首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Paleothermometry is an essential tool for understanding past changes in climate. The ‘carbonate clumped isotope thermometer’ is a temperature proxy related to ordering of 13C and 18O in the carbonate lattice (based on measurements of 13C18O16O in CO2 produced by acid digestion of carbonate). This thermometer has been previously calibrated for inorganic calcite and aragonitic corals [Ghosh P., Adkins J., Affek H., Balta B., Guo W. F., Schauble E. A., Schrag D., and Eiler J. M. (2006) C-13-O-18 bonds in carbonate minerals: a new kind of paleothermometer. Geochim. Cosmochim. Acta70 (6), 1439-1456]. Here we determine the relationship between growth temperatures of aragonitic fish otoliths and abundances of 13C18O16O produced by acid digestion of those otoliths. Our calibration is based on analyses of otoliths from six species from four genera of modern fish sampled from a latitudinal transect of the Atlantic Ocean between 54° S and 65° N, plus one species from the tropical western Pacific. The temperatures at which fish otoliths precipitated were estimated by the mean temperature in the waters in which they lived, averaged over their estimated lifetimes. Estimated growth temperatures of our samples vary between 2 and 25 °C. Our results show that the abundance of 13C18O16O in CO2 produced by acid digestion of fish otolith aragonite is a function of growth temperature, following the relationship: , where Δ47 is the enrichment, in per mil, of 13C18O16O in CO2 relative to the amount expected for a stochastic (random) distribution of isotopes among all CO2 isotopologues, and T is the temperature in Kelvin. This relationship closely approaches that previously documented for inorganic calcite and aragonitic coral (Ghosh et al., 2006).  相似文献   

2.
Plio‐Pleistocene speleothems from australopithecine‐bearing caves of South Africa have the potential to yield paleoenvironmental and geochronological information using isotope geochemistry. Prior to such studies it is important to assess the preservation of geochemical signals within the calcitic and aragonitic speleothems, given the tendency of aragonitic speleothems to recrystallize to calcite. This study documents the geochemical suitability of speleothems from the principal hominin‐bearing deposits of South Africa. We use petrography, together with stable isotope and trace element analysis, to identify the occurrence of primary aragonite, primary calcite, and secondary calcite. This study highlights the presence of diagenetic alteration at many of the sites, often observed as interbedded primary and secondary fabrics. Trace element and stable isotopic values distinguish primary calcite from secondary calcite and offer insights into geochemical aspects of the past cave environment. δ13C values of the primary and secondary calcites range from +6 to −9‰ and δ18O values range from −4 to −6‰. The data are thus typical of meteoric calcites with highly variable δ13C and relatively invariant δ18O. High carbon isotope values in these deposits are associated with the effects of recrystallization and rapid outgassing of CO2 during precipitation. Mg/Ca and Sr/Ca ratios differ between primary and secondary calcite speleothems, aiding their identification. Carbon and oxygen isotope values in primary calcite reflect the proportion of C3 and C4 vegetation in the local environment and the oxygen isotope composition of rainfall. Primary calcite speleothems preserve the pristine geochemical signals vital for ongoing paleoenvironmental and geochronological research. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
Forty-nine aragonitic and calcitic shells from 14 species of marine tropical molluscs (Bivalvia, Gastropoda, Polyplacophora) and ambient waters from Martinique have been analyzed for their carbon and oxygen isotope compositions. Mineralogy of shells was systematically determined by Raman spectroscopy that reveals composite shell structures and early processes of diagenetic alteration. In mangrove, brackish waters result from the mixing between 89±1% of seawater and 11±1% of freshwater, a hydrological budget quantified by both oxygen isotope and salinity mass balance calculations. Mollusc shells from the mangrove environment (S=31‰; δ18O=0.5‰) are characterized by mean δ13C values (−1.2‰) lower than those (+2.6‰) living in the open sea (S=35‰; δ18O=1‰). These low carbon isotope compositions result from the oxidation of organic matter into bicarbonate ions used in the building of mollusc shells. The oxygen isotope compositions of the studied mollusc species are mainly controlled by the temperature and composition of seawater whereas the role of the so-called “vital effects” is negligible. Contrasting with carbon isotopes, variability in the δ18O values among and within species of mollusc shells is very low (1σ=0.15) for a given littoral environment. Using ambient temperatures of seawater (28-30 °C), oxygen isotope fractionations between all studied living species and environmental waters match those extrapolated from the fractionation equation established for molluscs by Grossman and Ku [Chem. Geol., Isot. Geosci. Sect. 59 (1986) 59] in the range 3-20 °C. By analyzing calcite and aragonite layers from the same shell or by comparing shells from different species living in the same environment, there is no evidence that oxygen isotope fractionation between aragonite and water differs from that between calcite and water. On the basis of these results, we conclude that the oxygen isotope compositions of shells from most fossil mollusc species are suitable to estimate past seawater temperatures at any paleolatitude.  相似文献   

