast to other tectonic environments where metasomatism appears to be associated with oxidation.  相似文献   

20.
A new formulation of garnet-biotite Fe–Mg exchange thermometer has been developed through statistical regression of the reversed experimental data of Ferry and Spear. Input parameters include available thermo-chemical data for quaternary Fe–Mg–Ca–Mn garnet solid solution and for excess free energy terms, associated with mixing of Al and Ti, in octahedral sites, in biotite solid solution. The regression indicates that Fe–Mg mixing in biotite approximates a symmetrical regular solution model showing positive deviation from ideality withW FeMg bi =1073±490 cal/mol. H r and S r for the garnet-biotite exchange equilibrium were derived to be 4301 cal and 1.85 cal respectively. The resultant thermometer gives consistent results for rocks with a much wider compositional range than can be accommodated by earlier formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号