首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Magnetic flux synoptic charts are critical for a reliable modeling of the corona and heliosphere. Until now, however, these charts were provided without uncertainty estimates. The uncertainties are due to instrumental noise in the measurements and to the spatial variance of the magnetic flux distribution that contributes to each bin in the synoptic chart. We describe here a simple method to compute synoptic magnetic flux maps and their corresponding magnetic flux spatial variance charts that can be used to estimate the uncertainty in the results of coronal models. We have tested this approach by computing a potential-field source-surface model of the coronal field for a Monte Carlo simulation of Carrington synoptic magnetic flux maps generated from the variance map. We show that these uncertainties affect both the locations of source-surface neutral lines and the distributions of coronal holes in the models.  相似文献   

2.
In this paper the origin and evolution of the Sun's open magnetic flux is considered by conducting magnetic flux transport simulations over many solar cycles. The simulations include the effects of differential rotation, meridional flow and supergranular diffusion on the radial magnetic field at the surface of the Sun as new magnetic bipoles emerge and are transported poleward. In each cycle the emergence of roughly 2100 bipoles is considered. The net open flux produced by the surface distribution is calculated by constructing potential coronal fields with a source surface from the surface distribution at regular intervals. In the simulations the net open magnetic flux closely follows the total dipole component at the source surface and evolves independently from the surface flux. The behaviour of the open flux is highly dependent on meridional flow and many observed features are reproduced by the model. However, when meridional flow is present at observed values the maximum value of the open flux occurs at cycle minimum when the polar caps it helps produce are the strongest. This is inconsistent with observations by Lockwood, Stamper and Wild (1999) and Wang, Sheeley, and Lean (2000) who find the open flux peaking 1–2 years after cycle maximum. Only in unrealistic simulations where meridional flow is much smaller than diffusion does a maximum in open flux consistent with observations occur. It is therefore deduced that there is no realistic parameter range of the flux transport variables that can produce the correct magnitude variation in open flux under the present approximations. As a result the present standard model does not contain the correct physics to describe the evolution of the Sun's open magnetic flux over an entire solar cycle. Future possible improvements in modeling are suggested.  相似文献   

3.
Y.-M. Wang 《Solar physics》2004,224(1-2):21-35
The Sun’s large-scale external field is formed through the emergence of magnetic flux in active regions and its subsequent dispersal over the solar surface by differential rotation, supergranular convection, and meridional flow. The observed evolution of the polar fields and open flux (or interplanetary field) during recent solar cycles can be reproduced by assuming a supergranular diffusion rate of 500 – 600 km2 s−1 and a poleward flow speed of 10 –20 m s−1. The nonaxisymmetric component of the large-scale field decays on the flow timescale of ∼1 yr and must be continually regenerated by new sunspot activity. Stochastic fluctuations in the longitudinal distribution of active regions can produce large peaks in the Sun’s equatorial dipole moment and in the interplanetary field strength during the declining phase of the cycle; by the same token, they can lead to sudden weakenings of the large-scale field near sunspot maximum (Gnevyshev gaps). Flux transport simulations over many solar cycles suggest that the meridional flow speed is correlated with cycle amplitude, with the flow being slower during less active cycles.  相似文献   

4.
To explain the observed intermingling of polarities in the magnetic field distributions of rapidly rotating stars, surface magnetic flux transport models demand the presence of fast meridional flows.We combine simulations of the pre-eruptive and post-eruptive magnetic flux transport in cool stars to investigate the influence of a fast meridional circulation on the latitudinal eruption pattern of magnetic flux tubes and on the polar magnetic field properties. Magnetic flux tubes rising through the convection zone experience an enhanced latitude-dependent poleward deflection through meridional flows, which renders the wings of stellar butterfly diagrams convex. The larger amount of magnetic flux emerging at higher latitudes supports the intermingling of opposite polarities of polar magnetic fields and yields magnetic flux densities in the polar regions about 20% higher than in the case disregarding the pre-eruptive deflection. Taking the pre-eruptive evolution of magnetic flux into account therefore eases the need for the fast meridional flows predicted by previous investigations. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The Sun’s polar fields play a leading role in structuring the large-scale solar atmosphere and in determining the interplanetary magnetic field. They are also believed to supply the seed field for the subsequent solar activity cycle. However, present-day synoptic observations do not have sufficient spatial resolution or sensitivity to diagnose accurately the high-latitude magnetic vector field. The high spatial resolution and sensitivity of the full-Stokes observations from the Hinode Solar Optical Telescope Spectro-Polarimeter, observing the poles long-term, allows us to build up a detailed picture of the Cycle 24 polar field reversal, including the changing latitude distribution of the high-latitude flux, and to study the effect on global coronal field models. The Hinode observations provide detailed information on the dominant facular-scale magnetic structure of the polar fields, and their field inclination and flux distribution. Hybrid synoptic magnetograms are constructed from Hinode polar measurements and full-disk magnetograms from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM), and coronal potential field models are calculated. Loss of effective spatial resolution at the highest latitudes presents complications. Possible improvements to synoptic polar data are discussed.  相似文献   