4.
Tufa samples from 16 consecutive barrages along a 13 km section of the groundwater‐fed Krka River (Slovenia) were analysed for their petrographical, mineralogical, elemental and stable carbon (δ13C) and oxygen (δ18O) isotope composition, to establish their relation to current climatic and hydrological conditions. Waters constantly oversaturated with calcite and the steep morphology of the Krka riverbed stimulate rapid CO2 degassing and subsequent tufa precipitation. The carbon isotope fractionation (Δ13C) between dissolved inorganic carbon and tufa in the Krka River evolves towards isotopic equilibrium being controlled by continuous CO2 degassing and tufa precipitation rate downstream. The Δ13C increased from 1·9 to 2·5‰ (VPDB); however, since tufa precipitation rates remain similar downstream, the major controlling factor of carbon isotope exchange is most probably related to the continuous 12CO2 degassing downstream leaving the carbon pool enriched in 13C. In the case of oxygen, the isotope fractionation (Δ18O) was found to be from 1·0 to 2·3‰ (VSMOW) smaller than reported in the literature. The observed discrepancies are due to different precipitation rates of calcite deposits because Krka tufas on cascades grow relatively faster compared to slowly precipitated calcite deposits in cave or stream pools. Due to non‐equilibrium oxygen isotope exchange between Krka tufa and water, the δ18O proxy showed from 1·2 to 8·2°C higher calculated water temperatures compared to measured water temperatures, demonstrating that δ18O proxy‐based temperature equations are not reliable for water temperature calculations of fast‐growing tufa on cascades. Because Mg is bound to the terrigenous dolomite fraction in the Krka tufa samples, the Mg/Ca was also found to be an unreliable temperature proxy yielding over up to 20°C higher calculated water temperatures.  相似文献   

5.
High resolution δ13C and δ18O profiles recorded in precisely dated speleothems are widely used proxies for the climate of the past. Both δ13C and δ18O depend on several climate related effects including meteorological processes, processes occurring in the soil zone above the cave and isotope fractionation processes occurring in the solution layer on the stalagmite surface. Here we model the latter using a stalagmite isotope and growth model and determine the relationship between the stable isotope values in speleothem calcite and cave parameters, such as temperature, drip interval, water pCO2 and a mixing coefficient describing mixing processes between the solution layer and the impinging drop.The evolution of δ13C values is modelled as a Rayleigh distillation process and shows a pronounced dependence on the residence time of the solution on the stalagmite surface and the drip interval, respectively. The evolution of δ18O values, in contrast, is also influenced by buffering reactions between the bicarbonate in the solution and the drip water driving the δ18O value of the bicarbonate towards the value expected for equilibrium isotope fractionation between drip water and calcite. This attenuates the dependence of the δ18O values on drip interval. The temperature dependence of δ18O, however, is more pronounced than for δ13C and in a similar range as expected for fractionation under equilibrium conditions.We also investigate the isotopic enrichment of the δ13C and δ18O values along individual growth layers and, thus, the slopes expected for Hendy tests. The results show that a positive Hendy test is only possible if isotope fractionation occurred under disequilibrium conditions. However, a negative Hendy test does not exclude that isotope fractionation occurred under disequilibrium conditions. A more reliable indicator for disequilibrium fractionation is the enrichment of the δ13C values along an individual growth layer.  相似文献   

