首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The sorption of cadmium and humic acids from aqueous solutions using surface-modified nanozeolite A has been investigated under various examination conditions. The morphology of untreated and treated nanozeolite was studied under scanning electron microscope and transmission electron microscope. Isotherms of cadmium adsorption onto surface-modified nanozeolite A were studied at different pH, solid to liquid ratio, adsorbate concentration and interaction time. Kinetic and equilibrium studies were conducted and the equilibrium data have been analyzed using Langmuir and Freundlich isotherm models. The study revealed that experimental results were in agreement with the Freundlich model. The Langmuir monolayer adsorption capacity was found to be 1666.67 g cadmium and 6.75 g humic acid per gram of modified nanozeolite A, which is higher than that of reported value for other zeolites. The sorption ability was enhanced by surface modification and reduction in size and enabled the zeolite to adsorb cadmium. The adsorption of cadmium and humic acid on nanozeolite was found to be the highest at pH 6 and 3, respectively. Results showed that solid to liquid ratio and pH are the most important factors for cadmium and humic acid removal, respectively. Effect of competitive ions was studied and results showed that there is no competition between cadmium and humic acid sorption and presence of these ions.  相似文献   

2.
In this paper, the behaviors of aqueous zinc sorption by hydroxyapatite in the co-existence of Pb^2+, Cd^2+ and Cu^2+ are investigated, the effects of Pb^2+, Cd^2+ and Cu^2+ on the sorption of Zn^2+ are discussed, and the hydroxyapatite sorption capabilities for Pb^2+, Cd^2+, Cu^2+ and Zn^2+ are compared. The experimental results show that the Zn^2+ removal efficiency decreases gradually with the increase of the Cd^2+ concentration of the solution, and there is no sorption preference between Cd^2+ and Zn^2+. On the other hand, the Zn^2+ removal efficiency rapidly decreases rapidly with the increase of the Cu^2+ concentration of the solution, and there is a clear sorption preference between Cu^2+ and Zn^2+. It is noticed that the Zn^2+ removal efficiency is hardly changed with the variance of Pb^2+ concentration because the removal mechanisms for these two ions are totally different. It is concluded that the adsorption affinities of the heavy metals for the hydroxyapatite follows this sequence: pb^2+〉 Cu^2+〉 Cd^2+〉 Zn^2+.  相似文献   

3.
Beidellite, a low-cost, locally available and natural mineral was used as an adsorbent for the removal of lead and cadmium ions from aqueous solutions in batch experiments. The kinetics of adsorption process was tested for the pseudo first-order, pseudo second-order reaction and intra-particle diffusion models. The rate constants of adsorption for all these kinetic models were calculated. Comparison amongst the models showed that the sorption kinetics was best described by the pseudo second-order model. Langmuir and Freundlich isotherm models were applied to the experimental equilibrium data for different temperatures. The adsorption capacities (Q°) of beidellite for lead and cadmium ions were calculated from the Langmuir isotherm. It was found that adsorption capacity was in the range of 83.3–86.9 for lead and 42–45.6 mg/g for cadmium at different temperatures. Thermodynamic studies showed that the metal uptake reaction by beidellite was endothermic in nature. Binary metal adsorption studies were also conducted to investigate the interactions and competitive effects in binary adsorption process. Based on the optimum parameters found, beidellite can be used as adsorbent for metal removal processes.  相似文献   

