首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. In order to investigate the target area of the Continental Deep Drilling (KTB) in the Oberpfalz a network of six seismic reflection lines was acquired in 1985 using the Vibroseis technique. The average length of these lines was 50 km. In addition, the 185 km long NW/SE striking line DEKORP 4 with its short appendix line 4-Q of 40 km length was acquired with the same technique. The results reveal a strongly structured upper crust. This is in contrast with previous surveys in the German Variscides which show a poorly reflective upper crust and a strongly reflective lower crust. Except for the S part of DEKORP 4 in the Oberpfalz area the Mono is only weakly reflective. In addition to the Vibroseis survey 96 shots along line DEKORP 4 were recorded by conventional reflection techniques and by portable reflection and refraction stations from university institutes and geological surveys in order to obtain wide-angle reflection and expanding spread data.  相似文献   

2.
Summary. Remarkable crustal features appear on the ECORS profiles carried out in northern France and the Bay of Biscay as well as on the SWAT profiles shot in the western Channel and the Celtic Sea. The most striking one is the occurrence of flat laminations in the lower crust. Dipping events and laminations are also present in the upper and lower crust, especially in the SWAT profiles. They can readily be related to tectonic events, Variscan in age, some of them identified in the field. The flat laminations in the lower crust are at first interpreted as resulting from delamination, shearing, magmatism and metamorphism at the crust-mantle transition during the Variscan orogeny. This interpretation raises some difficulty concerning the space and time correlation of the laminations with the Variscan orogeny. They seem to have been emplaced after the Permian-Triassic infilling of the Plymouth Bay basin and before the early Cretaceous opening of the Bay of Biscay. An early to middle Jurassic age is suggested, a period when large cratonic basins were formed without noticeable extension. Heat flow increase and magmatism are proposed as a second hypothesis for the formation of the lower crust laminations. Choosing between orogenic and non-orogenic causes of these laminations will require further deep seismic profiles together with good velocity determination.  相似文献   

3.
Summary. Continuous vertical seismic reflection profiling, the use of which has been extended by COCORP, BIRPS, ECORS, DEKORP and other programmes (Barazangi & Brown 1986) from stratified sedimentary basins to the entire crust, provides a high resolution cross section of reflectivity. A similar extension of oblique or variable offset sounding would be expected only to provide complementary velocity information. However, combined use of the two methods at crustal scale is new, and we show that refractions and wide angle reflections do contribute original and relevant information, but generally in areas other than velocities - the reason being that interfaces and layers may have a different nature in the crystalline crust from that in sediments.  相似文献   

4.
Wide-angle vibroseis test across the Rhine graben   总被引:1,自引:0,他引:1  
Summary. As a joint operation of ECORS and DEKORP, a deep wide-angle seismic experiment using vibrators was carried out in the autumn of 1984. The object was to get information on the deep crust under the Rhine graben without crossing through sedimentary layers. Offsets were in the range of 50 to 89 km. In the first phase, two vibration points were executed in the Vosges mountains. A signal was received in the Black Forest from solely the farthest VP. In the second phase, fourteen VPs were executed in the Black Forest. No stacking or correlation was performed in the field in France. The quality of the results is good only if an equalization is applied before vertical stacking and correlation in the computing centre.  相似文献   

5.
Summary. Apparently planar dipping events are observed in seismic data off south-west Britain within otherwise essentially transparent upper and middle crust. These are believed to represent Variscan thrusts, some of which were re-activated during the post-Carboniferous phase of extension that affected the southern U.K. They can be seen in two extensive commercial seismic surveys recorded to 6 s two-way-time (TWT) and, where laterally persistent, they have been mapped to reveal their essentially planar nature. Commonly these dipping events are associated with deeper, near-horizontal, or gently convex upwards events with which they often appear to converge. Where 'real', these are thought to indicate a complex fault system or possibly the top of the reflective lower crust. The thrusts are seen over the whole area except where granite is known to occur, and commonly exert a major control on the position and subsequent deformation of overlying sedimentary basins.  相似文献   