6.
Mean field dynamo theory deals with various mean quantities and does not directly throw any light on the question of existence of flux tubes. We can, however, draw important conclusions about flux tubes in the interior of the Sun by combining additional arguments with the insights gained from solar dynamo solutions. The polar magnetic field of the Sun is of order 10 G, whereas the toroidal magnetic field at the bottom of the convection zone has been estimated to be 100000 G. Simple order-of-magnitude estimates show that the shear in the tachocline is not sufficient to stretch a 10 G mean radial field into a 100000 G mean toroidal field. We argue that the polar field of the Sun must get concentrated into intermittent flux tubes before it is advected to the tachocline. We estimate the strengths and filling factors of these flux tubes. Stretching by shear in the tachocline is then expected to produce a highly intermittent magnetic configuration at the bottom of the convection zone. The meridional flow at the bottom of the convection zone should be able to carry this intermittent magnetic field equatorward, as suggested recently by Nandy and Choudhuri (2002). When a flux tube from the bottom of the convection zone rises to a region of pre-existing poloidal field at the surface, we point out that it picks up a twist in accordance with the observations of current helicities at the solar surface.  相似文献   

7.
The evolution of the solar corona is dominated to a large extent by the hugely complicated magnetic field which threads it. Magnetic topology provides a tool to decipher the structure of this field and thus help to understand its behaviour. Usually, the magnetic topology of a potential field is calculated due to flux sources on a locally planar photospheric surface. We use a Green's function method to extend this theory to sources on a global spherical surface. The case of two bipolar flux-balanced source regions is studied in detail, with an emphasis on how the distribution and relative strengths of the source regions affect the resulting topological states. A new state with two spatially distinct separators connecting the same two magnetic null points, called the “dual intersecting“ state, is discovered. An erratum to this article is available at .  相似文献   

8.
Observations of rapidly rotating solar-like stars show a significant mixture of opposite-polarity magnetic fields within their polar regions. To explain these observations, models describing the surface transport of magnetic flux demand the presence of fast meridional flows. Here, we link subsurface and surface magnetic flux transport simulations to investigate (i) the impact of meridional circulations with peak velocities of  ≤125 m s−1  on the latitudinal eruption pattern of magnetic flux tubes and (ii) the influence of the resulting butterfly diagrams on polar magnetic field properties. Prior to their eruption, magnetic flux tubes with low field strengths and initial cross-sections below  ∼300 km  experience an enhanced poleward deflection through meridional flows (assumed to be polewards at the top of the convection zone and equatorwards at the bottom). In particular, flux tubes which originate between low and intermediate latitudes within the convective overshoot region are strongly affected. This latitude-dependent poleward deflection of erupting magnetic flux renders the wings of stellar butterfly diagrams distinctively convex. The subsequent evolution of the surface magnetic field shows that the increased number of newly emerging bipoles at higher latitudes promotes the intermingling of opposite polarities of polar magnetic fields. The associated magnetic flux densities are about 20 per cent higher than in the case disregarding the pre-eruptive deflection, which eases the necessity for fast meridional flows predicted by previous investigations. In order to reproduce the observed polar field properties, the rate of the meridional circulation has to be of the order of 100 m s−1, and the latitudinal range from which magnetic flux tubes originate at the base of the convective zone (≲50°) must be larger than in the solar case (≲35°).  相似文献   

9.
Ambrož  P. 《Solar physics》2001,198(2):253-277
The structure of the large-scale background magnetic field evolves in time and space. The large-scale horizontal transport velocity field of the magnetic flux patterns was inferred over the whole solar photosphere in the course of two solar activity cycles from year 1976 to 1999. The method of velocity determination and the testing procedures of the velocity accuracy are presented. The non-axially symmetric component of the horizontal velocity was found and both zonal and meridional velocity regions were described. The horizontal large-scale transport velocity regions vary in shape and the intensity during different phases of the 11-year solar activity cycle. The total horizontal transport velocity is characterized by the presence of variable amounts of the vector field vortices with symmetric orientation relative to the solar equator. The zonal velocity regions, distributed inside of the zonal belt limited by latitudes ± 35°, are persistent for about 4 Carrington rotations. Recurrent structures of similar velocity distributions are not coherent over the whole solar photosphere.  相似文献   