6.
Fracture minerals calcite, pyrite, gypsum, barite and quartz, formed during several events have been analysed for δ13C, δ18O, δ34S, 87Sr/86Sr, trace element chemistry and fluid inclusions in order to gain knowledge of the paleohydrogeological evolution of the Simpevarp area, south-eastern Sweden. This area is dominated by Proterozoic crystalline rocks and is currently being investigated by the Swedish Nuclear Fuel and Waste Management Co. (SKB) in order to find a suitable location for a deep-seated repository for spent nuclear fuel. Knowledge of the paleohydrogeological evolution is essential to understand the stability or evolution of the groundwater system over a time scale relevant to the performance assessment for a spent nuclear fuel repository. The ages of the minerals analysed range from the Proterozoic to possibly the Quaternary. The Proterozoic calcite and pyrite show inorganic and hydrothermal-magmatic stable isotope signatures and were probably formed during a long time period as indicated by the large span in temperatures (c. 200–360 °C) and salinities (0–24 wt.% eq. CaCl2), obtained from fluid inclusion analyses. The Paleozoic minerals were formed from organically influenced brine-type fluids at temperatures of 80–145 °C. The isotopic results indicate that low temperature calcite and pyrite may have formed during different events ranging in time possibly from the end of the Paleozoic until the Quaternary. Formation conditions ranging from fresh to brackish and saline waters have been distinguished based on calcite crystal morphologies. The combination of δ18O and crystal morphologies show that the fresh–saline water interface has changed considerably over time, and water similar to the present meteoric water and brackish seawater at the site, have most probably earlier been residing in the bedrock. Organic influence and closed system in situ microbial activity causing disequilibrium are indicated by extremely low δ13C (down to −99.7‰), extreme variation in δ34S (−42.5‰ to +60.8‰) and trace element compositions. The frequency of calcite low in δ13C and high in Mn, as well as pyrite with biogenically modified δ34S decreases with depth. Strontium isotopes have been useful to separate the different generations and the Sr isotope ratios in the groundwaters have been determined mainly by in situ water–rock interaction processes. The difficulty of separating late Paleozoic calcite from possibly recent calcite, and the fact that these calcites are usually found in the same fracture systems indicate that water conducting structures have been intermittently conductive from the Paleozoic and onwards. The methodology used has been successful in separating the different generations and characterising their formation conditions.  相似文献   

7.
For the Quaternary and Neogene, aragonitic biogenic and abiogenic carbonates are frequently exploited as archives of their environment. Conversely, pre‐Neogene aragonite is often diagenetically altered and calcite archives are studied instead. Nevertheless, the exact sequence of diagenetic processes and products is difficult to disclose from naturally altered material. Here, experiments were performed to understand biogenic aragonite alteration processes and products. Shell subsamples of the bivalve Arctica islandica were exposed to hydrothermal alteration. Thermal boundary conditions were set at 100°C, 175°C and 200°C. These comparably high temperatures were chosen to shorten experimental durations. Subsamples were exposed to different 18O‐depleted fluids for durations between two and twenty weeks. Alteration was documented using X‐ray diffraction, cathodoluminescence, fluorescence and scanning electron microscopy, as well as conventional and clumped isotope analyses. Experiments performed at 100°C show redistribution and darkening of organic matter, but lack evidence for diagenetic alteration, except in Δ47 which show the effects of annealing processes. At 175°C, valves undergo significant aragonite to calcite transformation and neomorphism. The δ18O signature supports transformation via dissolution and reprecipitation, but isotopic exchange is limited by fluid migration through the subsamples. Individual growth increments in these subsamples exhibit bright orange luminescence. At 200°C, valves are fully transformed to calcite and exhibit purple‐blue luminescence with orange bands. The δ18O and Δ47 signatures reveal exchange with the aqueous fluid, whereas δ13C remains unaltered in all experiments, indicating a carbonate‐buffered system. Clumped isotope temperatures in high‐temperature experiments show compositions in broad agreement with the measured temperature. Experimentally induced alteration patterns are comparable with individual features present in Pleistocene shells. This study represents a significant step towards sequential analysis of diagenetic features in biogenic aragonites and sheds light on reaction times and threshold limits. The limitations of a study restricted to a single test organism are acknowledged and call for refined follow‐up experiments.  相似文献   