6.
Summary. The ECORS project was launched in 1983 with the aim of studying fundamental mechanisms of geodynamics in France. The ECORS deep seismic profiles have concentrated on a few structures of major significance: outer zone of the Variscan orogen in northern France, the basin formed during the Bay of Biscay's opening and transects of recent orogenic ranges (Pyrenees and Alps). The seismic profiles have been carried out with all the available modern techniques of industry and completed wherever possible by additional geophysical surveys (magnetism, gravity, MT, wide-angle and refraction seismics) and geological surveys. The first results already shed new light on major geodynamic phenomena such as variations in the frontal Variscan detachment, lower crust formation, crustal behaviour during orogenesis and variations in the formation of cratonic basins.  相似文献   

7.
Summary. The unified seismic exploration program, consisting of 345 km of deep reflection profiling, a 200 km refraction profile, an expanding spread profile and near-surface high resolution reflection meaasurements, revealed a strongly differentiated crust beneath the Black Forest. The highly reflective lower crust contains numerous horizontal and dipping reflectors at depths of 13-14 km down to the crust-mantle boundary (Moho). The Moho appears as a flat horizontal first order discontinuity at a relatively shallow level of 25–27 km above a transparent upper mantle. From modelling of synthetic near-vertical and wide-angle seismograms using the reflectivity method the lower crust is supposed to be composed of laminae with an average thickness of about 100 m and velocity differences of greater than 10% increasing from top to bottom. The upper crust is characterised by mostly dipping reflectors, associated with bivergent underthrusting and accretion tectonics of Variscan age and with extensional faults of Mesozoic age. A bright spot at 9.5 km depth is characterised by low velocity material suggesting a fluid trap. It appears on all of the three profiles in the centre of the intersection region. The upper crust seems to be decoupled from the lowest crust by a relatively transparent zone which is' also identified as a low-velocity zone. This low velocity channel is situated directly above the laminated lower crust. The laminae in the Rhinegraben area are displaced vertically to greater depths indicating an origin before Tertiary rift formation and a subsidence of the whole graben wedge.  相似文献   

8.
A wide-angle seismic profile across the western peninsulas of SW Ireland was performed. This region corresponds to the northernmost Variscan thrust and fold deformation. The dense set of 13 shots and 109 stations along the 120  km long profile provides a detailed velocity model of the crust.
  The seismic velocity model, obtained by forward and inverse modelling, defines a five-layer crust. A sedimentary layer, 5–8  km thick, is underlain by an upper-crustal layer of variable thickness, with a base generally at a depth of 10–12  km. Two mid-crustal layers are defined, and a lower-crustal layer below 22  km. The Moho lies at a depth of 30–32  km. A low-velocity zone, which coincides with a well-defined gravity low, is observed in the central part of the region and is modelled as a Caledonian granite which intruded upper-crustal basement. The granite may have acted as a buffer to northward-directed Variscan thrusting. The Dingle–Dungarvan Line (DDL) marks a major change in sedimentary and crustal velocity and structure. It lies immediately to the north of the velocity and gravity low, and shows thickness and velocity differences in many of the underlying crustal layers and even in the Moho. This suggests a deep, pre-Variscan control of the structural development of this area. The model is compatible with thin-skinned tectonics, which terminated at the DDL and which incorporated thrusts involving the sedimentary and upper-crustal layers.  相似文献   

