首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Global and Planetary Change》2003,35(1-2):113-126
Data from 14 cores, and a transfer function based on benthic foraminifera, were used to map productivity gradients in the eastern equatorial Pacific (EEP) at the Last Glacial Maximum (LGM). These were compared to gradients in the modern ocean. The results support previous work indicating that, during the LGM, productivity was lower across the region in the South Equatorial Current (SEC) under the influence of Peru margin upwelling. Overall, productivity gradients are diminished during the LGM due to three changes: reduced productivity along the Peru margin and the SEC near the equator, increased productivity further south of the equator, and increased productivity in the Panama Basin area. These changes smooth gradients seen in the region today. This reduction of gradients in EEP productivity parallels observations for planktonic foraminiferal carbon isotopes and inferred nutrient concentrations in the thermocline. Reductions in productivity and thermocline nutrients in the SEC downstream of the Peru margin have been previously interpreted as the result of changes in the chemistry and/or upwelling of subantarctic Equatorial Undercurrent Current (EUC) water. Increases in productivity away from the equator may be associated to nitrogen enrichment of the global surface ocean during the LGM. Productivity and planktonic foraminiferal isotope records for the Panama Basin indicate a local process driving highly seasonal productivity for the glacial, perhaps related to changing upper water column stratification. The degree to which overall carbon export to the deep sea changed in the EEP during the LGM depends on the extent of the productivity increase away from the equator. If this increase occurred broadly in the lower latitude subtropical gyres then a marked LGM export increase would be possible despite productivity reductions along the equator.  相似文献   

2.
Teleconnections between Andean and New Zealand glaciers   总被引:1,自引:1,他引:0  
Retreat and advance of glaciers in the Southern Alps of New Zealand have occurred over two distinct 20-yr climate periods (1954–1974) and (1974–1994). Changes in tropical and southern Andean glaciers are compared over these same periods. Behaviour of glaciers in the tropical Andes are out of phase with the Southern Alps glaciers, but some glaciers in Patagonia appear to be in phase. Southern Hemisphere atmospheric circulation using 700 hPa geopotential height anomalies and sea surface temperature patterns are examined for these periods. Glacier response on inter-decadal timescales is linked with distinctive shifts in atmospheric circulation patterns around the Southern Hemisphere. Retreat (advance) of glaciers in the Southern Alps and southern Andean glacier and advance (retreat) of glaciers in the tropical Andes are all associated with weaker (stronger) westerlies, blocking events in the South-east Pacific, negative (positive) geopotential height anomalies over Southern Africa and higher latitudes of the Southern Hemisphere. These glacier changes are also linked with the negative (positive) phase of the Inter-decadal Pacific Oscillation, a higher frequency of La Niña (El Niño) events, and warm (cool) sea surface temperatures in the New Zealand region and cool (warm) sea surface temperatures in the equatorial eastern region of the Pacific Ocean off the coast of Peru.  相似文献   

3.
Oxygen and carbon isotopic gradients in surface waters were reconstructed for the past 450 kyr by analysis of the planktic foraminifer Neogloboquadrina pachyderma in cores located at approximately 43°, 47°, and 54°S across the Polar Frontal Zone in the South Atlantic sector of the Southern Ocean. Comparison of the oxygen isotopic records for peak interglacial conditions during the past 450 kyr reveals that Marine Isotope Stage (MIS) 11 was not substantially warmer than other interglacials at high southern latitudes, although the period of warmth lasted longer. The carbonate and carbon isotope chemistry of surface and deep water represent the truly distinctive aspects of Stage 11 in the Southern Ocean. Peak carbonate production occurred at high southern latitudes during MIS 11, resulting in light-colored, high-carbonate sediments deposited throughout the Southern Ocean above the lysocline. Carbon isotopic values of benthic foraminifera in cores bathed by Circumpolar Deep Water (CPDW) were highest during MIS11, suggesting strong input of North Atlantic Deep Water (NADW) to the Southern Ocean. Planktic δ13C values at high southern latitudes were also highest during MIS 11, which may reflect upwelling of CPDW with a greater contribution of NADW, lower whole-ocean nutrient inventories, higher gas exchange rates, and/or lowered alkalinity of Antarctic surface waters (resulting from carbonate precipitation south of the Polar Front).  相似文献   