10.
Different methods for simulating the effects of spatial resolution on magnetic field maps are compared, including those commonly used for inter-instrument comparisons. The investigation first uses synthetic data, and the results are confirmed with Hinode/SpectroPolarimeter data. Four methods are examined, one which manipulates the Stokes spectra to simulate spatial-resolution degradation, and three “post-facto” methods where the magnetic field maps are manipulated directly. Throughout, statistical comparisons of the degraded maps with the originals serve to quantify the outcomes. Overall, we find that areas with inferred magnetic fill fractions close to unity may be insensitive to optical spatial resolution; areas of sub-unity fill fractions are very sensitive. Trends with worsening spatial resolution can include increased average field strength, lower total flux, and a field vector oriented closer to the line of sight. Further-derived quantities such as vertical current density show variations even in areas of high average magnetic fill fraction. In short, unresolved maps fail to represent the distribution of the underlying unresolved fields, and the “post-facto” methods generally do not reproduce the effects of a smaller telescope aperture. It is argued that selecting a method in order to reconcile disparate spatial resolution effects should depend on the goal, as one method may better preserve the field distribution, while another can reproduce spatial resolution degradation. The results presented should help direct future inter-instrument comparisons.  相似文献   

11.
D. V. Erofeev 《Solar physics》1996,167(1-2):25-45
Discrete rigidly rotating components (modes) of the large-scale solar magnetic field have been investigated. We have used a specially calculated basic set of functions to resolve the observed magnetic field into discrete components. This adaptive set of functions, as well as the expansion coefficients, have been found by processing a series of digitized synoptic maps of the background magnetic field over a 20-year period. As a result, dependences have been obtained which describe the spatial structure and the temporal evolution of the 27-day and 28-day rigidly rotating modes of the Sun's magnetic field.The spatial structure of the modes has been compared with simulations based on the known flux-transport equation. In the simulations, the rigidly rotating modes were regarded as stationary states of the magnetic field whose rigid rotation and stability were maintained by a balance between the emergence of magnetic flux from stationary sources located at low latitudes and the horizontal transport of flux by turbulent diffusion and poleward directed meridional flow. Under these assumptions, the structure of the modes is determined solely by the horizontal velocity field of the plasma, except for the low-latitude zone where sources of magnetic flux concentrate. We have found a detailed agreement between the simulations and the results of the data analysis, provided that the amplitude of the meridional flow velocity and the diffusion constant are equal to 9.5 m s–1 and 600 km2 s–1, respectively.The analysis of the expansion coefficients has shown that the rigidly rotating modes undergo rapid step-like variations which occur quasi-periodically with a period of about two years. These variations are caused by separate surges of magnetic flux in the photosphere, so that each new surge gives rise to a rapid replacement of old large-scale magnetic structures by newly arisen ones.  相似文献   

12.
Based on SOHO/MDI data (an archive of magnetic maps with a resolution of ~2″), we have investigated the dynamics of the small-scale background magnetic field on the Sun in solar cycle 23. The cyclic variations and surface structure of the background magnetic field have been analyzed using the mean estimates of 〈B〉 and 〈B 2〉 of the observed magnetic field strength B for various solar surface areas and at various B levels. We have established that the cyclic variations of 〈2〉 at latitudes below 30° are essentially similar to those of the total radio flux F 10.7. A significant difference between the background magnetic fields in the northern and southern solar hemispheres persisting throughout the solar cycle has been detected. We have found the effect of background magnetic field growth toward the solar limb and concluded that the transversal component in the background magnetic field is significant. The relatively weak small-scale background magnetic fields are shown to form a special population with its own special laws of cyclic variation.  相似文献   

13.
We define for observational study two subsets of all polar zone filaments, which we call polemost filaments and polar filament bands. The behavior of the mean latitude of both the polemost filaments and the polar filament bands is examined and compared with the evolution of the polar magnetic field over an activity cycle as recently distilled by Howard and LaBonte (1981) from the past 13 years of Mt. Wilson full-disk magnetograms. The magnetic data reveal that the polar magnetic fields are built up and maintained by the episodic arrival of discrete f-polarity regions that originate in active region latitudes and subsequently drift to the poles. After leaving the active-region latitudes, these unipolar f-polarity regions do not spread equatorward even though there is less net flux equatorward; this indicates that the f-polarity regions are carried poleward by a meridional flow, rather than by diffusion. The polar zone filaments are an independent tracer which confirms both the episodic polar field formation and the meridional flow. We find:
  1. The mean latitude of the polemost filaments tracks the boundary of the polar field cap and undergoes an equatorward dip during each arrival of additional polar field.
  2. Polar filament bands track the boundary latitudes of the unipolar regions, drifting poleward with the regions at about 10 m s-1.
  3. The Mt. Wilson magnetic data, combined with a simple model calculation, show that the filament drift expected from diffusion alone would be slower than observed, and in some cases would be equatorward rather than poleward.
  4. The observation that filaments drift poleward along with the magnetic regions shows that fields of both polarities are carried by the meridional flow, as would be expected, rather than only the f-polarity flux which dominates the strength. This leads to the prediction that in the mid-latitudes during intervals between the passage of f-polarity regions, both polarities are present in nearly equal amounts. This prediction is confirmed by the magnetic data.
  相似文献   