8.
Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ13C) values of the carbonate sediment (?1‰ to ?2‰) have no relation to the oxygen isotope composition of the carbonate (δ18O) values (?7‰ to ?8‰), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ13C values between approximately +0.5‰ and +3‰, and δ18O values between ?1‰ and ?5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg–calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg–calcite. Evaporation and biological processes are the main reasons for the salinity and carbonate mineralogy influence of the surface-sediment carbonate in Bosten Lake. The lake water residence time and the CO2 exchange between the atmosphere and the water body control the carbon and oxygen isotope composition of the carbonate sediment. In addition, organic matter pollution and decomposition result in the abnormally low carbon isotope values of the lake surface-sediment carbonate.  相似文献   

9.
This paper focuses on a borehole, Xichen-1 well, drilled on the Chenhang Island, Xisha Islands in the South China Sea. Mineralogical, petrographic, stable isotopic and minor-element data from the Holocene to Pleistocene interval (0–179 m ) in the Xichen-1 well are discussed in detail. The 400-m-long core is divisible into four mineralogical facies: a high-Mg calcitic aragonite facies (0–16.91 m, Holocene), an aragonitic low- Mg calcite facies (16.91–30.60 m, Late Pleistocene), a low- Mg calcitic facies (30.60–179 m, Middle-Early Pleistocene) and a low- Mg calcitic and dolomitic facies (179–400 m, Early Pleistocene–Late Miocene). The Holocene section has much higher whole-rock δ18O and δ13C values and Mg and Sr content than the non-dolomitized Pleistocene limestones (16.91–179 m). The 16.91–165 m interval is characterized by a relatively invariant oxygen isotopic composition and very heterogeneous carbon isotopic composition. Between 165 and 179 m, there is a positively correlated increase of whole-rock δ18O and δ18C with depth, and Mg content also shows a gradual increase with depth. Petrographic data demonstrate that the Pleistocene reef sequence has been extensively affected by meteoric waters. We conclude that the Late Pleistocene section (16.91–30.60 m) and the Middle-Early Pleistocene section (30.60–165 m) have suffered incomplete and complete meteoric diagenesis, respectively, and that the Early Pleistocene interval (165–179 m) was diagenetically altered in a meteoric–marine mixing environment.  相似文献   

10.
Petrography demonstrates the presence of three types of fibrous calcite cement in buildup deposits of the Kullsberg Limestone (middle Caradoc), central Sweden. Translucent fibrous calcite has intrinsic blue luminescence (CL) indicative of pure calcite. This cement has 2–5 mol% MgCO3, low Mn and Fe (≤ 100 p.p.m.), and is considered to be slightly altered to unaltered, primary low- to intermediate-Mg calcite. Grey turbid fibrous calcite has variable but generally low MgCO3 content (most analyses <2 mol%) and variable CL response, with Mn and Fe concentrations up to 1200 and 500 p.p.m., respectively. The heterogeneous characteristics of this variety of fibrous calcite are caused by diagenetic alteration of a translucent fibrous calcite precursor. Light-brown turbid fibrous calcite has low MgCO3 (near 1 mol%) and variable Mn (up to 800 p.p.m.) and Fe (up to 500 p.p.m.) concentrations, with an abundance of bright luminescent patches, which formed during alteration caused by reducing diagenetic fluids. The δ13C and δ18O values of all fibrous calcite form a tight field (δ13C=1·7 to 3·1‰ PDB, δ18O= ? 2·6 to ? 4·1‰ PDB) compared with fibrous calcite isotope values from other units. Fibrous calcite δ18O values are larger than adjacent meteoric or burial cements, which have δ18O δ ? 8‰ PDB. Consequently, most diagenetic alteration of Kullsberg fibrous calcite is interpreted to have occurred in the marine diagenetic realm. First-generation equant and bladed calcite cements, which pre-date fibrous calcite, are interpreted as unaltered, low-Mg calcite marine cements based on δ13C and δ18O data (δ13C = 2·3 to 2·7‰ PDB, δ18O= ? 2·8 to ? 3·5‰ PDB). Unlike fibrous cement, which reflects global sea water chemistry, first-generation equant and bladed calcite are indicators of localized modification of seawater chemistry in restricted settings. Kullsberg abiotic marine cements have larger δ18O values than most Caradoc marine precipitates from equatorial Laurentia. Positive Kullsberg δ18O values are attributed to lower seawater temperatures and/or slightly elevated salinity on the Baltic platform relative to seawater from which other marine precipitates formed.  相似文献   