4.
The uptake of Cd2+ by aragonite and calcite is investigated by combining macroscopic measurements with some qualitative sorption experiments performed in a hydrogel medium. Both biogenic and abiogenic aragonites were studied in order to evaluate the process on materials with different textures. Assuming that sorption occurs by surface precipitation of metal-bearing solids, the gel produces a drastic decrease in the nucleation density, which allows for the precipitation of crystallites that are large enough to be analysed by scanning electron microscopy and characterized by glancing-incidence X-ray techniques. The macroscopic study reveals that aragonite is a powerful sorbent for cadmium in aqueous environments. Microscopic observations indicate that cadmium is sorbed onto aragonite by surface precipitation of (Cd, Ca)CO3 solid solutions with a calcite-type structure. The precipitating individuals grow randomly oriented on the surface to reach sizes in the micrometre range. As a consequence, the concentration of cadmium in the aqueous solution decreases dramatically to values controlled by the low solubility of the cadmium-rich end member. This mechanism involves simultaneous dissolution-crystallization and is the same for both abiogenic and biogenic aragonites, the only difference being a result of the higher specific surface area of the biogenic starting material. Long-term uptake of cadmium by calcite occurs through a similar dissolution-crystallization mechanism, the final outcome being virtually the same, that is, surface precipitation of (Cd,Ca)CO3 solid solutions. In this case, however, substrate and precipitate are isostructural and the process occurs by oriented overgrowth of thin lamellar crystallites, which spread to quickly cover the surface by a layer a few nanometers thick. This epitaxial layer armors the substrate from further dissolution, so that the process stops when only a small amount of cadmium has been removed from the fluid. As a result, the “sorption capacity” of calcite is considerably lower than that of aragonite. The study illustrates reaction pathways and “partial” equilibrium endpoints in surface-precipitation processes involving solid solutions.  相似文献   

5.
《Geochimica et cosmochimica acta》1999,63(19-20):2971-2987
Many sediment and soil systems have become significantly contaminated with cadmium, and earth scientists are now required to make increasingly accurate predictions of the risks that this contamination poses. This necessitates an improved understanding of the processes that control the mobility and bioavailability of cadmium in the environment. With this in mind, we have studied the composition and structure of aqueous cadmium sorption complexes on the iron oxyhydroxide minerals goethite (α-FeOOH), lepidocrocite (γ-FeOOH), akaganeite (β-FeOOH), and schwertmannite (Fe8O8(OH)6SO4) using extended X-ray adsorption fine structure spectroscopy. The results show that adsorption to all of the studied minerals occurs via inner sphere adsorption over a wide range of pH and cadmium concentrations. The bonding mechanism varies between minerals and appears to be governed by the availability of different types of adsorption site at the mineral surface. The geometry and relative stability of cadmium adsorption complexes on the goethite surface was predicted with ab initio quantum mechanical modelling. The modelling results, used in combination with the extended X-ray adsorption fine structure data, allow an unambiguous determination of the mechanism by which cadmium bonds to goethite.Cadmium adsorbs to goethite by the formation of bidentate surface complexes at corner sharing sites on the predominant (110) crystallographic surface. There is no evidence for significant cadmium adsorption to goethite at the supposedly more reactive edge sharing sites. This is probably because the edge sharing sites are only available on the (021) crystallographic surface, which comprises just ∼2% of the total mineral surface area. Conversely, cadmium adsorption on lepidocrocite occurs predominately by the formation of surface complexes at bi- and/or tridentate edge sharing sites. We explain the difference in extended X-ray adsorption fine structure results for cadmium adsorption on goethite and lepidocrocite by the greater availability of reactive edge sharing sites on lepidocrocite than on goethite. The structures of cadmium adsorption complexes on goethite and lepidocrocite appear to be unaffected by changes in pH and surface loading. There is no support for cadmium sorption to any of the studied minerals via the formation of an ordered precipitate, even at high pH and high cadmium concentration. Cadmium adsorption on akaganeite and schwertmannite also occurs via inner sphere bonding, but the mechanism(s) by which this occurs remains ambiguous.  相似文献   

6.
Evidence is provided by photon correlation spectroscopy, ultrafiltration and ultracentrifugation that uranium(IV) can form silicate-containing colloids of a size of ?20 nm. A concentration of up to 10−3 M of colloid-borne U(IV) was observed. The particles are generated in near-neutral to slightly alkaline solutions containing background chemicals of geogenic nature (carbonate, silicate, sodium ions). They remain stable in aqueous suspension over years. Electrostatic repulsion due to a negative zeta potential in the near-neutral to alkaline pH range caused by the silicate stabilizes the U(IV) colloids. The isoelectric point of the nanoparticles is shifted toward lower pH values by the silicate. The mechanism of the colloidal stabilization can be regarded as “sequestration” by silicate, a phenomenon well known from heavy metal ions of high ion potential such as iron(III) or manganese(III,IV), but never reported for uranium(IV) so far. Extended X-ray absorption fine structure (EXAFS) spectroscopy showed that U-O-Si bonds, which increasingly replace the U-O-U bonds of the amorphous uranium(IV) oxyhydroxide with increasing silicate concentrations, make up the internal structure of the colloids. The next-neighbor coordination of U(IV) in the U(IV)-silica colloids is comparable with that of coffinite, USiO4. The assessment of uranium behavior in the aquatic environment should take the possible existence of U(IV)-silica colloids into consideration. Their occurrence might influence uranium migration in anoxic waters.  相似文献   