14.
The Mechanism involved in the Reversals of the Sun's Polar Magnetic Fields   总被引:2,自引:0,他引:2  
Durrant  C.J.  Turner  J.P.R.  Wilson  P.R. 《Solar physics》2004,222(2):345-362
Models of the polarity reversals of the Sun's polar magnetic fields based on the surface transport of flux are discussed and are tested using observations of the polar fields during Cycle 23 obtained by the National Solar Observatory at Kitt Peak. We have extended earlier measurements of the net radial flux polewards of ±60° and confirm that, despite fluctuations of 20%, there is a steady decline in the old polarity polar flux which begins shortly after sunspot minimum (although not at the same time in each hemisphere), crosses the zero level near sunspot maximum, and increases, with reversed polarity during the remainder of the cycle. We have also measured the net transport of the radial field by both meridional flow and diffusion across several latitude zones at various phases of the Cycle. We can confirm that there was a net transport of leader flux across the solar equator during Cycle 23 and have used statistical tests to show that it began during the rising phase of this cycle rather than after sunspot maximum. This may explain the early decrease of the mean polar flux after sunspot minimum. We also found an outward flow of net flux across latitudes ±60° which is consistent with the onset of the decline of the old polarity flux. Thus the polar polarity reversals during Cycle 23 are not inconsistent with the surface flux-transport models but the large empirical values required for the magnetic diffusivity require further investigation.  相似文献   

15.
Magnetic helicity quantifies the degree to which the magnetic field in a volume is globally sheared and/or twisted. This quantity is believed to play a key role in solar activity due to its conservation property. Helicity is continuously injected into the corona during the evolution of active regions (ARs). To better understand and quantify the role of magnetic helicity in solar activity, the distribution of magnetic helicity flux in ARs needs to be studied. The helicity distribution can be computed from the temporal evolution of photospheric magnetograms of ARs such as the ones provided by SDO/HMI and Hinode/SOT. Most recent analyses of photospheric helicity flux derived a proxy to the helicity-flux density based on the relative rotation rate of photospheric magnetic footpoints. Although this proxy allows a good estimate of the photospheric helicity flux, it is still not a true helicity flux density because it does not take into account the connectivity of the magnetic field lines. For the first time, we implement a helicity density that takes this connectivity into account. To use it for future observational studies, we tested the method and its precision on several types of models involving different patterns of helicity injection. We also tested it on more complex configurations – from magnetohydrodynamics (MHD) simulations – containing quasi-separatrix layers. We demonstrate that this connectivity-based proxy is best-suited to map the true distribution of photospheric helicity injection.  相似文献   

16.
The current study aims at quantifying the flux distributions of solar intranetwork (IN) magnetic field based on the data taken in four quiet and two enhanced network areas with the Narrow-band Filter Imager of the Solar Optical Telescope on board the Hinode satellite. More than 14000 IN elements and 3000 NT elements were visually identified. They exhibit a flux distribution function with a peak at 1?–?3×1016 Mx (maxwell) and 2?–?3×1017 Mx, respectively. We found that the IN elements contribute approximately to 52 % of the total flux and an average flux density of 12.4 gauss of the quiet region at any given time. By taking the lifetime of IN elements of about 3 min (Zhou et al., Solar Phys. 267, 63, 2010) into account, the IN fields are estimated to have total contributions to the solar magnetic flux up to 3.8×1026 Mx per day. No fundamental distinction can be identified in IN fields between the quiet and enhanced network areas.  相似文献   