4.
We present three new benthic foraminiferal δ13C, δ18O, and total organic carbon time series from the eastern Atlantic sector of the Southern Ocean between 41°S and 47°S. The measured glacial δ13C values belong to the lowest hitherto reported. We demonstrate a coincidence between depleted late Holocene (LH) δ13C values and positions of sites relative to ocean surface productivity. A correction of +0.3 to +0.4 [‰ VPDB] for a productivity-induced depletion of Last Glacial Maximum (LGM) benthic δ13C values of these cores is suggested. The new data are compiled with published data from 13 sediment cores from the eastern Atlantic Ocean between 19°S and 47°S, and the regional deep and bottom water circulation is reconstructed for LH (4–0 ka) and LGM (22–16 ka) times. This extends earlier eastern Atlantic-wide synoptic reconstructions which suffered from the lack of data south of 20°S. A conceptual model of LGM deep-water circulation is discussed that, after correction of southernmost cores below the Antarctic Circumpolar Current (ACC) for a productivity-induced artifact, suggests a reduced formation of both North Atlantic Deep Water in the northern Atlantic and bottom water in the southwestern Weddell Sea. This reduction was compensated for by the formation of deep water in the zone of extended winter sea-ice coverage at the northern rim of the Weddell Sea, where air–sea gas exchange was reduced. This shift from LGM deep-water formation in the region south of the ACC to Holocene bottom water formation in the southwestern Weddell Sea, can explain lower preformed δ13CDIC values of glacial circumantarctic deep water of approximately 0.3‰ to 0.4‰. Our reconstruction brings Atlantic and Southern Ocean δ13C and Cd/Ca data into better agreement, but is in conflict, however, with a scenario of an essentially unchanged thermohaline deep circulation on a global scale. Benthic δ18O-derived LGM bottom water temperatures, by 1.9°C and 0.3°C lower than during the LH at deepest southern and shallowest northern sites, respectively, agree with the here proposed reconstruction of deep-water circulation in the eastern South Atlantic Ocean.  相似文献   

5.
Late Eocene crystal-bearing spherules have been found in deep sea cores from the Caribbean Sea, Gulf of Mexico, equatorial Pacific Ocean, and eastern equatorial Indian Ocean. Keller et al. (1987) have suggested that the spherules from the western equatorial Pacific (Site 292, core 38) and eastern Indian Ocean (Site 216) are older (Globigerapsis semiinvoluta Zone) than those from the central equatorial Pacific, Gulf of Mexico, and Caribbean Sea (Globorotalia cerroazulensis Zone). The strongest argument in favor of two layers is the biostratigraphic data; however, published biostratigraphic interpretations are at odds with Keller et al.'s (1987) conclusions. Furthermore, paleomagnetic data for Site 292 seems to contradict Keller et al.'s conclusion that the spherules found in core 36 occur in sediments of the same stratigraphic age as those found in the central equatorial Pacific, Gulf of Mexico, and Caribbean Sea sites. Although the spherules from Sites 216 and 292 (core 38) do have higher average CaO, and lower average Al2O3 and FeO contents than the late Eocene spherules from the other sites, there is a great deal of overlap in composition. It is our opinion that the similarities in composition and petrography between the late Eocene crystal-bearing spherules are greater than the differences. Additionally, there seems to be a systematic change in composition and in amount of iridium excess from east to west when all the sites containing the crystal-bearing spherules are considered. We believe, therefore, that it is likely that the late Eocene crystal-bearing spherules all belong to a single event.  相似文献   