7.
X-ray diffraction (XRD), back scattered electron imaging (BSE), wavelength-dispersion spectral scan (WDS), X-ray compositional mapping and quantitative electron probe micro analyses (EPMA) have been used to examine a natural attenuation of U during low temperature alteration of the Sela granite, south Eastern Desert of Egypt. The data confirmed that a pre-existing hydroxyapatite was transformed to autunite through an unidentified intermediate phase. The boundaries between these three phases are not sharp and are generally interfering indicative of the replacement of Ca by U. The hydroxyapatite, intermediate phase and autunite show similar chondrite normalized rare earth elements (REE) patterns suggesting a genetic relationship. Alteration processes have enriched the three phases with heavy rare earth elements (HREE) and Eu and caused Ce, Dy and Yb negative anomalies. Based on the pH of the aqueous solutions, two mechanisms may explain the conversion of hydroxyapatite to autunite: (1) the dissolution of hydroxyapatite and precipitation of autunite which would happen when the uranyl bearing solutions were acidic enough (pH = 3–6.8) to be able to dissolve the pre-existing hydroxyapatite and (2) sorption of the uranyl ion on the surface of hydroxyapatite followed by substitution of (UO2)2+ at the expense of Ca2+. The latter mechanism would have happened if the pH of the aqueous solutions were near neutral and at low dissolved concentrations of uranyl ion. The genesis of uranyl mineralization in the Sela area supports the use of apatite-based technologies for U remediation in an oxidizing environment.  相似文献   

8.
This study introduces the application of a dynamic fuzzy neural network for fitting and simulating the adsorption of nickel, cadmium, and zinc ions in mono- and bi-metallic solutions (nickel–cadmium, nickel–zinc, and cadmium–zinc) using packed-bed columns with bone char. This neural network model has shown a flexible and self-adaptive architecture with a faster learning speed than that of traditional artificial neural approaches. Results showed that this neural network model was reliable for representing the high asymmetry behavior of concentration profiles in both mono- and bi-metallic breakthrough curves where its accuracy was quite reasonable. Breakthrough parameters for mono-component and binary systems of tested heavy metals were calculated and compared. This analysis showed that the removal of these heavy metal ions in binary systems was a strong competitive adsorption process where the presence of co-ions reduced the removal performance of bone char at fixed-bed adsorbers. Results of surface characterization of adsorbent samples with X-ray photoelectron and infrared spectroscopy supported a removal mechanism based on an ion exchange between calcium from hydroxyapatite of bone char and heavy metal ions in the solution forming new metal–phosphate interactions in the adsorbent surface.  相似文献   

9.
凹凸棒石粘土吸附废水中污染物机理探讨   总被引:58,自引:1,他引:57  
凹凸棒石是链层状硅酸盐,具有0.38nm×0.63nm的孔道。许多研究者据此都把凹凸棒石粘土吸附废水中污染物的机理解释为凹凸棒石具有微孔道和较大的比表面积,并且这一解释被普遍接受。作者根据凹凸棒石矿物晶体结构和吸附选择性以及吸附实验研究认为,由于凹凸棒石孔道直径小于大多数分子及水合离子的直径,除少数简单分子和离子外,多数分子和离子都不能进入凹凸棒石孔道,而且凹凸棒石内孔道选择性优先吸附水分子,因而在 多数水处理中,凹凸棒石对吸附质的吸附不是内表面吸附,而是外表面吸附。并且这种外表 面吸附属于凹凸棒石的胶体和离子交换吸附。除了溶液的pH值等介质条件外,共存胶体蒙脱石和凹凸棒石的相互作用可能对凹凸棒石粘土的吸附性能起重要作用。  相似文献   