9.
The geologic origin of subhorizontal reflections, often observed in crustal seismic sections, was investigated by establishing metamorphic facies and strength of rocks in depth, and correlating these properties to seismic reflection sections from eastern Hungary. Estimation of the depths of metamorphic mineral stability zones utilized the principles developed by Fyfe et al. and known geothermal data of the area. The strength versus depth profile was derived by relating local seismic P -wave interval velocities to Meissner et al. 's activation energy. The results show that the series of subhorizontal reflections, observed in the Pannonian Basin, are a consequence of combined metamorphic and rheologic changes in depths. The synthesis of the integrated data set suggests that the retrograde alteration of the pre-Tertiary basement above the percolation threshold was made possible by the softening effect of shear zones and their water-conducting capacity. The subhorizontal reflections of highest energy, of the consolidated crust below the percolation threshold, originate in the depths of greenschist, amphibolite and granulite metamorphic mineral facies, which were formed in geothermal and pressure conditions similar to those existing today. These results imply the overprint of earlier (Variscan) metamorphic sequences of the crust by more recent retrograde metamorphic processes.  相似文献   

10.
New magnetotelluric data from the Münchberg Gneiss complex in Southern Germany reveal a zone of extremely high electrical conductivity. 1-D modelling of the data is justified in the period range 0.01 to 10  s. At least three layers are required to explain the steepness of the apparent resistivity curves, and the best-fitting models comprise four layers with successively higher conductivities. The layers of highest conductivity at depths between 2.2 and 3.6  km correlate with pronounced bands of high seismic reflectivity (profile DEKORP 85-4N). The Münchberg complex is today widely recognized as a tectonic klippe, consisting of rocks whose metamorphic and stratigraphic order is inverted rather than overturned. The material was transported into its present position by predominantly horizontal tectonic forces along shear zones. We interpret the high conductivity and high reflectivity as remnants of this transport process.  相似文献   

11.
The large thickness of Upper Carboniferous strata found in the Netherlands suggests that the area was subject to long-term subsidence. However, the mechanisms responsible for subsidence are not quantified and are poorly known. In the area north of the London Brabant Massif, onshore United Kingdom, subsidence during the Namurian–Westphalian B has been explained by Dinantian rifting, followed by thermal subsidence. In contrast, south and east of the Netherlands, along the southern margin of the Northwest European Carboniferous Basin, flexural subsidence caused the development of a foreland basin. It has been proposed that foreland flexure due to Variscan orogenic loading was also responsible for Late Carboniferous subsidence in the Netherlands. In the first part of this paper, we present a series of modelling results in which the geometry and location of the Variscan foreland basin was calculated on the basis of kinematic reconstructions of the Variscan thrust system. Although several uncertainties exist, it is concluded that most subsidence calculated from well data in the Netherlands cannot be explained by flexural subsidence alone. Therefore, we investigated whether a Dinantian rifting event could adequately explain the observed subsidence by inverse modelling. The results show that if only a Dinantian rifting event is assumed, such as is found in the United Kingdom, a very high palaeowater depth at the end of the Dinantian is required to accommodate the Namurian–Westphalian B sedimentary sequence. To better explain the observed subsidence curves, we propose (1) an additional stretching event during the Namurian and (2) a model incorporating an extra dynamic component, which might well explain the very high wavelength of the observed subsidence compared with the wavelength of the predicted flexural foreland basin.  相似文献   

12.
The Cretaceous of southern France is characterised by a long erosional hiatus, outlined with bauxite deposits, which represent the only remaining sedimentary record of a key period for geodynamic reconstructions. Detrital zircons from allochthonous karst bauxites of Languedoc (Southern France) have been dated using LA‐ICP‐MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry), in order to specify the age of deposition and to constrain the provenance of the weathered material. We analysed 671 single detrital zircons grains from three karst bauxitic basins, stretching from close to the Variscan Montagne Noire to the present‐day Mediterranean Sea. Analytical results provide Variscan (300–350 Ma) and Late Proterozoic (550–700 Ma) ages as primary groups. In addition, Middle‐, Late Proterozoic and Early Archean (oldest grain at 3.55 Ga) represent significant groups. Mid‐Cretaceous zircons (118–113 Ma) provide a pooled age of 115.5 ± 3.8 Ma, which constitutes the maximum age for bauxite deposition. Results also suggest a dual source for the Languedoc bauxite: one generalised sedimentary source of regional extent and a localised source in the Variscan basement structural high, that has been progressively unroofed during Albian. Integration of these new findings with previously published thermochronological data support the presence of an Early Cretaceous marly cover on the Variscan basement, which has been weathered and then, removed during the Albian. The Languedoc bauxite provide a spatial and temporal link between the uplift of southern French Massif Central to the north, and the Pyrenean rift and its eastward extension to the south. These new results allow to constrain the timing and distribution of uplift/subsidence during the mid‐Cretaceous events in relation with the motion of the Iberian plate relative to Eurasia.  相似文献   