6.
Data on the amount and composition of organic carbon were determined in sediment cores from the Kara and Laptev Sea continental margin, representing oxygen isotope stages 1–6. The characterization of organic matter is based on hydrogen index (HI) values, n-alkanes and maceral composition, indicating the predominance of terrigenous organic matter through space and time. The variations in the amount and composition of organic carbon are mainly influenced by changes in fluvial sediment supply, Atlantic water inflow, and continental ice sheets. During oxygen isotope stage (OIS) 6, high organic carbon contents in sediments from the Laptev Sea and western East Siberian Sea continental margin were probably caused by the increased glacial erosion and further transport in the eastward-flowing boundary current along the continental margin. During OIS 5 and early OIS 3, some increased amounts of marine organic matter were preserved in sediments east of the Lomonosov Ridge, suggesting an influence of nutrient-rich Pacific waters. During OIS 2, terrigenous organic carbon supply was increased along the Barents and western Kara Sea continental margin caused by extended continental ice sheets in the Barents Sea (Svalbard to Franz Josef Land) area and increased glacial erosion. Along the Laptev Sea continental margin, on the other hand, the supply of terrigenous (organic) matter was significantly reduced due to the lack of major ice sheets and reduced river discharge. Towards the Holocene, the amount of total organic carbon (TOC) increased along the Kara and Laptev Sea continental margin, reaching average values of up to 0.5 g C cm−2 ky−1. Between about 8 and 10 ka (9 and 11 Cal ka), i.e., during times when the inner shallow Kara and Laptev seas became largely flooded for the first time after the Last Glacial Maximum, maximum supply of terrigenous organic carbon occurred, which is related to an increase in coastal erosion and Siberian river discharge. During the last 8000 years, the increased amount of marine organic carbon preserved in the sediments from the Kara and Laptev Sea continental margin is interpreted as a result of the intensification of Atlantic water inflow along the Eurasian continental margin.  相似文献   

7.
There is a continuous record of planktonic foraminifers for oxygen isotope stages 50 to 26 (ca. 1.5–1.0 Ma) in the early Pleistocene Omma Formation near Kanazawa City, Central Japan, on the Sea of Japan coast. The warm-water species Globigerinoides ruber entered the Sea of Japan with the Tsushima Current during all interglacial periods and went locally extinct in the succeeding glacial periods. This implies that the marine climate of the Sea of Japan varied predominantly with the 41,000-year period of Earth's orbital obliquity. However, the relative abundances of G. ruber in marine isotope stages 47, 43 and 31 are significantly higher than those in other interglacial stages. These stages correspond to periods when eccentricity-modulated precession extremes were aligned with obliquity maxima. The Tsushima Current is a branch of the warm Kuroshio Current which is the strong northwestern component of the subtropical North Pacific Ocean gyre. Our data imply that the early Pleistocene climate in the northwestern Pacific was influenced not only by obliquity cycles but also by eccentricity cycles. This study also supports the climate model regarding eccentricity's role in the origin of low-frequency climate changes before the late Pleistocene ice ages.  相似文献   

8.
A new theory is proposed to explain global cooling at the onset of Pleistocene glacial periods. Atmospheric CO2 drawdown is considered to be the driving force behind global cooling, brought about by heightened productivity at the equatorial divergences and along continental margins, particularly in upwelling regions. Eutrophication appears to be triggered when global warming during late interglacial periods causes accelerated melting of the West Antarctic Ice Sheet. This would release large reserves of silicate-enriched subglacial meltwaters into the surrounding oceans where entrainment would take place into deep and intermediate currents forming in Antarctic and subantarctic waters. Subsequent advection, mixing and upwelling of silicate-enriched deep and intermediate waters into the coastal zones and open-ocean divergences results in the proliferation of large, rapidly-sinking diatom species with a high affinity for dissolved silicate. These blooms enhance rates of recycling of N and P in upwelling regions and accelerate rates of organic carbon production, export and sequestration in shelf and slope sediments and in the deep sea. The resultant atm. CO2 drawdown initiates global cooling. Consequent expansion of Northern Hemisphere glaciers lowers sea level, while increased temperature and pressure gradients between equatorial and polar regions intensify meridional winds. The former process exposes nutrient-enriched coastal sediments to wave erosion, thereby releasing new nutrient supplies, while the latter process enhances upwelling. The combined effect is to greatly increase rates of org. C production and export from continental margins and further accelerate atm. CO2 drawdown. Glacial-period cooling is also enhanced by a number of other positive feedbacks, including changes in albedo, water vapour and cloud cover. Episodic warming intervals during glacial periods may be related to insolation changes associated with orbital precession and tilt cycles, but processes involved in deglaciation and reversion to the interglacial climatic regime are complex and not yet fully understood.  相似文献   