10.
In this paper, the sorption of uranium onto nanoporous silica adsorbent in the presence of nitrate, sulfate, chloride, fluoride and phosphate was studied. The effect of contact time between the nanoporous sorbent and aqueous solution, pH and initial concentration of uranium was also investigated. Uranium sorption onto nanoporous silica adsorbent is a very fast process as sorption rate increases with pH increment. Optimum pH for uranium sorption was 4?C8. Experimental sorption isotherm is successfully described by Langmuir and Freundlich models. The results obtained by batch experiments showed that the presence of high concentration of nitrate, sulfate, chloride and phosphate anions alone had no interference with uranium recovery. However, the presence of fluoride ions (>250?mg/L) decreases uranium sorption by about 55?%. The results also showed that the presence of phosphate ions (about 300?mg/L) in solution could remove fluoride interference completely. Finally, the efficiency of the nanoporous silica adsorbent for uranium recovery from wastewater of the uranium conversion facility was investigated.  相似文献   

11.
After reaction with a pH < 4, the surface of labradorite is extensively enriched in Si and H, and depleted in Al, Ca and Na relative to an unreacted crystal. However, the amount of hydrogen measured in the reacted surface is less than that predicted on the basis of exchange of hydrogen (or hydronium) ions for cations in the feldspar. By analogy with studies of silicate glass, this low concentration of hydrogen suggests that some silanol groups in the reacted surface repolymerize subsequent to ion-exchange and depolymerization reactions. The net result is a relatively porous, Si-rich leached layer which is amorphous to electron diffraction, and which allows rapid diffusion of unreactive solutes.

Both the surface area of the reacted feldspar and the porosity increase with acid hydrolysis. Modeling of nitrogen sorption onto the surface suggests that the pores have a nominal radius of 20–80 Å or less. This distribution of pore sizes resembles other acid-reacted silicate materials, such as glass, chrysotile and kaolinite. Although the mineral surface clearly becomes more porous during acid hydrolysis, the increase in powder area also does not coincide with an increase in the flux of dissolved Si from the powder. We thus attribute most of this increase in area to spallation of the silica-rich surface from the feldspar upon drying.  相似文献   


12.
A novel adsorbent for heavy metal remediation in aqueous environments   总被引:9,自引:8,他引:1  
The objective of this study was to investigate the possibility of using maize tassel as an alternative adsorbent for the removal of chromium (VI) and cadmium (II) ions from aqueous solutions. The effect of pH, solution temperature, contact time, initial metal ion concentration and adsorbent dose on the adsorption of chromium (VI) and cadmium (II) by tassel was investigated using batch methods. Adsorption for both chromium (VI) and cadmium (II) was found to be highly pH dependent compared to the other parameters investigated. Obtained results gave an adsorption capacity of 79.1 % for chromium (VI) at pH 2, exposure time of 1h at 25 °C. Maximum capacity of cadmium of 88 % was obtained in the pH range of 5-6 at 25 °C after exposure time of 1 h. The adsorption capacities of tassel for both chromium (VI) and cadmium (II) were found to be comparable to those of other commercial adsorbents currently in use for the removal of heavy metals from aqueous wastes. These results have demonstrated the immense potential of maize tassel as an alternative adsorbent for toxic metal ions remediation in polluted water and wastewater.  相似文献   

13.
Peganum harmala seeds were assessed as biosorbent for removing Pb2+, Zn2+and Cd2+ ions from aqueous solutions. The effects of various parameters such as the aqueous solution pH, the contact time, the initial metal concentration and the amount of adsorbent in the process were investigated. The adsorption efficiencies increased with pH. It was found that about 95 % of lead, 75 % of zinc and 90 % of cadmium ions could be removed from 45 ml of aqueous solution containing 20 mg l?1 of each cation with 2 g of adsorbent at pH 4.5 after 15 min. The quantitative desorption of cadmium from adsorbent surface was achieved using 10 ml of a 0.5 M nitric acid solution. This condition was attained for lead and zinc ions with 10 ml of 1 M hydrochloric acid solution. Kinetic investigation of the process was performed by considering a pseudo-second-order model. This model predicts the chemisorption mechanism of the process. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models were tested for describing the equilibrium data. It was found that the Freundlich model describes the experimental data resulting from the adsorption of lead ions. However for cadmium and zinc ions, the adsorption equilibria were interpreted with the Langmuir model.  相似文献   