11.
The Pleistocene speleothems of Sa Bassa Blanca cave, Mallorca, are excellent indicators of palaeoclimate variations, and are samples that allow evaluation of the products and processes of mixing‐zone diagenesis in an open‐water cave system. Integrated stratigraphic, petrographic and geochemical data from a horizontal core of speleothem identified two main origins for speleothem precipitates: meteoric‐marine mixing zone and meteoric‐vadose zone. Mixing‐zone precipitates formed at and just below the water–air interface of cave pools during interglacial times, when the cave was flooded as a result of highstand sea‐level. Mixing‐zone precipitates include bladed and dendritic high‐Mg calcite, microporous‐bladed calcite with variable Mg content, and acicular aragonite; their presence suggests that calcium‐carbonate cementation is significant in the studied mixing‐zone system. Fluid inclusion salinities, δ13C and δ18O compositions of the mixing‐zone precipitates suggest that mixing ratio was not the primary control on whether precipitation or dissolution occurred, rather, the proximity to the water table and degassing of CO2 at the interface, were the major controls on precipitation. Thus, simple two‐end‐member mixing models may apply only in mixing zones well below the water table. Meteoric‐vadose speleothems include calcite and high‐Mg calcite with columnar and bladed morphologies. Vadose speleothems precipitated during glacial stages when sea level was lower than present. Progressive increase in δ13C and δ18O of the vadose speleothems resulted from cooling temperatures and more positive seawater δ18O associated with glacial buildup. Such covariation could be considered as a valid alternative to models predicting invariant δ18O and highly variable δ13C in meteoric calcite. Glacio‐eustatic oscillations of sea‐level are recorded as alternating vadose and mixing‐zone speleothems. Short‐term climatic variations are recorded as alternating aragonite and calcite speleothems precipitated in the mixing zone. Fluid‐inclusion and stable‐isotope data suggest that aragonite, as opposed to calcite, precipitated during times of reduced meteoric recharge.  相似文献   

12.
Phosphoric acid digestion has been used for oxygen- and carbon-isotope analysis of carbonate minerals since 1950, and was recently established as a method for carbonate ‘clumped isotope’ analysis. The CO2 recovered from this reaction has an oxygen isotope composition substantially different from reactant carbonate, by an amount that varies with temperature of reaction and carbonate chemistry. Here, we present a theoretical model of the kinetic isotope effects associated with phosphoric acid digestion of carbonates, based on structural arguments that the key step in the reaction is disproportionation of H2CO3 reaction intermediary. We test that model against previous experimental constraints on the magnitudes and temperature dependences of these oxygen isotope fractionations, and against new experimental determinations of the fractionation of 13C-18O-containing isotopologues (‘clumped’ isotopic species). Our model predicts that the isotope fractionations associated with phosphoric acid digestion of carbonates at 25 °C are 10.72‰, 0.220‰, 0.137‰, 0.593‰ for, respectively, 18O/16O ratios (1000 lnα) and three indices that measure proportions of multiply-substituted isotopologues . We also predict that oxygen isotope fractionations follow the mass dependence exponent, λ of 0.5281 (where ). These predictions compare favorably to independent experimental constraints for phosphoric acid digestion of calcite, including our new data for fractionations of 13C-18O bonds (the measured change in Δ47 = 0.23‰) during phosphoric acid digestion of calcite at 25 °C.We have also attempted to evaluate the effect of carbonate cation compositions on phosphoric acid digestion fractionations using cluster models in which disproportionating H2CO3 interacts with adjacent cations. These models underestimate the magnitude of isotope fractionations and so must be regarded as unsucsessful, but do reproduce the general trend of variations and temperature dependences of oxygen isotope acid digestion fractionations among different carbonate minerals. We suggest these results present a useful starting point for future, more sophisticated models of the reacting carbonate/acid interface. Examinations of these theoretical predictions and available experimental data suggest cation radius is the most important factor governing the variations of isotope fractionation among different carbonate minerals. We predict a negative correlation between acid digestion fractionation of oxygen isotopes and of 13C-18O doubly-substituted isotopologues, and use this relationship to estimate the acid digestion fractionation of for different carbonate minerals. Combined with previous theoretical evaluations of 13C-18O clumping effects in carbonate minerals, this enables us to predict the temperature calibration relationship for different carbonate clumped isotope thermometers (witherite, calcite, aragonite, dolomite and magnesite), and to compare these predictions with available experimental determinations. The success of our models in capturing several of the features of isotope fractionation during acid digestion supports our hypothesis that phosphoric acid digestion of carbonate minerals involves disproportionation of transition state structures containing H2CO3.  相似文献   