17.
Catastrophe of Coronal Magnetic Flux Ropes Caused by Photospheric Motions   总被引:1,自引:0,他引:1  
Hu  Y.Q.  Jiang  Y.W. 《Solar physics》2001,203(2):309-319
Using a 2.5-D, time-dependent ideal MHD model in Cartesian coordinates, we carried out numerical simulations to investigate the equilibrium and evolution properties of a magnetic configuration that consists of a coronal magnetic flux rope and a partly open photospheric background field, which is equivalent to that produced by a two-patch magnetic source on the photospheric surface. The axial and annular magnetic fluxes of the flux rope are given and fixed. The global magnetic configuration evolves in response to three types of changes of the background field: decreasing of the distance between the two sources, shrinking of the size of each source, and increasing of the shear in the closed component of the background field. As a result, the geometrical parameters of the flux rope, i.e. the height of the rope axis, the half-width of the rope and the length of the vertical current sheet below the rope, change due to the variation of the background field. It is shown that for a given coronal magnetic flux rope in a partly open background field, the variation of the geometrical parameters of the flux rope displays a catastrophic behavior, namely, there exists a critical point for each case, at which an infinitesimal change of the background field leads to a loss of equilibrium, and thus a jump of the flux rope. The implication of such a catastrophe in solar active phenomena is briefly discussed.  相似文献   

18.
As demonstrated by many previous studies, a system consisting of an isolated coronal flux rope and a surrounding background magnetic field exhibits a catastrophic behavior. In particular, if the magnetic field of the system is force-free and axisymmetric in spherical geometry, the magnetic energy at the catastrophic point, referred to as the catastrophic energy threshold, is found to be larger than the corresponding partly or fully open field energy. This paper takes an octapole field as the background and introduces a flux rope within the central arcade of the octapole field. A relaxation method based on time-dependent ideal magnetohydrodynamic (MHD) simulations is used to find axisymmetric force-free field solutions in spherical geometry associated with the flux rope system. With respect to an increase of either the annular flux Φp or the axial flux Φϕ of the rope, the system exhibits a catastrophic behavior as expected, and the catastrophic energy threshold is larger than that of the corresponding partly open field, in which the central arcade is opened up, but the remainder remains closed. For a given octapole field, the energy threshold depends on either Φp or Φϕ at the catastrophic point, and it increases with increasing Φp or decreasing Φϕ. On the other hand, the extent to which the central bipolar component of the octapole field is open also affects the energy threshold. These results differ from those for the bipolar background field case, in which the catastrophic energy threshold is almost independent of the magnetic properties of the flux rope at the catastrophic points and the extent to which the background field is open. The reason for such a difference is briefly discussed.  相似文献   

19.
Guided by the recent observational result that the meridional circulation of the Sun becomes weaker at the time of the sunspot maximum, we have included a parametric quenching of the meridional circulation in solar dynamo models such that the meridional circulation becomes weaker when the magnetic field at the base of the convection zone is stronger. We find that a flux transport solar dynamo tends to become unstable on including this quenching of meridional circulation if the diffusivity in the convection zone is less than about 2×1011 cm2 s−1. The quenching of α, however, has a stabilizing effect and it is possible to stabilize a dynamo with low diffusivity with sufficiently strong α-quenching. For dynamo models with high diffusivity, the quenching of meridional circulation does not produce a large effect and the dynamo remains stable. We present a solar-like solution from a dynamo model with diffusivity 2.8×1012 cm2 s−1 in which the quenching of meridional circulation makes the meridional circulation vary periodically with solar cycle as observed and does not have any other significant effect on the dynamo.  相似文献   

20.
The parameters of the magnetic flux distribution inside low-latitude coronal holes (CHs) were analyzed. A statistical study of 44 CHs based on Solar and Heliospheric Observatory (SOHO)/MDI full disk magnetograms and SOHO/EIT 284?Å images showed that the density of the net magnetic flux, B net, does not correlate with the associated solar wind speeds, V x . Both the area and net flux of CHs correlate with the solar wind speed and the corresponding spatial Pearson correlation coefficients are 0.75 and 0.71, respectively. A possible explanation for the low correlation between B net and V x is proposed. The observed non-correlation might be rooted in the structural complexity of the magnetic field. As a measure of the complexity of the magnetic field, the filling factor, f(r), was calculated as a function of spatial scales. In CHs, f(r) was found to be nearly constant at scales above 2 Mm, which indicates a monofractal structural organization and smooth temporal evolution. The magnitude of the filling factor is 0.04 from the Hinode SOT/SP data and 0.07 from the MDI/HR data. The Hinode data show that at scales smaller than 2 Mm, the filling factor decreases rapidly, which means a multifractal structure and highly intermittent, burst-like energy release regime. The absence of the necessary complexity in CH magnetic fields at scales above 2 Mm seems to be the most plausible reason why the net magnetic flux density does not seem to be related to the solar wind speed: the energy release dynamics, needed for solar wind acceleration, appears to occur at small scales below 1 Mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号