13.
Zircon U–Pb geochronometry, heavy mineral analyses and conventional seismic reflection data were used to interpret the provenance of the Lower Triassic Bunter Sandstone Formation. The succession was sampled in five Danish wells in the northern part of the North German Basin. The results show that sediment supply was mainly derived from the Ringkøbing‐Fyn High situated north of the basin and from the Variscan belt located south of the basin. Seismic reflection data document that the Ringkøbing‐Fyn High was a local barrier for sediment transport during the Early Triassic. Hence, the Fennoscandian Shield did not supply much sediment to the basin as opposed to what was previously believed. Sediment from the Variscan belt was transported by wind activity across the North German Basin when it was dried out during deposition of the aeolian part of the Volpriehausen Member (lower Bunter Sandstone). Fluvial sand was supplied from the Ringkøbing‐Fyn High to the basin during precipitation events which occurred most frequently when the Solling Member was deposited (upper Bunter Sandstone). Late Neoproterozoic to Carboniferous zircon ages predominate in the Volpriehausen Member where the dominant age population with a peak age of 337 Ma corresponds to the culmination of Variscan high‐grade metamorphism, whereas a secondary age population with a peak at 300 Ma matches the timing of volcanism and magmatism at the Carboniferous/Permian boundary in the northern Variscan belt. Parts of the basement in the Ringkøbing‐Fyn High were outcropping during the Early Triassic and zircon ages similar to this Mesoproterozoic basement are present in the Bunter Sandstone. The heavy mineral assemblage of the Solling Member is uniform and has a high garnet content compared to the contemporaneous sediments in the Norwegian‐Danish Basin and in the southern part of the North German Basin. This finding confirms that a local source in the Ringkøbing‐Fyn High supplied most of the fluvial sediment in the northern part of the North German Basin. The northernmost part of the Bunter Sandstone is situated on a platform area that is separated from the basin area by a broad WNW–ESE‐oriented fault zone. The most promising reservoir in the basin area is the aeolian Volpriehausen Member since the sandstone has a wide lateral distribution and a constant thickness. The alluvial to ephemeral fluvial Solling Member may be a good reservoir in the platform area and marginal basin area, but the complex sand‐body architecture makes it difficult to predict the reservoir quality.  相似文献   

14.
The results of deep reflection profiling studies carried out across the palaeo-meso-Proterozoic Delhi Fold Belt (DFB) and the Archaean Bhilwara Gneissic Complex (BGC) in the northwest Indian platform are discussed in this paper. This region is a zone of Proterozoic collision. The collision appears to be responsible for listric faults in the upper crust, which represent the boundaries of the Delhi exposures. In these blocks the lower crust appears to lie NW of the respective surface exposures and the reflectivity pattern does not correspond to the exposed blocks. A fairly reflective lower crust northwest of the DFB exposures appears to be the downward continuation of the DFB upper crust. The poorly reflective lower crust under the exposed DFB may be the westward extension of the BGC upper crust at depth. Thus, the lower crust in this region can be divided into the fairly reflective Marwar Basin (MB)-DFB crust and a poorly reflective BGC crust. Vertically oriented igneous intrusions may have disturbed the lamellar lower-crustal structure of the BGC, resulting in a dome-shaped poorly reflective lower crust whose base, not traceable in the reflection data, may have a maximum depth of about 50 km, as indicated by the gravity modelling.
The DFB appears to be a zone of thick (45-50 km) crust where the lower crust has doubled in width. This has resulted in three Moho reflection bands, two of which are dipping SE from 12.5 to 15.0 s two-way time (TWT) and from 14.5 to 16.0 s TWT. Another band of subhorizontal Moho reflections, at ≈ 12.5 s TWT, may have developed during the crustal perturbations related to a post-Delhi tectonic orogeny. The signatures of the Proterozoic collision, in the form of strong SE-dipping reflections in the lower crust and Moho, have been preserved in the DFB, indicating that the crust here has not undergone any significant ductile deformation since at least after the Delhi rifting event.  相似文献   