13.
We studied calcite and rhodochrosite from exploratory drill cores (TH‐4 and TH‐6) near the Toyoha deposit, southwestern Hokkaido, Japan, from the aspect of stable isotope geochemistry, together with measuring the homogenization temperatures of fluid inclusions. The alteration observed in the drill cores is classified into four zones: ore mineralized zone, mixed‐layer minerals zone, kaolin minerals zone, and propylitic zone. Calcite is widespread in all the zones except for the kaolin minerals zone. The occurrence of rhodochrosite is restricted in the ore mineralized zone associated with Fe, Mn‐rich chlorite and sulfides, the mineral assemblage of which is basically equivalent to that in the Toyoha veins. The measured δ18OSMOW and δ13CPDB values of calcite scatter in the relatively narrow ranges from ?2 to 5‰ and from ?9 to ?5‰, respectively; those of rhodochrosite from 3 to 9‰ and from ?9 to ?5‰, excluding some data with large deviations. The variation of the isotopic compositions with temperature and depth could be explained by a mixing process between a heated surface meteoric water (100°C δ18O =?12‰, δ13C =?10‰) and a deep high temperature water (300°C, δ18O =?5‰, δ13C =?4‰). Boiling was less effective in isotopic fractionation than that of mixing. The plots of δ18O and δ13C indicate that the carbonates precipitated from H2CO3‐dominated fluids under the conditions of pH = 6–7 and T = 200–300°C. The sequential precipitation from calcite to rhodochrosite in a vein brought about the disequilibrium isotopic fractionation between the two minerals. The hydrothermal fluids circulated during the precipitation of carbonates in TH‐4 and TH‐6 are similar in origin to the ore‐forming fluids pertaining to the formation of veins in the Toyoha deposit.  相似文献   

14.
In a semiarid climatic zone, such as the Eastern Mediterranean region, annual rainfall variations and fractionation processes in the epikarst zone exert a profound influence on the isotopic compositions of waters seeping into a cave. Consequently, the isotopic compositions of speleothems depositing from cave waters may show complex variations that need to be understood if they are to be exploited for paleoclimate studies. This is confirmed by a four-year study of the active carbonate-water system in the Soreq cave (Israel). The δ18O (SMOW) values of cave waters range from −6.3 to −3.5%.. The highest δ18O values occur at the end of the dry season in waters dripping from stalactites, and reflect evaporation processes in the epikarst zone, whereas the lowest values occur in rapidly dripping (fast-drip) waters at the peak of the rainy seasons. However, even fast-drip waters are about 1.5%. heavier than the rainfall above the cave, which is taken to reflect the mixing of fresh with residual evaporated water in the epikarst zone. δ13C (PDB) values of dissolved inorganic carbon (DIC) vary from −15.6 to −5.4%., with fast-drip waters having lower δ13C values (mostly −15.6 to −12%.) and higher DIC concentrations relative to pool and stalactite-drip water. The low δ13C values of fast-drip waters and their supersaturation with respect to calcium carbonate indicates that the seepage waters have dissolved both soil-CO2 derived from overlying C3-type vegetation and marine dolomite host rock.The δ18O (PDB) values of various types of present-day low-magnesium calcite (LMC) speleothems range from −6.5 to −4.3%. and δ13C values from −13 to −5.5%. and are not correlated with speleothem type. An analysis of δ18O values of present-day calcite rafts and pool waters shows that they form in oxygen isotope equilibrium. Similarly, the measured ranges of δ13C and δ18O values for all types of present-day speleothems are consistent with equilibrium deposition at cave temperatures. The δ13C–δ18O range of contemporary LMC thus reflects the variations in temperatures and isotopic compositions of the presentday cave waters. The 10%. variation in the δ13C values in waters can be modeled by a simple Rayleigh calculation of the carbon isotope fractionation accompanying CO2-degassing and carbonate precipitation. These variations may obscure the differences in the carbon isotopic composition of speleothems that could arise when vegetation cover changes from C3 to C4-type plants. This consideration emphasizes that it is necessary to characterize the full range of δ13C values associated with contemporaneous speleothems in order to clarify the effects of degassing from those due to differing vegetation types.Isotopic studies of a number of different types of fossil LMC speleothems show many of them to exhibit isotopic trends that are similar to those of present-day LMC, but others show both higher and lower δ18O ranges. In particular, the higher δ18O range has been shown by independent age-measurements to be associated with a period of drier conditions. The results of the study thus indicate that it is necessary to work on a well calibrated cave system in semiarid climates and that the fossil speleothem record should be obtained from different types of contemporaneous deposit in order to fully characterize the δ18O–δ13C range representative of any given climatic period.  相似文献   