14.
由于重金属镉离子的吸附性能较差、毒性大,因此,寻找镉离子的高效吸附材料具有重要现实意义。本文开展巯基硅烷对高岭石的嫁接改性研究,经红外光谱测试证实,成功将巯基引入到高岭石表面。同时,硅烷改性对高岭石晶体结构没有产生影响。通过批量实验考察了高岭石和巯基硅烷改性高岭石(K-SH)对Cd(Ⅱ)的吸附特征,主要探讨了p H值、时间对吸附效率的影响。矿物对Cd2+的吸附动力学符合准二级动力学模型,吸附等温方程更符合Langmuir模型,并估算的K-SH的最大吸附量是4.375 mg/g,比高岭石的大近20倍。改性高岭石表面嫁接了巯基后,可为高岭石吸附Cd(Ⅱ)提供大量的新吸附位点,通过配位复合作用显著提高对镉离子的吸附固定能力。因此,巯基硅烷改性高岭石是一种有应用前景的土壤修复材料。  相似文献   

15.
水悬浮体系中凹凸棒石与Cu2+作用机理   总被引:12,自引:0,他引:12  
研究矿物吸附重金属性能和机理,对正确认识矿物吸附性质、环境矿物材料应用研究以及重金属环境化学行为具有重要理论和实际意义。凹凸棒石是重要粘土矿物之一,也是重要的环境矿物材料,其吸附净化功能潜在应用受到广泛关注。在制备凹凸棒石纯样基础上,进行了凹凸棒石吸附Cu^2 单因素实验,吸附前后溶液pH值变化观测和吸附Cu^2 后凹凸棒石表面结构高分辨透射电镜调查。结果表明,从表面来看,凹凸棒石对Cu^2 的吸附性能主要受振荡速度、吸附时间、初始溶液pH值、吸附剂用量等因素影响,但实际上,凹凸棒石对Cu^2 的吸附作用主要是凹凸棒石诱导的Cu^2 水解沉淀作用以及凹凸棒石(带负电荷)与氢氧化铜(带正电荷)正负电荷胶体颗粒的互相作用,这有别于严格意义的矿物界面吸附作用。产生这种作用的机制在于凹凸棒石属于天然纳米矿物材料,具有较高的表面化学活性,凹凸棒石一水悬浮体系中凹凸棒石表面水解呈现出碱性,结果导致吸附平衡水溶液pH值较初始水溶液有较大程度的升高,达到Cu^2 水解基本完全的pH条件.  相似文献   

16.
锰的氧化物和氢氧化物在污染水体净化中的应用研究现状   总被引:17,自引:1,他引:17  
经过对锰的氧化物和氢氧化物在净化污染水体中的应用综合研究,发现该氧化物和氢氧化物样品能有效去除污染水体中的有毒有害金属离子和 氧化降解苯酚、2-丙醇、苯及印染废水等有机物,其污染净化能力主要是基于表面络合反应、表面离子交换作用和变价元素的氧化还原作用。同时介绍了锰氧化物和氢氧化物所具有的4个环境属性;离子交换、氧化还原、粒径效应和孔道效应,提出将结构特征与环境化学有机结合,深入探讨其环境属性与污染净化能力之间的关系是目前主要的研究方向。  相似文献   

17.
利用钾长石粉体水热合成13X沸石分子筛的晶化过程   总被引:2,自引:1,他引:1  
章西焕  马鸿文  白峰 《现代地质》2007,21(3):584-590
实验研究了以钾长石粉体为原料水热合成13X沸石分子筛的晶化过程,确定了晶化过程的诱导期、晶化期和沸石晶体的平均生长速率。以钾长石焙烧熟料为前驱物合成13X沸石,反应混合物首先转变为铝硅酸钠(钾)凝胶,再逐步水热晶化为13X沸石;在反应物未完全转变为铝硅酸钠(钾)凝胶之前,13X沸石已开始结晶。13X沸石晶体的生成主要发生在凝胶相内部,是凝胶结构逐步趋于有序化的过程。13X沸石晶体生成是由凝胶相内的[TO4]四面体相互连接,互套构成笼状结构。推测13X沸石形成机理为:硅酸根离子和铝酸根(+铁酸根)离子发生聚合反应,生成次级结构单元双六元环;双六元环进一步缩合,生成方钠石型笼;最后,方钠石型笼进一步相互联结,生成13X型沸石分子筛的硅铝骨架结构。  相似文献   

