首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Pleistocene lateral meltwater channels are commonly used as evidence of cold-based or polythermal ice. However, lateral meltwater channel formation has been observed for >40 years along the margins of a rapidly thinning temperate glacier in Glacier Bay, Alaska. Flights of nested linear lateral meltwater channels and in-and-out channels have formed on the sides of emerging nunataks. Nested channels at Burroughs Glacier are up to 200 m long; they are good proxies for the slope of the ice margin along the land surface and are terminated by subglacial chutes. A perched water table associated with precipitation and high ablation rates in the temperate ice causes surface meltwater to flow toward the margin above less permeable ice. The water flows along the margin and erodes lateral meltwater channels until a subglacial chute carries the water into the subglacial water system. Rates of channel formation range from 0 to 8 channels/year. Spacing and rates of channel formation are controlled by the land-surface slope, ablation rate, erodibility of the substrate and stream discharge. Because lateral meltwater channels have been observed forming along a temperate glacier margin, care must be exercised when using the presence of lateral meltwater channels as definitive evidence of cold-based or polythermal ice.  相似文献   

2.
The efficiency of subglacial drainage is known to have a profound influence on subglacial deformation and glacier dynamics with, in particular, high meltwater contents and/or pressures aiding glacier motion. The complex sequence of Middle Pleistocene tills and glacial outwash sediments exposed along the north Norfolk coast (Eastern England) were deposited in the ice-marginal zone of the British Ice Sheet and contain widespread evidence for subglacial deformation during repeated phases of ice advance and retreat. During a phase of easterly directed ice advance, the glacial and pre-glacial sequences were pervasively deformed leading to the development of a thick unit of glacitectonic mélange. Although the role of pressurised meltwater has been recognised in facilitating deformation and mélange formation, this paper provides evidence for the subsequent development of a channelised subglacial drainage system beneath this part of the British Ice Sheet filled by a complex assemblage of sands, gravels and mass flow deposits. The channels are relatively undeformed when compared to the host mélange, forming elongate, lenticular to U-shaped, flat-topped bodies (up to 20–30 m thick) located within the upper part of this highly deformed unit. This relatively stable channelised system led to an increase in the efficiency of subglacial drainage from beneath the British Ice Sheet and the collapse of the subglacial shear zone, potentially slowing or even arresting the easterly directed advance of the ice sheet.  相似文献   

3.
Hummocky terrain composed of boulder gravel and a wavy contact between stratified till and sand are described and explained as products of subglacial meltwater activity beneath the Saginaw Lobe of the Laurentide Ice Sheet in south-central Michigan. Exposures and geophysical investigations of hummocky terrain in a tunnel channel reveal that hummocks (˜100m diameter) are glaciofluvial bedforms with a supraglacial melt-out till or till flow veneer. The hummocky terrain is interpreted as a subglacial glaciofluvial landscape rather than one of stagnant ice processes commonly assumed for hummocky landscapes. Sandy bedforms at another site are in-phase with a wavy contact at the base of a stratified till exposed for 50m along the margin of a tunnel channel. The 0.4m thick stratified till is overlain by up to 5m of compact, pebble-rich, sandy subglacial melt-out till. The contact between the till and sand has a wave form with a 0.5m amplitude and 3-5m wavelength. Bedding within the stratified till, sandy bedforms and melt-out till are mostly in-phase with each other. Clasts from the overlying stratified till penetrate and deform the underlying sand recording recoupling of the ice to its bed. Ice ripples cut into the base of river ice have a similar morphology and are considered analogs for cavities cut into the base of the glacier and subsequently filled with sand. Subglacial meltwater activity was not coeval at each study site, indicating that subglacial meltwater played important roles in the evolution of the subglacial environment beneath the Saginaw Lobe at different times.  相似文献   