15.
The dominantly shallow-marine Vendian succession of NE Spitsbergen contains distinctive types of carbonate rock. Limestones deposited before Vendian glaciation resemble those described from other Upper Proterozoic successions, being high in Sr and inferred to have been originally aragonitic, including the distinctive 5–10 Jim equant polygonal calcite of cemented shrinkage cracks. In contrast, manganoan stromatolitic limestones within marginal-marine glacial-outwash deposits, and consisting of micrite, microspar and fascicular-optic calcite are interpreted as originally calcitic. The restriction of primary marine calcite to cold seawater is comparable with Recent and Permian carbonates, although the Precambrian example formed in a sea diluted with meltwater. There is good textural preservation of relatively 18O-rich oolitic dolostones which were cemented in a supratidal environment by artesian fluids. Nevertheless, early diagenetic replacement is inferred, immediately prior to a glacial episode. Post-glacial dolostones are either replacive marine, or evaporative lacustrine, but share rather more negative δ18O values, closer to the mean of Late Precambrian dolostones. The heaviest oxygen isotope values constrain seawater δ18O to no more negative than — 2 to — 4SMOW. The main reason for the pronounced oxygen isotopic depletion of most Late Precambrian carbonates is their initial metastable mineralogy. The possibility of determining palaeolatitudes of the enigmatic widespread Late Proterozoic glaciations by isotopic analysis of freshwater periglacial calcareous precipitates is raised. Significant carbon isotope variations reflect changes in depositional water chemistry: some of these could be global in extent.  相似文献   

16.
Oxygen isotope compositions of biogenic phosphates from mammals are widely used as proxies of the isotopic compositions of meteoric waters that are roughly linearly related to the air temperature at high- and mid-latitudes. An oxygen isotope fractionation equation was determined by using present-day European arvicoline (rodents) tooth phosphate: δ18Op = 20.98(±0.59) + 0.572(±0.065) δ18Ow. This fractionation equation was applied to the Late Pleistocene karstic sequence of Gigny, French Jura. Comparison between the oxygen isotope compositions of arvicoline tooth phosphate and Greenland ice core records suggests to reconsider the previously established hypothetical chronology of the sequence. According to the δ18O value of meteoric water-mean air temperature relationships, the δ18O value of arvicoline teeth records variations in mean air temperatures that range from 0° to 15°C.  相似文献   

17.
A semi-automatic, on-line method was developed to determine the δ13C and δ18O values of coexisting calcite and dolomite. An isotopic mass balance is used to calculate the compositions of dolomite after having measured that of calcite and of the “bulk” sample. The limit of validity of this method is established by performing isotopic measurements of artificial mixtures made of precisely weighted and isotopically-characterised dolomite and calcite. The accuracy and repeatability of the calculation of dolomite δ13C and δ18O are statistically determined with a Monte-Carlo procedure of error propagation. Stable isotope ratios are determined by using an automated MultiPrep™ system on-line with an isotope-ratio mass-spectrometer (IRMS). The reaction time and the temperature of reaction were optimised by comparing the results with the isotopic composition of known mixtures. The best results were obtained by phosphoric acid digestion after 20 min at 40 °C for calcite and 45 min at 90 °C for dolomite. This procedure allows an accurate determination of the isotopic ratios from small samples (300 μg). Application of this protocol to natural mixtures of calcite and dolomite requires the accurate determination of the relative abundance of calcite and dolomite by combining Mélières manocalcimetry (MMC) and X-ray diffractometry (XRD).  相似文献   