9.
Uniquely in the Southern Hemisphere the New Zealand micro-continent spans the interface between a subtropical gyre and the Subantarctic Circumpolar Current. Its 20° latitudinal extent includes a complex of submerged plateaux, ridges, saddles and basins which, in the present interglacial, are partial barriers to circulation and steer the Subtropical (STF) and Subantarctic (SAF) fronts. This configuration offers a singular opportunity to assess the influence of bottom topography on oceanic circulation through Pleistocene glacial – interglacial (G/I) cycles, its effect on the location and strength of the fronts, and its ability to generate significant differences in mixed layer thermal history over short distances.For this study we use new planktic foraminiferal based sea-surface temperature (SST) estimates spanning the past 1 million years from a latitudinal transect of four deep ocean drilling sites. We conclude that: 1. the effect of the New Zealand landmass was to deflect the water masses south around the bathymetric impediments; 2. the effect of a shallow submerged ridge on the down-current side (Chatham Rise), was to dynamically trap the STF along its crest, in stark contrast to the usual glacial–interglacial (G–I) meridional migration that occurs in the open ocean; 3. the effect of more deeply submerged, downstream plateaux (Campbell, Bounty) was to dynamically trap the SAF along its steep southeastern margin; 4. the effects of saddles across the submarine plateaux was to facilitate the development of jets of subtropical and subantarctic surface water through the fronts, forming localized downstream gyres or eddies during different phases in the G–I climate cycles; 5. the deep Pukaki Saddle across the Campbell-Bounty Plateaux guided a branch of the SAF to flow northwards during each glacial, to form a strong gyre of circumpolar surface water in the Bounty Trough, especially during the mid-Pleistocene Climate Transition (MIS 22-16) when exceptionally high SST gradients existed across the STF; 6. the shallower Mernoo Saddle, at the western end of the Chatham Rise, provided a conduit for subtropical water to jet southwards across the STF in the warmest interglacial peaks (MIS 11, 5.5) and for subantarctic water to flow northwards during glacials; 7. although subtropical or subantarctic drivers can prevail at a particular phase of a G–I cycles, it appears that the Antarctic Circumpolar Current is the main influence on the regional hydrography.Thus complex submarine topography can affect distinct differences in the climate records over short distances with implications for using such records in interpreting global or regional trends. Conversely, the local topography can amplify the paleoclimate record in different ways in different places, thus enhancing its value for the study of more minor paleoceanographic influences that elsewhere are more difficult to detect. Such sites include DSDP 594, which like some other Southern Ocean sites, has the typical late Pleistocene asymmetrical saw-tooth G–I climate pattern transformed to a gap-tooth pattern of quasi-symmetrical interglacial spikes that interrupt extended periods of minimum glacial temperatures.  相似文献   