4.
《Quaternary Science Reviews》2007,26(7-8):1067-1090
OverallThis work is presented in two parts. Part I presents observations on the coupling between subglacial channel flow and groundwater flow in determining subglacial hydraulic regime and creating eskers from an Icelandic glacier that is suggested as an analogue for many parts of Pleistocene ice sheets. Part II develops a theory of perennial subglacial stream flow and the origin of esker systems, and models the evolution of the subglacial stream system and associated groundwater flow in a glacier of the type described in Part I. It is suggested that groundwater flow may be the predominant mechanism whereby meltwater at the glacier bed finds its way to the major subglacial streams that discharge water to glacier margins.Part IBoreholes drilled through an Icelandic glacier into an underlying till and aquifer system have been used to measure variations in head in the vicinity of a perennial subglacial stream tunnel during late summer and early winter. They reveal a subglacial groundwater catchment that is drained by a subglacial stream along its axis. The stream tunnel is characterised by low water pressures, and acts as a drain for the groundwater catchment, so that groundwater flow is predominantly transverse to ice flow, towards the channel.These perennial streams flow both in summer and winter. Their portals have lain along the same axes for the 5 km of retreat that has occurred since the end of the Little Ice Age, 100 years ago, suggesting that the groundwater catchments have been relatively stable for at least this period. In the winter season, stream discharges are largely derived from basal melting, but during summer, water derived from the glacier surface finds its way, via fractures and moulins, to the glacier bed, where it dominates the meltwater flux. Additional subglacial streams are created in summer to help drain this greater flux from beneath the glacier, through poorly integrated and unstable networks. Summer streams cease to flow during winter and tend not to form in the same places in the following summer. Perennial streams are the stable component of the system and are the main sources of extensive esker systems.Strong flow of groundwater towards low-pressure areas along channels and the ice margin is a source of major upwelling that can produce sediment liquefaction and instability. A theory is developed to show how this could have a major effect on subglacial sedimentary processes.  相似文献   

5.
《Quaternary Science Reviews》2007,26(3-4):322-335
An exposure within the central portion of a large drumlin at Port Byron, New York State, USA, part of the large New York drumlin field, reveals a sequence of steeply dipping cemented sands and gravels of proglacial, ice-contact deltaic origin overlain by a thin till veneer. The sands and gravels appear to have been deposited within the proximal proglacial environment during a late retreat phase of the Laurentide Ice Sheet sometime prior to being overridden by subsequent ice and drumlinized. During deposition of the ice-contact delta, escaping subglacial regelation-meltwater permeated the proximal deltaic sediment pile and calcium carbonate was released, in a series of pulses, to form pore-occluding calcite cement within the sand and gravel porespaces. The calcium carbonate precipitated into the sands and gravels due to a reduction in hydrostatic pressure and CO2 outgassing of the meltwater as it exited from beneath the ice sheet. Once cemented, these deltaic sediments were considerably stronger and acted afterward as an obstacle around which the future ice advance streamed and, in turn, produced the characteristic drumlin shape. In overriding the ice-contact deltaic sediments, the ice sheet emplaced a thin layer of till which exhibits syndepositional deformation features indicative of being emplaced as a deforming bed layer beneath the advancing ice sheet. Micromorphological analysis of the overlying till shows that no interstitial or intraclastic calcite occurs within the till.  相似文献   

6.
Turbid meltwater plumes and ice‐proximal fans occur where subglacial streams reach the grounded marine margins of modern and ancient tidewater glaciers. However, the spacing and temporal stability of these subglacial channels is poorly understood. This has significant implications for understanding the geometry and distribution of Quaternary and ancient ice‐proximal fans that can form important aquifers and hydrocarbon reservoirs. Remote‐sensing and numerical‐modelling techniques are applied to the 200 km long marine margin of a Svalbard ice cap, Austfonna, to quantify turbid meltwater‐plume distribution and predict its temporal stability. Results are combined with observations from geophysical data close to the modern ice front to refine existing depositional models for ice‐proximal fans. Plumes are spaced ca 3 km apart and their distribution along the ice front is stable over decades. Numerical modelling also predicts the drainage pattern and meltwater discharge beneath the ice cap; modelled water‐routing patterns are in reasonable agreement with satellite‐mapped plume locations. However, glacial retreat of several kilometres over the past 40 years has limited build‐up of significant ice‐proximal fans. A single fan and moraine ridge is noted from marine‐geophysical surveys. Closer to the ice front there are smaller recessional moraines and polygonal sediment lobes but no identifiable fans. Schematic models of ice‐proximal deposits represent varying glacier‐terminus stability: (i) stable terminus where meltwater sedimentation produces an ice‐proximal fan; (ii) quasi‐stable terminus, where glacier readvance pushes or thrusts up ice‐proximal deposits into a morainal bank; and (iii) retreating terminus, with short still‐stands, allowing only small sediment lobes to build up at melt‐stream portals. These modern investigations are complemented with outcrop and subsurface observations and numerical modelling of an ancient, Ordovician glacial system. Thick turbidite successions and large fans in the Late Ordovician suggest either high‐magnitude events or sustained high discharge, consistent with a relatively mild palaeo‐glacial setting for the former North African ice sheet.  相似文献   