18.
This article reviews the applications of light stable isotope, including carbon, oxygen and hydrogen, in thestudies on origin and formation temperature of authigenic carbonate, quartz and clay minerals. Theoretical knowledge andanalytical methods for major light stable isotopes are introduced in detail. Negative and positive δ13C values indicatesignificant differences on the origin of carbonate cements. The δ18O value is an effective palaeotemperature scale forauthigenic minerals formation. Various fractionation equations between δ18O and temperature are proposed for carbonatecements, quartz cements and clay minerals, whose merit and demerit, applicable conditions are clarified clearly. Clumpedisotope analysis can reconstruct the temperature of carbonate precipitation with no requirement on the δ18O of initial waters,which makes temperature calculation of carbonate cements formation more convenient and accurate. Hydrogen and oxygenisotopes mainly reflect the origin of diagenetic fluid for clay mineral formation, providing reliable evidence for diageneticenvironment analysis. This work aims at helping researchers for better understanding the applications of light stable isotopein sandstone diagenesis.  相似文献   

19.
We investigated the oxygen isotope composition (δ18O) of shell striae from juvenile Comptopallium radula (Mollusca; Pectinidae) specimens collected live in New Caledonia. Bottom-water temperature and salinity were monitored in-situ throughout the study period. External shell striae form with a 2-day periodicity in this scallop, making it possible to estimate the date of precipitation for each calcite sample collected along a growth transect. The oxygen isotope composition of shell calcite (δ18Oshell calcite) measured at almost weekly resolution on calcite accreted between August 2002 and July 2003 accurately tracks bottom-water temperatures. A new empirical paleotemperature equation for this scallop species relates temperature and δ18Oshell calcite:
t(°C)=20.00(±0.61)-3.66(±0.39)×(δ18Oshell calcite VPDB18Owater VSMOW)  相似文献   

20.
《Gondwana Research》2001,4(3):377-386
The Kerala Khondalite belt is a Proterozoic metasupracrustal granulite facies terrain in southern India comprising garnet-biotite gneiss, garnet-sillimanite gneiss and orthopyroxene granulites as major rock types. Calc-silicate rocks and marbles, occurring as minor lithologies in the Kerala Khondalite Belt, show different mineral assemblages and reaction histories of which indicate a metamorphic P-T-fluid history dominated by internal fluid buffering during the peak metamorphism, followed by external fluid influx during decompression. The carbon and oxygen isotopic compositions of calcite from three representative metacarbonate localities show contrasting evolutionary trends. The Ambasamudram marbles exhibit carbon and oxygen isotope ratios (δ13C ∼ 0‰ and δ18O ∼ 20‰) typical of middle to late Proterozoic marine carbonate sediments with minor variation ascribed to the isotopic exchange due to the devolatilization reactions. The δ13C and δ18O values of ∼ −9‰ and 11‰, respectively, for calcite from calc-silicate rocks at Nuliyam are considerably low and heterogeneous. The wollastonite formation here, possibly corresponds to an earlier event of fluid infiltration during prograde to peak metamorphism, which resulted in decarbonation and isotope resetting. Further, petrologic evidence supports a model of late carbonic fluid infiltration that has partially affected the calc-silicate rocks, with subsequent isotope resetting, more towards the contact between calc-silicate rock and charnockite. At Korani, only oxygen isotopes have been significantly lowered (δ18O ∼ 13‰) and the process involved might be a combination of metamorphic devolatilization accompanied by an aqueous fluid influx, supported by petrologic evidence. The stable isotope signatures obtained from the individual localities, thus indicate heterogeneous patterns of fluid evolution history within the same crustal segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号