10.
Due to the major role played by diatoms in the biological pump of CO2, and to the presence of silica-rich sediments in areas that play a major role in air–sea CO2 exchange (e.g. the Southern Ocean and the Equatorial Pacific), opal has a strong potential as a proxy for paleoproductivity reconstructions. However, because of spatial variations in the biogenic silica preservation, and in the degree of coupling between the marine Si and C biogeochemical cycles, paleoreconstructions are not straitghtforward. A better calibration of this proxy in the modern ocean is required, which needs a good understanding of the mechanisms that control the Si cycle, in close relation to the carbon cycle.This review of the Si cycle in the modern ocean starts with the mechanisms that control the uptake of silicic acid (Si(OH)4) by diatoms and the subsequent silicification processes, the regulatory mechanisms of which are uncoupled. This has strong implications for the direct measurement in the field of the kinetics of Si(OH)4 uptake and diatom growth. It also strongly influences the Si:C ratio within diatoms, clearly linked to environmental conditions. Diatoms tend to dominate new production at marine ergoclines. At depth, they also succeed to form mats, which sedimentation is at the origin of laminated sediments and marine sapropels. The concentration of Si(OH)4 with respect to other macronutrients exerts a major influence on diatom dominance and on the rain ratio between siliceous and calcareous material, which severely impacts surface waters pCO2. A compilation of biogenic fluxes collected at about 40 sites by means of sediment traps also shows a remarkable pattern of increasing BSi:Corg ratio along the path of the “conveyor belt”, accompanying the relative enrichment of waters in Si compared to N and P. This observation suggests an extension of the Si pump model described by Dugdale and Wilkerson (Dugdale, R.C., Wilkerson, F.P., 1998. Understanding the eastern equatorial Pacific as a continuous new production system regulating on silicate. Nature 391, 270–273.), giving to Si(OH)4 a major role in the control of the rain ratio, which is of major importance in the global carbon cycle.The fate of the BSi produced in surface waters is then described, in relation to Corg, in terms of both dissolution and preservation mechanisms. Difficulties in quantifying the dissolution of biogenic silica in the water column as well as the sinking rates and forms of BSi to the deep, provide evidence for a major gap in our understanding of the mechanisms controlling the competition between retention in and export from surface waters. The relative influences of environmental conditions, seasonality, food web structure or aggregation are however explored. Quantitatively, assuming steady state, the measurements of the opal rain rate by means of sediment traps matches reasonably well those obtained by adding the recycling and burial fluxes in the underlying abyssal sediments, for most of the sites where such a comparison is possible. The major exception is the Southern Ocean where sediment focusing precludes the closing of mass balances. Focusing in fact is also an important aspect of the downward revision of the importance of Southern Ocean sediments in the global biogenic silica accumulation. Qualitatively, little is known about the duration of the transfer through the deep and the quality of the material that reaches the seabed, which is suggested to represent a major gap in our understanding of the processes governing the early diagenesis of BSi in sediments. The sediment composition (special emphasis on Al availability), the sedimentation rate or bioturbation are shown to exert an important control on the competition between dissolution and preservation of BSi in sediments. It is suggested that a primary control on the kinetic and thermodynamic properties of BSi dissolution, both in coastal and abyssal sediments, is exerted by water column processes, either occuring in surface waters during the formation of the frustules, or linked to the transfer of the particles through the water column, which duration may influence the quality of the biogenic rain. This highlights the importance of studying the factors controlling the degree of coupling between pelagic and benthic processes in various regions of the world ocean, and its consequences, not only in terms of benthic biology but also for the constitution of the sediment archive.The last section, first calls for the end of the “NPZD” models, and for the introduction of processes linked to the Si cycle, into models describing the phytoplankton cycles in surface waters and the early diagenesis of BSi in sediments. It also calls for the creation of an integrated 1-D diagnostic model of the Si:C coupling, for a better understanding of the interactions between surface waters, deep waters and the upper sedimentary column. The importance of Si(OH)4 in the control of the rain ratio and the improved parametrization of the Si cycle in the 1-D diagnostic models should lead to a reasonable incorporation of the Si cycle into 3-D regional circulation models and OGCMs, with important implications for climate change studies and paleoreconstructions at regional and global scale.  相似文献   

11.
Abstract— Montanari et al. (1993) reported a positive Ir anomaly in the upper Eocene sediments from Ocean Drilling Program Hole 689B on the Maud Rise, Southern Ocean. Vonhof (1998) described microtektites and clinopyroxene-bearing (cpx) spherules associated with the Ir anomaly in Hole 689B and suggested that they belong to the North American and equatorial Pacific cpx strewn fields, respectively. We searched a suite of 27 samples taken through the spherule layer from Hole 689B, and we recovered 386 microtektites and 667 cpx spherules. We studied the petrography of the microtektites and cpx spherules and determined the major element compositions of 31 microtektites and 14 cpx spherules using energy dispersive x-ray analysis. We also determined the minor element compositions of eight microtektites using instrumental neutron activation analysis. We found that the peak abundance of cpx spherules is ~2 cm below the peak abundance of the microtektites (~128.7 m below sea floor), which suggests that the cpx spherule layer may be slightly older (~3–5 ka). The microtektites are mostly spherical and are generally transparent and colorless. They are similar to the North American microtektites in composition, the biggest differences being their generally lower Na2O and generally higher Zr, Ba, and Ir (up to 0.3 ppb) contents. We agree with Vonhof (1998) that the Hole 689B microtektites probably belong to the North American tektite strewn field. We calculate that the number of microtektites (>125 μm)/cm2 at Hole 689B is 52. This number is close to the concentration predicted by extrapolation of the trend of concentration vs. distance from the Chesapeake Bay structure, based on data from other North American microtektite-bearing sites. Thus, the North American strewn field may be at least four times larger than previously mapped. The Hole 689B cpx spherules range from translucent yellow to opaque black, but most are opaque tan to dark brown. They are generally spherical in shape and all are < 125 μm in diameter. Some contain Ni-rich spinels in addition to clinopyroxene microlites. The cpx spherules are petrographically and compositionally similar to cpx spherules previously found in the northwestern Atlantic Ocean, Caribbean Sea, Gulf of Mexico, equatorial Pacific, and eastern Indian Ocean. The abundance and widespread geographic occurrence of these spherules suggest that the strewn field may be global in geographic extent. Assuming a global extent, we estimate that there may be at least 25 billion metric tons of cpx spherules in the strewn field. Based on age, size, and geographic location, we speculate that the 100 km diameter Popigai crater in northern Siberia may be the source of the cpx spherule layer.  相似文献   