7.
Subglacial erosional forms are commonly found on bedrock substrates inside the Late Weichselian ice margin in County Donegal, northwest Ireland, and can be used to provide detailed information on subglacial processes and environments. The erosional forms occur on spatial scales from whalebacks (tens of metres in scale), to asymmetric and channelized bedrock-cut scours (tens of cm in scale) and striations (mm scale). Processes responsible for development of subglacial erosional forms occur along a continuum, from free meltwater existing as a laterally extensive sheet at the ice-bed interface, to abrasion by basal ice. Channelized bedrock-cut scours are particularly common in County Donegal, and show asymmetric and meandering thalwegs, U-shaped cross-profiles and steep lateral margins. Innermost parts of the scours are highly polished and have striations that follow thalweg direction. In places, bedrock surfaces are overlain by a delicate polish and thin calcite cement, and are buried beneath glacial till. Based on their morphology, the bedrock scours are interpreted as s-forms caused by high-pressure subglacial meltwater erosion. Striations within the scoured channels reflect periods of ice-bed coupling and subglacial abrasion. The range of features observed here was used to consider relationships between subglacial topography, hydraulic processes and ice-bed coupling. Precipitation of calcite cement took place in depressions on the bedrock surface by CO2 degassing. Infilling of depressions by glacial till formed a new type of 'sticky spot' related to spatial variations in subglacial water pressure. The temporal evolution of sticky spots reflects interactions within the subglacial environment between subglacial relief, hydraulic regime and ice-bed coupling.  相似文献   

8.
冰岩界面的冰川动力学是冰川系统的重要组成部分, 海螺沟冰川地处温暖湿润的海洋环境, 冰川运动速度较快, 冰川底部接近压融点, 是研究冰下过程的较理想地点. 在海螺沟冰川大型磨光面上浅显侵蚀坑内发现了碎屑物质. 对碎屑物质理化特征研究表明: 粒度特征、地球化学与石英砂SEM 分析表明沉积在冰岩界面上的物质来自于冰川底部的底碛层, 而不是冰上环境的产物. 偏光显微镜下观察到的冰下沉积物呈现出一系列塑性变形(微旋转、褶皱)和脆性变形(线性结构、支撑结构、断层)微观结构和构造. 两种变形结构的存在是碎屑物质在形成过程中其含水量波动情况的反映. 冰下碎屑物质是冰下融出、滞碛作用的共同产物. 在整个冰下碎屑物质形成与变形过程中, 由于冰下水系季节性变化带来的冰岩界面上冰川融水含量的波动起了决定性作用.  相似文献   

9.
《Sedimentary Geology》2007,193(1-4):59-69
Transverse kames, forming trains perpendicular to the direction of ice-sheet advance, are rare morphological elements in previously glaciated areas. The genesis of an example from the ice-contact zone of the Wartanian glaciation in eastern Poland is discussed. The transverse kames there form two main, distinctly separated, sub-parallel trains. Their sedimentary successions fill erosional troughs incised in the pre-Wartanian deposits on northern slopes. They consist of thick glaciofluvial sand and glaciofluvial/glaciolacustrine sandy/silty units that are covered with a thin, usually discontinuous, glacial till succession. The genesis of this kame type has been modelled. It is concluded that transverse kames developed in two phases: (1) erosion of the substratum in subglacial channels during initial deglaciation, and (2) glaciofluvial deposition in crevasses during advanced deglaciation (in the form of low-energy fans periodically submerged under stagnant water), followed locally by a cover of flowtills. Both the ablation of the ice and the accumulation of the kame deposits were controlled by the co-occurrence of ice zones either enriched or impoverished with sediment. Zonal enrichment of ice with debris was determined by the development of shear zones over substratum elevations that were inclined up-ice. The formation and subsequent infilling of crevasses both took place in zones of relatively clean ice, so that the resulting kames form a train perpendicular to the direction of ice movement.  相似文献   