18.
通过固相法合成了一系列氯羟磷灰石(ClHAp)固溶体,经FTIR表征发现,纯羟基磷灰石(HAp)的羟基振动频率为3572cm-1和632cm-1。当Cl-进入HAp晶体结构后,在3494cm-1和673cm-1处各出现新的吸收谱带,说明在其通道结构中形成[Cl…HO]氢键,导致羟基的伸缩振动向低频偏移,弯曲振动向高频偏移。与氟羟磷灰石的FTIR谱比较可知:ClHAp的羟基振动谱带的位置与数量主要受氢键和周围结构环境变化程度影响。  相似文献   

19.
Fluid compositions and bedding‐scale patterns of fluid flow during contact metamorphism of the Weeks Formation in the Notch Peak aureole, Utah, were determined from mineralogy and stable isotope compositions. The Weeks Formation contains calc‐silicate and nearly pure carbonate layers that are interbedded on centimetre to decimetre scales. The prograde metamorphic sequence is characterized by the appearance of phlogopite, diopside, and wollastonite. By accounting for the solution properties of Fe, it is shown that the tremolite stability field was very narrow and perhaps absent in the prograde sequence. Unshifted oxygen and carbon isotopic ratios in calcite and silicate minerals at all grades, except above the wollastonite isograd, show that there was little to no infiltration of disequilibrium fluids. The fluid composition is poorly constrained, but X(CO2)fluid must have been >0.1, as indicated by the absence of talc, and has probably increased with progress of decarbonation reactions. The occurrence of scapolite and oxidation of graphite in calc‐silicate beds of the upper diopside zone provide the first evidence for limited infiltration of external aqueous fluids. Significantly larger amounts of aqueous fluid infiltrated the wollastonite zone. The aqueous fluids are recorded by the presence of vesuvianite, large decreases in δ18O values of silicate minerals from c. 16‰ in the diopside zone to c. 10‰ in the wollastonite zone, and extensive oxidation of graphite. The carbonate beds interacted with the fluids only along margins where graphite was destroyed, calcite coarsened, and isotopic ratios shifted. The wollastonite isograd represents a boundary between a high aqueous fluid‐flux region on its higher‐grade side and a low fluid‐flux region on its lower‐grade side. Preferential flow of aqueous fluids within the wollastonite zone was promoted by permeability created by the wollastonite‐forming reaction and the natural tendency of fluids to flow upward and down‐temperature near the intrusion‐wall rock contact.  相似文献   

20.
Pharmaceuticals have gained significant attention in recent years due to the environmental risks posed by their versatile application and occurrence in the natural aquatic environment. The transportation and distribution of pharmaceuticals in the environmental media mainly depends on their sorption behavior in soils, sediment?Cwater systems and waste water treatment plants, which varies widely across pharmaceuticals. Sorption of ibuprofen, a non-steroidal anti-inflammatory drug, onto various soil minerals, viz., kaolinite, montmorillonite, goethite, and activated carbon, as a function of pH (3?C11), ionic strength (NaCl concentration: 0.001?C0.5?M), and the humic acid concentration (0?C1,000?mg/L) was investigated through batch experiments. Experimental results showed that the sorption of ibuprofen onto all sorbents was highest at pH 3, with highest sorption capacity for activated carbon (28.5?mg/g). Among the minerals, montmorillonite sorbed more ibuprofen than kaolinite and goethite, with sorption capacity increasing in the order goethite (2.2?mg/g)?<?kaolinite (3.1?mg/g)?<?montmorillonite (6.1?mg/g). The sorption capacity of the selected minerals increased with increase in ionic strength of the solution in acidic pH condition indicating that the effect of pH was predominant compared to that of ionic strength. An increase in humic acid concentration from low to high values made the sorption phenomena very complex in the soil minerals. Based on the experimental observations, montmorillonite, among the selected soil minerals, could serve as a good candidate to remove high concentrations of ibuprofen from aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号