12.
The sensitivity of the ocean circulation to changes in North Atlantic surface fluxes has become a major factor in explaining climate variability. The role of the Antarctic Bottom Water in modulating this variability has received much less attention, limiting the development of a complete understanding of decadal to millennial time-scale climate change. New analyses indicate that the southern deepwater source may change dramatically (e.g., experience a decrease of as much as two thirds during last 800 years). Such change can substantially alter the ocean circulation patterns of the last millennium. Additional analyses indicate that the Southern Hemisphere led the Northern Hemisphere changes in some of the glacial cycles of Pleistocene, implying a seesaw-type oscillation of the global ocean conveyor. The potential for melting of sea ice and ice sheets in the Antarctica associated with global warming can cause a further slowdown of the southern deepwater source. These results demand an assessment of the role of the Southern Ocean in driving changes of the global ocean circulation and climate. Systematic model simulation targeting the ocean circulation response to changes in surface salinity in the high latitudes of both Northern and Southern Hemispheres demonstrate that meltwater impacts in one hemisphere may lead to a strengthening of the thermohaline conveyor driven by the source in the opposite hemisphere. This, in turn, leads to significant changes in poleward heat transport. Further, meltwater events can lead to deep-sea warming and thermal expansion of abyssal water, that in turn cause a substantial sea-level change even without a major ice sheet melting.  相似文献   

13.
Sediments from ODP Site 1128 in the Great Australian Bight record isotopic and mineralogic variations corresponding to orbital parameters and regional climate change during the early Oligocene climate transition and Oi1 glacial event. Bulk carbonate stable isotope analyses reveal prominent positive oxygen and carbon isotope shifts related to the inferred major increase in glaciation at approximately 33.6 to 33.48 Ma. The oxygen isotope excursion corresponds to a prolonged period of low eccentricity, suggesting ice-sheet growth during low seasonality conditions. The clay mineralogy is dominated by smectite throughout. The exclusive occurrence of highly crystalline smectite from 33.6 to 33.5 Ma suggests the occurrence of explosive volcanism that correlates with the positive oxygen isotope shift. The dominance of mixed-layer smectite from 33.5 to 33.4 Ma and an increase in illite following 33.4 Ma indicates a transition from cool, wet conditions to cool, dry conditions over Australia during the Oi1 glaciation. Clay mineralogy and carbonate percentages reveal precession-scale oscillations during the Oi1 event. Kaolinite varies inversely with smectite and percent carbonate. Variations in precipitation and runoff, and wind velocities during southern hemisphere summer perihelion and high eccentricity intervals may account for the precession-scale oscillations.  相似文献   

14.
Lake Poukawa is a small, shallow lake lying in the middle of extensive peatland in the Poukawa depression, central Hawke's Bay. Holocene peats (10 m at deepest point) overlie more than 200 m of sand, silt, clastic debris and infrequent thin peats and lacustrine sediments deposited during the late Pleistocene. Pollen analyses are presented for: a peat possibly dating to a late stage of the last interglacial or a warm interstadial of the last glacial; cool climate last glacial sediments; and a Holocene peat. The last interglacial or interstadial peat records a cool climate Nothofagus podocarp forest. During the last glacial, sparse shrubland and grassland grew within the depression under much drier and colder conditions than now. There is no pollen record for the Late Glacial and early Holocene period as conditions remained too dry for peat formation. Avian fossils indicate scrub and grassland persisted through until at least 10,600 years BP, and scrub or open forest may have prevailed until c. 6500 years BP. Closed podocarp broadleaved forest (Prumnopitys taxifolia dominant) occupied the depression from at least 6500 years BP until its destruction by Polynesian settlers after 800 years BP. Water levels rose from 6500 to 4500 years BP, culminating in the establishment of the present fluctuating lake-peatland system. Dry conditions in the Late Glacial and early Holocene may reflect a predominant northwesterly air flow, and a change to more easterly and southerly air flow in the mid- to late Holocene resulted in increased rainfall.  相似文献   