10.
Hydrofracture systems are being increasingly recognized within subglacial to ice‐marginal settings and represent a visible expression of the passage of pressurized meltwater through these glacial environments. Such structures provide a clear record of the fluctuating hydrostatic pressure and of the resulting brittle fracturing of the host sediment/bedrock and the pene‐contemporaneous liquefaction and introduction of sediment‐fill. A detailed macro‐ and microstructural study of a hydrofracture system cutting Devonian sandstone bedrock exposed at the Meads of St John, near Inverness (NE Scotland), has revealed that this complex multiphase system was active over a prolonged period and accommodated several phases of fluid flow. The main conduits that fed the hydrofracture system are located along bedding within the sandstone, with the site of the wider, steeply inclined to subvertical, transgressive linking sections being controlled by the contemporaneous development of high‐angle fractures and normal faults, the latter occurring in response to localized extension within the bedrock. A comparison with published engineering hydraulic fracturing data indicates that the various stages of sediment‐fill deposited during a flow event can be directly related to the fluctuation in overpressure during hydrofracturing. A model is proposed linking the evolution of this hydrofracture system to the retreat of the overlying Findhorn glacier. The results of this study also indicate that the development and repeated reactivation of subglacial hydrofracture systems can have a dramatic effect on the permeability of the bed, influencing the potential for overpressure build‐up within the subglacial hydrogeological system, and facilitating the migration of meltwater beneath glaciers and ice sheets.  相似文献   

11.
12.
Glacial deposits and landforms, interpreted from the continuous seismic reflection data, have been used to reconstruct the Late Weichselian ice-sheet dynamics and the sedimentary environments in the northeastern Baltic Sea. The bedrock geology and topography played an important role in the glacial dynamics and subglacial meltwater drainage in the area. Drumlins suggest a south-southeasterly flow direction of the last ice sheet on the Ordovician Plateau. Eskers demonstrate that subglacial meltwater flow was focused mostly within bedrock valleys. The eskers have locally been overlain by a thin layer of till. Thick proximal outwash deposits occupy elongated depressions in the substratum, which often occur along the sides of esker ridges. Ice-marginal grounding-line deposit in the southern part of the area has a continuation on the adjacent Island of Saaremaa. Therefore, we assume that its formation took place during Palivere Stadial of the last deglaciation, whereas the moraine bank extending southwestward from the Serve Peninsula is tentatively correlated with the Pandivere Stadial. The wedge-shaped ice-marginal grounding-line deposit was locally fed by subglacial meltwater streams during a standstill or slight readvance of the ice margin. The thickness of the glacier at the grounding-line was estimated to reach approximately 180 m. In the western part of the area, terrace-like morphology of the ice-marginal deposit and series of small retreat moraines 10–20 km north of it suggest stepwise retreat of the ice margin. Therefore, a rather thin and mobile ice stream was probably covering the northeastern Baltic Sea during the last deglaciation.  相似文献   

13.
A typical stratigraphy below a streamlined till plain in Northumberland, England, consists of cross-cutting lodgement till units, within and between which occur repeated shoestring interbeds of ‘cut and fill’ channels. Till units have erosional lower contacts; in certain cases marked changes in erratic content and local ice flow direction are evident from one till unit to another. These lodgement till complexes have hitherto been described by ‘tripartite’ schemes of lower grey till (s) and upper reddened till (s) identified with respect to ‘middle’ fluvial horizons; regional correlation proceeding on the basis of matching ‘middle’ horizons, with the whole sequence commonly interpreted as evidence for multiple glaciation. Data indicates, by way of contrast, that these lodgement till complexes were deposited during a single phase of subglacial deposition. Till deposition was not continuous but was interrupted by erosional episodes. Changes in the mix of bedrock lithologies transported by the glacier down a single flow line or by lateral displacement of basal ice flow units within the glacier result in till units of different facies to be emplaced when deposition recommences, a process referred to as ‘unconformable facies superimposition’. Subglacial meltwater flow was also a characteristic of the glacier bed; channeled glaciofluvial sediment bodies are found as ribbon-like inclusions in the till and appear to have been deposited rapidly. These so-called ‘middle’ fluvial horizons occur repeatedly in section, their lateral extent at any given exposure being dependent upon the orientation of the exposure with respect to former ice flow direction. These lenses act as internal drainage blankets and have accelerated postglacial soil formation in the drier climate of eastern Britain accounting for the reddened colour of upper till(s). It is suggested that this model of subglacial deposition can be employed in other areas of northern England characterized by subglacial (lodgement till plain) terrains.  相似文献   