15.
我国水土流失典型区土壤表土结皮敏感性   总被引:6,自引:0,他引:6  
程琴娟  蔡强国  马文军 《地理研究》2008,27(6):1290-1298
表土结皮是降雨与土壤共同作用下的产物,某一土壤是否结皮、结皮的敏感程度如何,取决于该土壤的性质及所处地区的降雨情况。我国广泛分布着多种理化性质迥异的土壤,尤其是黄土、紫色土、红壤和黑土分布在我国水土流失严重的区域。但是,土壤发育表土结皮的敏感性很少见报道。本文通过分析模拟降雨试验结果及前人研究结论,提出了影响表土结皮发育敏感性的3个关键因素,并基于此对我国四大水土流失典型区土壤表土结皮的敏感性进行了分析。研究表明:细颗粒,尤其是粉粒是表土结皮发育的物质基础;团聚体稳定性是表土结皮发育快慢及程度的决定因素;高强度降雨是表土结皮发育的必要条件。黄土高原地区土壤极易发育表土结皮,四川紫色土区土壤发育表土结皮的概率大,南方红壤区除花岗岩、页岩外其他母岩上发育的土壤很难发育表土结皮,东北典型黑土不发育表土结皮,而非典型黑土易发育表土结皮。  相似文献   

16.
A seismic-array study of the continental crust and upper mantle in the Ivrea-Yerbano and Strona-Ceneri zones (northwestern Italy) is presented. A short-period network is used to define crustal P - and S -wave velocity models from earthquakes. The analysis of the seismic-refraction profile LOND of the CROP-ECORS project provided independent information and control on the array-data interpretation.
Apparent-velocity measurements from both local and regional earthquakes, and time-term analysis are used to estimate the velocity in the lower crust and in the upper mantle. The geometry of the upper-lower crust and Moho boundaries is determined from the station delay times.
We have obtained a three-layer crustal seismic model. The P -wave velocity in the upper crust, lower crust and upper mantle is 6.1±0.2 km s−1, 6.5±0.3 km s−1 and 7.8±0.3 km s−1 respectively. Pronounced low-velocity zones in the upper and lower crust are not observed. A clear change in the velocity structure between the upper and lower crust is documented, constraining the petrological interpretation of the Ivrea-type reflective lower continental crust derived from small-scale petrophysical data. Moreover, we found a V P/ V S ratio of 1.69±0.04 for the upper crust and 1.82±0.08 for the lower crust and upper mantle. This is consistent with the structural and petrophysical differences between a compositionally uniform and seismically transparent upper crust and a layered and reflective lower crust. The thickness of the lower crust ranges from about 8 km in front of the Ivrea body (ARVO, Arvonio station) in the northern part of the array to a maximum of about 15 km in the southern part of the array. The lower crust reaches a minimum depth of 5 km below the PROV (Provola) station.  相似文献   