15.
Contributions of the nine potential dust source regions (North and South Africa, the Arabian Peninsula, Central Asia, eastern and western China, North and South America, and Australia) to the global dust budget are investigated with a global dust transport model. A six-year simulation (1990 to 1995) indicates that the greatest contributor to the global dust budget is found to be North Africa (the Sahara Desert), which accounts for 58% of the total global dust emission and 62% of the total global dust load in the atmosphere. Australian dust dominates the southern hemisphere. The dust emission and atmospheric dust load originating from East Asia (eastern and western China) are estimated to be 214 Tg yr− 1 and 1.1 Tg, respectively, which are 11% and 6% of the total global dust emission and dust load. Dust from East Asia dominates the atmospheric load over China and Mongolia (about 70%), Korea (60%), Japan (50%), and the North Pacific Ocean (40%). The contribution of dust originating from regions other than East Asia to the dust load over these East Asian countries and the North Pacific Ocean cannot be ignored. The simulated total dust deposition flux on Greenland suggests a possible overestimation of the Saharan dust and an underestimation of the East Asian dust in the Arctic region, which may be a common problem with global dust transport models. Possible reasons for the underestimation of the East Asian dust are discussed.  相似文献   

16.
We obtained the high-resolution record of terrestrial biomarkers (C29 and C31 n-alkanes) for the last 26,000 years from Oki Ridge in the south Japan Sea that enabled us to discuss millennial scale climate changes. Our sampling resolution for the biomarker during the major deglaciation period (10–19.5 cal ka BP) is 300 years and for the elemental analyses (total organic carbon and total nitrogen) is as good as ca 200 years. The estimated mass accumulation rate of these molecules during the last glacial period is substantially higher than during the Holocene. They also exhibited two distinct peaks at 17.6 cal ka BP and 11.4 cal ka BP, which are coincident with Heinrich Event 1 and the latest stage of the Younger Dryas, respectively. The unique oceanographic setting of the Japan Sea tends to preferentially preserve organic material of aeolian origin. The nature of our biomarker record in fact suggests a strong aeolian signal, and hence their flux to the Japan Sea potentially reflects the climate conditions of the dust source regions and transport intensity. Our results are consistent with previously reported monsoon variations based on other proxies that is indicative of a strong linkage between North Atlantic climate and Asian monsoon intensity.  相似文献   

17.
The carbon-isotope and palynological record through 580 m thick almost continuous brown coal in southeast Australia's Gippsland Basin is a relatively comprehensive southern hemisphere Middle Eocene to Middle Miocene record for terrestrial change. The carbon isotope δ13Ccoal values of these coals range from ? 27.7‰ to ? 23.2. This isotopic variability follows gymnosperm/angiosperm fluctuations, where higher ratios coincide with heavier δ13C values. There is also long-term variability in carbon isotopes through time. From the Eocene greenhouse world of high gymnosperm-heavier δ13Ccoal values, there is a progressive shift to lighter δ13Ccoal values that follows the earliest (Oi1?) glacial events around 33 Ma (Early Oligocene). The overlying Oligocene–Early Miocene brown coals have lower gymnosperm abundance, associated with increased %Nothofagus (angiosperm), and lightening of isotopes during Oligocene cooler conditions.The Miocene palynological and carbon-isotope record supports a continuation to the Oligocene trends until around the late Early Miocene (circa 19 Ma) when a warming commenced, followed by an even stronger isotope shift around 16 Ma that peaked in the Middle Miocene when higher gymnosperm abundance and heavier isotopes prevailed. The cycle between the two major warm peaks of Middle Eocene and Middle Miocene was circa 30 Ma long. This change corresponds to a fall in inferred pCO2 levels for the same period. The Gippsland data suggest a link between gymnosperm abundance, long-term plant δ13C composition, climatic change, and atmospheric pCO2. Climatic deterioration in the Late Miocene terminated peat accumulation in the Gippsland Basin and no further significant coals formed in southeast Australia.The poor correspondence between this terrestrial isotope data and the marine isotope record is explained by the dominant control on δ13C by the gymnosperm/angiosperm abundance, although in turn this poor correspondence may reflect palaeoclimate control. From the brown coal seam dating, the coal appears to have accumulated during a considerable part of the allocated 30 Ma Cenozoic time period. These brown coal carbon isotope and palynological data appear to record a more gradual atmospheric carbon isotope change compared to the marine record.  相似文献   