14.
基于2012年消融期6~9月在祁连山老虎沟12号冰川采集冰川融水径流样品,分析探讨冰川融水中粉尘颗粒物对融水理化性质的影响。结果表明,粉尘特征在消融期的变化很好地反映了冰川消融过程,融水中粉尘浓度和粒径众数在冰川强烈消融期的7月份表现为最高。粉尘体积粒径分布主要包括大气气溶胶超细颗粒(0~3.0 μm,主要为PM 2.5),大气粉尘颗粒(3.0~20 μm),以及局地源的粗颗粒(20~100 μm);对雪冰消融释放的粉尘部分(3.0~20 μm)粒径分布正态拟合结果说明,融水中粉尘颗粒物有很大部分来源于积雪中的粉尘运移所致。同时,融水中化学离子相对组成及其浓度消融期变化都与粉尘有较好的一致性,意味着粉尘对融水化学要素有重要影响。此外,pH值和电导率(EC)消融期的变化也反映了粉尘对融水物理指标的影响。在粉尘浓度较高时,融水pH值和电导率也表现出高值;融水径流中的悬移质颗粒物(SPM)浓度和溶解质固体(TDS)浓度具有较为一致的变化过程,反映了粉尘对于融水中溶解质含量也有较大影响。  相似文献   

15.
《Quaternary Science Reviews》2007,26(9-10):1384-1397
To investigate the drainage conditions that might be expected to develop beneath soft-bedded ice sheets, we modeled the subglacial hydrology of the James Lobe of the Laurentide Ice Sheet from Hudson Bay to the Missouri River. Simulations suggest the James Lobe had little effect on regional groundwater flow because the poorly conductive Upper-Cretaceous shale that occupies the upper layer of the bedrock would have functioned as a regional aquitard. This implies that general northward groundwater flow out of the Williston Basin has likely persisted throughout the Quaternary. Moreover, the simulations indicate that the regional aquifer system could not have drained even the minimum amount of basal meltwater that might have been produced from at the glacier bed. Therefore, excess drainage must have occurred by some sort of channelized drainage network at the ice–till interface. Using a regional groundwater model to determine the hydraulic conductivity for an equivalent porous medium in a 1-m thick zone between the ice and underlying sediment, and assuming conduit dimensions from previous theoretical work, we use a theoretical karst aquifer analog as a heuristic approach to estimate the spacing of subglacial conduits that would have been required at the ice–till interface to evacuate the minimum water flux. Results suggest that for conduits assumed to be on the order of a tenth of a meter deep and up to a meter wide, inter-conduit spacing must be on the order of tens–hundreds of meters apart to maintain basal water pressures below the ice overburden pressure while evacuating the hypothesized minimum meltwater flux.  相似文献   

16.
We provide evidence for the subglacial to ice‐marginal successive deposition of the Lohtaja?Kivijärvi ice lobe margin esker influenced by the changes in the meltwater delivery and proglacial water depth within the Finnish Lake District lobe trunk during the last deglaciation in Finland. The study is mostly based on the sedimentological data from the 100 km long esker chain with 15 logged sites. The long breaks in the lobe margin esker and the re‐emerged deposition along the stable position of the subglacial meltwater route were related to the discontinuities and reappearances of the neighbouring eskers. This considerable variability in the meltwater discharge and debris transport under the described deglacial conditions cannot be explained by markedly decreased meltwater production due to palaeoclimatic factors or lack of debris within the trunk region. The primary control on the changes in meltwater availability and related esker deposition was thus due to the spatial and temporal changes in ice mass properties and shifting of the meltwater flow paths within the trunk. These changes were initiated by the topographically higher and partly supra‐aquatic Suomenselkä watershed area with subsequent deepening of the proglacial water during the deglaciation. The understanding of the long‐lived esker deposition along the former ice‐stream trunk margin adds to the evaluation of palaeoglaciological reconstructions and geomorphologically based spatial models for ice‐stream landscapes.  相似文献   