17.
生物土壤结皮对库布齐沙漠北缘土壤粒度特征的影响   总被引:2,自引:1,他引:1  
对库布齐沙漠北缘不同发育阶段的生物土壤结皮及其下层土壤粒度特征进行分析。结果表明:流动沙地和藻类结皮表层均以细砂和中砂成分为主,藓类结皮表层以细砂和极细砂为主。生物土壤结皮表层的中粉砂至黏土、粗粉砂和极细砂含量均高于其下层土壤。两种结皮样地均属于分选性较差等级,但结皮下层土壤分选性中等,3类曲线均不对称,属于正偏-极正偏等级,藓类结皮和藻类结皮表层的峰形均属于中等尖锐水平,而流动沙地的曲线尖窄。生物土壤结皮的成土作用随着结皮的发育阶段和土层深度的增加而表现出差异性和复杂性。  相似文献   

18.
Seismic velocity structure of the San Francisco Bay region crust is derived using measurements of finite-frequency traveltimes. A total of 57 801 relative traveltimes are measured by cross-correlation over the frequency range 0.5–1.5 Hz. From these are derived 4862 'summary' traveltimes, which are used to derive 3-D P -wave velocity structure over a 341 × 140 km2 area from the surface to 25 km depth. The seismic tomography is based on sensitivity kernels calculated on a spherically symmetric reference model. Robust elements of the derived P -wave velocity structure are: a pronounced velocity contrast across the San Andreas fault in the south Bay region (west side faster); a moderate velocity contrast across the Hayward fault (west side faster); moderately low velocity crust around the Quien Sabe volcanic field and the Sacramento River delta; very low velocity crust around Lake Berryessa. These features are generally explicable with surface rock types being extrapolated to depth ∼10 km in the upper crust. Generally high mid-lower crust velocity and high inferred Poisson's ratio suggest a mafic lower crust.  相似文献   

19.
Summary. The stretching and thinning of the continental crust, which occurs during the formation of passive continental margins, may cause important changes in the velocity structure of such crust. Further, crust attenuated to a few kilometres' thickness, can be found underlying 'oceanic' water depths. This paper poses the question of whether thinned continental crust can be distinguished seismically from normal oceanic crust of about the same thickness. A single seismic refraction line shot over thinned continental crust as part of the North Biscay margin transect in 1979 was studied in detail. Tau— p inversion suggested that there are differences between oceanic and continental crust in the lower crustal structure. This was confirmed when synthetic seismograms were calculated. The thinned continental crust (β± 7.0) exhibits a two-gradient structure in the non-sedimentary crust with velocities between 5.9 and 7.4 km s−1; an upper 0.8 s−1 layer overlies a 0.4 s−1 layer. No layer comparable to oceanic layer 3 was detected. The uppermost mantle also contains a low-velocity zone.  相似文献   

20.
The North Canterbury region marks the transition from Pacific plate subduction to continental collision in the South Island of New Zealand. Details of the seismicity, structure and tectonics of this region have been revealed by an 11-week microearthquake survey using 24 portable digital seismographs. Arrival time data from a well-recorded subset of microearthquakes have been combined with those from three explosions at the corners of the microearthquake network in a simultaneous inversion for both hypocentres and velocity structure. The velocity structure is consistent with the crust in North Canterbury being an extension of the converging Chatham Rise. The crust is about 27 km thick, and consists of an 11 km thick seismic upper crust and 7 km thick seismic lower crust, with the middle part of the crust being relatively aseismic. Seismic velocities are consistent with the upper and middle crust being composed of greywacke and schist respectively, while several lines of evidence suggest that the lower crust is the lower part of the old oceanic crust on which the overlying rocks were originally deposited.
The distribution of relocated earthquakes deeper than 15 km indicates that the seismic lower crust changes dip markedly near 43S. To the south-west it is subhorizontal, while to the north-east it dips north-west at about 10. Fault-plane solutions for these earthquakes also change near 43S. For events to the south, P -axes trend approximately normal to the plate boundary (reflecting continental collision), while for events to the north, T -axes are aligned down the dip of the subducted plate (reflecting slab pull). While lithospheric subduction is continuous across the transition, it is not clear whether the lower crust near 43S is flexed or torn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号