18.
Ice-rafted debris (IRD) (>2 mm), input in eight sediment cores along the Eurasian continental margin (Arctic Ocean), have been studied over the last two glacial/interglacial cycles. Together with the revised chronologies and new micropaleontological data of two cores from the northern Barents Sea (PS2138) and northeastern Kara Sea (PS2741) spanning Marine Isotope Stages (MIS) 6 to 1, the IRD data give new insights into the glacial history of northern Eurasian ice-sheets over the last 150 ka. The chronologies of the cores are based on stable isotope records, AMS 14C datings, paleomagnetic and biostratigraphic data.Extensive episodes of northern Barents Sea ice-sheet growth, probably to the shelf edge, occurred during the late Weichselian (MIS 2) and the Saalian (MIS 6). Major IRD discharge at the MIS 4/3-transition hints to another severe glaciation, probably onto the outer shelf, during MIS 4. IRD-based instabilities of the marine-based ice margin along the northern Barents Sea between MIS 4 and 2 are similar in timing with North Atlantic Heinrich events and Nordic Seas IRD events, suggesting similar atmospheric cooling over a broad region or linkage of ice-sheet fluctuations through small sea-level events.In the relatively low-precipitation areas of eastern Eurasia, IRD peak values during Termination II and MIS 4/3-transition suggest a Kara Sea ice-sheet advance onto the outer shelf, probably to the shelf edge, during glacial MIS 6 and 4. This suggests that during the initial cooling following the interglacials MIS 5, and possibly MIS 7, the combined effect of sustained inflow of Atlantic water into the Arctic Ocean and penetration of moisture-bearing cyclones into easterly direction supported major ice build-up during Saalian (MIS 6) and Mid-Weichselian (MIS 4) glaciation. IRD peak values in MIS 5 indicate at least two advances of the Severnaya Semlya ice-sheet to the coast line during the Early Weichselian. In contrast, a distinct Kara Sea ice advance during the Late Weichselian (MIS 2) is not documented by the IRD records along the northeastern Kara Sea margin.  相似文献   

19.
The Pacific Decadal Oscillation (PDO) is an El Niño-like pattern of Pacific climate variability, oscillating between its warm and cool phase about every 20–30 years as defined by oceanic temperature anomalies in the northeast and tropical Pacific Ocean. In this work, the authors investigate the possible connection between the PDO and solar activity by means of wavelet technique. The study shows obvious fluctuation characteristics in the PDO series. The modulation action from solar activity plays an important role in the oscillation of the Pacific, and there is a possible association existing in the PDO and solar activity on decade time scales.  相似文献   

20.
Abstract— Late Eocene microtektites and microkrystites recovered from Ocean Drilling Project Hole 689B at Maud Rise (Southern Ocean) are stratigraphically and geochemically compared to spherules from the North American and Pacific strewn fields, and to devitrified spherules from the Eocene-Oligocene global stratotype section and point section in Massignano, Italy. The ODP 689B microkrystites compare well to the Pacific strewn field microkrystites, which suggests that the geographic extent of the Pacific strewn field was much larger than previously documented. The elemental composition of microtektites of ODP Hole 689B is comparable to tektites of the North American strewn field. Their 87Sr/86Sr ratio, however, is different. We tentatively interpret this to reflect geochemical heterogeneity within the North American strewn field but can not exclude the option that the chemical discrepancies result from the existence of a third late Eocene impact site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号