17.
The glacial geomorphology of Teesdale and the North Pennines uplands is analysed in order to decipher: a) the operation of easterly flowing palaeo-ice streams in the British-Irish Ice Sheet; and b) the style of regional deglaciation. Six landform categories are: i) bedrock controlled features, including glacitectonic bedrock megablocks or ‘rubble moraine’; ii) discrete mounds and hills, often of unknown composition, interpreted as weakly streamlined moraines and potential ‘rubble moraine’; iii) non-streamlined drift mounds and ridges, representing lateral, frontal and inter-ice stream/interlobate moraines; iv) streamlined landforms, including drumlins of various elongation ratios and bedrock controlled lineations; v) glacifluvial outwash and depositional ridges; and vi) relict channels and valleys, related to glacial meltwater incision or meltwater re-occupation of preglacial fluvial features. Multiple tills in valley-floor drumlin exposures indicate that the subglacial bedform record is a blend of flow directions typical of areas of discontinuous till cover and extensive bedrock erosional landforms. Arcuate assemblages of partially streamlined drift mounds are likely to be glacially overridden latero-frontal moraines related to phases of “average glacial conditions” (palimpsests). Deglacial oscillations of a glacier lobe in mid-Teesdale are marked by five inset assemblages of moraines and associated drift and meltwater channels, named the Glacial Lake Eggleshope, Mill Hill, Gueswick, Hayberries and Lonton stages. The Lonton stage moraines are thought to be coeval with bedrock-cored moraines in the central Stainmore Gap and likely record the temporary development of cold-based or polythermal ice conditions around the margins of a plateau-based icefield during the Scottish Readvance.  相似文献   

18.
This article describes distinctive lateral meltwater channels at the margins of low-elevation cold-based glaciers in the Dry Valleys. The channels significantly modify the ground surface and indicate that cold-based glaciers can be active geomorphic agents. Summer meltwater from the glacier surface flows over ice-aprons and erodes into the frozen ground creating channels up to 3 m deep and 10 m wide adjacent to unmodified ground that is protected beneath the glacier itself. Rapid fluvial excavation in the channels leads to undercutting and collapse of channel walls, which is capable of overturning large boulders. During glacial retreat, a succession of channels is incised into newly exposed ground creating a distinctive series of nested lateral channels and ridges. These represent the most obvious and persistent geomorphological signature of cold-based glacier activity in the region. Cold-based glaciers may advance and retreat over the same area many times without necessarily destroying older features, thereby creating a complex series of channels, deposits and remnant surfaces with a disordered chronology. Recognizing the role of cold-based glaciers and their meltwater channels on landscape evolution is critical for interpreting the timing and style of glacial events in the Antarctic.  相似文献   

19.
Sediments deposited in two small ice-contact lakes with low rates of sediment input have been studied in subaerial exposures. Sediment characteristics are a function of the water source (glacial meltwater versus non-meltwater), proximity to the glacier margin and lake shore, amount of supraglacial debris, and lake duration. Calving Lake expanded (and later partially drained) as a calving ice margin retreated. Nearshore deltas contain 1 × 105 m3 stratified sand and gravel deposited at rates up to 1 m/yr during a 9-yr interval. Deltaic sediment contains types A and B ripple-drift cross-lamination, draped lamination, and scour surfaces caused by variations in water-flow velocity and the amount of sediment settling from suspension. Most water inflow came from non-subglacial meltwater sources and was sediment-poor, so overflow and interflow sedimentation processes dominated the offshore environment. Offshore sediment generally contains massive silt or silt interbedded with fine-grained sand deposited at rates of 1.3-1.5 cm/yr. Iceberg gravity craters observed on the lake plain were formed when icebergs impacted the lake floor during calving events. In Bruce Hills Lake, proximity to glacier ice and the presence of supraglacial sediment formed coarsening-upward successions when debris fell directly from an ice ledge onto silty lacustrine sediment.  相似文献   

20.
The influence of glacier hydrology on the time-dependent morphology and flow behaviour of the late Weichselian Scandinavian ice sheet is explored using a simple one-dimensional ice sheet model. The model is driven by orbitally induced radiation variations, ice-albedo feedback and eustatic sea-level change. The influence of hydrology is most marked during deglaciation and on the southern side of the ice sheet, where a marginal zone of rapid sliding, thin ice and low surface slopes develops. Such a zone is absent when hydrology is omitted from the model, and its formation results in earlier and more rapid deglaciation than occurs in the no-hydrology model. The final advance to the glacial maximum position results from an increase in the rate of basal sliding as climate warms after 23000 yr BP. Channelised subglacial drainage develops only episodically, and is associated with relatively low meltwater discharges and high hydraulic gradients. The predominance of iceberg calving as an ablation mechanism on the northern side of the ice sheet restricts the occurrence of surface melting. Lack of meltwater penetration to the glacier bed in this area means that ice flow is predominantly by internal deformation and the ice sheet adopts a classical parabolic surface profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号