首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The Dvurechenskii mud volcano (DMV) is located in permanently anoxic waters at 2060 m depth (Sorokin Trough, Black Sea). The DMV was studied during the RV Meteor expedition M72/2 as an example of an active mud volcano system, to investigate the significance of submarine mud volcanism for the methane and sulfide budget of the anoxic Black Sea hydrosphere. Our studies included benthic fluxes of methane and sulfide, as well as the factors controlling transport, consumption and production of both compounds within the sediment. The pie-shaped mud volcano showed temperature anomalies as well as solute and gas fluxes indicating high fluid flow at its summit north of the geographical center. The anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) was repressed in this zone due to the upward flow of sulfate-depleted fluids through recently deposited subsurface muds, apparently limiting microbial methanotrophic activity. Consequently, the emission of dissolved methane into the water column was high, with an estimated rate of 0.46 mol m−2 d−1. On the wide plateau and edge of the mud volcano surrounding the summit, fluid flow and total methane flux were lower, allowing higher SR and AOM rates correlated with an increase in sulfate penetration into the sediment. Here, between 50% and 70% of the methane flux (0.07-0.1 mol m−2 d−1) was consumed within the upper 10 cm of the sediment. The overall amount of dissolved methane released from the entire mud volcano structure into the water column was significant with a discharge of 1.3 × 107 mol yr−1. The DMV maintains also high areal rates of methane-fueled sulfide production and emission of on average 0.05 mol m−2 d−1. This is a difference to mud volcanoes in oxic waters, which emit similar amounts of methane, but not sulfide. However, based on a comparison of this and other mud volcanoes of the Black Sea, we conclude that sulfide and methane emission into the hydrosphere from deep-water mud volcanoes does not significantly contribute to the sulfide and methane inventory of the Black Sea.  相似文献   

2.
The free energy yield of microbial respiration reactions in anaerobic marine sediments must be sufficient to be conserved as biologically usable energy in the form of ATP. Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SRR) has a very low standard free energy yield of ΔG° = −33 kJ mol−1, but the in situ energy yield strongly depends on the concentrations of substrates and products in the pore water of the sediment. In this work ΔG for the AOM-SRR process was calculated from the pore water concentrations of methane, sulfate, sulfide, and dissolved inorganic carbon (DIC) in sediment cores from different sites of the European continental margin in order to determine the influence of thermodynamic regulation on the activity and distribution of microorganisms mediating AOM-SRR. In the zone of methane and sulfate coexistence, the methane-sulfate transition zone (SMTZ), the energy yield was rarely less than −20 kJ mol−1 and was mostly rather constant throughout this zone. The kinetic drive was highest at the lower part of the SMTZ, matching the occurrence of maximum AOM rates. The results show that the location of maximum AOM rates is determined by a combination of thermodynamic and kinetic drive, whereas the rate activity mainly depends on kinetic regulation.  相似文献   

3.
We investigated coupling between sulfate reduction (SR) and anaerobic oxidation of methane (AOM) by quantifying pore water geochemical profiles, determining rates of microbial processes, and examining microbial community structure at two sites within Mississippi Canyon lease block 118 (MC118) in the Northern Gulf of Mexico. Sediments from the northwest seep contained high concentrations of methane while sediments from the southwest seep contained methane, gaseous n-alkanes and liquid hydrocarbons and had abundant surficial accumulations of gas hydrate. Volumetric (21.5 μmol cm−3 day−1) and integrated (1429 mmol m−2 day−1) rates of SR at MC118 in ex situ incubations are the highest reported thus far for seafloor environments. AOM rates were small in comparison, with volumetric rates ranging from 0.1 to 12.6 nmol cm−3 day−1. Diffusion cannot adequately supply the sulfate required to support these high SR rates so additional mechanisms, possibly biological sulfide oxidation and/or downward advection, play important roles in supplying sulfate at these sites. The microbial communities at MC118 included sulfate-reducing bacteria phylogenetically associated with Desulfobacterium anilini, which is capable of complex hydrocarbon degradation. Despite low AOM rates, the majority of archaea identified were phylogenetically related to previously described methane oxidizing archaea. To evaluate whether weak coupling between SR and AOM occurs in habitats lacking the complex hydrocarbon milieu present at MC118, we compiled available SR and AOM rates and found that the global median ratio of SR to AOM was 10.7:1 rather than the expected 1:1. The global median integrated AOM rate was used to refine global estimates for AOM rates at cold seeps; these new estimates are only 5% of the previous estimate.  相似文献   

4.
Microbial methane turnover at mud volcanoes of the Gulf of Cadiz   总被引:2,自引:0,他引:2  
The Gulf of Cadiz is a tectonically active area of the European continental margin and characterised by a high abundance of mud volcanoes, diapirs, pockmarks and carbonate chimneys. During the R/V SONNE expedition “GAP-Gibraltar Arc Processes (SO-175)” in December 2003, several mud volcanoes were surveyed for gas seepage and associated microbial methane turnover. Pore water analyses and methane oxidation measurements on sediment cores recovered from the centres of the mud volcanoes Captain Arutyunov, Bonjardim, Ginsburg, Gemini and a newly discovered, mud volcano-like structure called “No Name” show that thermogenic methane and associated higher hydrocarbons rising from deeper sediment strata are completely consumed within the seabed. The presence of a distinct sulphate-methane transition zone (SMT) overlapping with high sulphide concentrations suggests that methane oxidation is mediated under anaerobic conditions with sulphate as the electron acceptor. Anaerobic oxidation of methane (AOM) and sulphate reduction (SR) rates show maxima at the SMT, which was found between 20 and 200 cm below seafloor at the different mud volcanoes. In comparison to other methane seeps, AOM activity (<383 mmol m−2 year−1) and diffusive methane fluxes (<321 mmol m−2 year−1) in mud volcano sediments of the Gulf of Cadiz are low to mid range. Corresponding lipid biomarker and 16S rDNA clone library analysis give evidence that AOM is mediated by a mixed community of anaerobic methanotrophic archaea and associated sulphate reducing bacteria (SRB) in the studied mud volcanoes. Little is known about the variability of methane fluxes in this environment. Carbonate crusts littering the seafloor of mud volcanoes in the northern part of the Gulf of Cadiz had strongly 13C-depleted lipid signatures indicative of higher seepage activities in the past. However, actual seafloor video observations showed only scarce traces of methane seepage and associated biological processes at the seafloor. No active fluid or free gas escape to the hydrosphere was observed visually at any of the surveyed mud volcanoes, and biogeochemical measurements indicate a complete methane consumption in the seafloor. Our observations suggest that the emission of methane to the hydrosphere from the mud volcano structures studied here may be insignificant at present.  相似文献   

5.
Anaerobic oxidation of methane (AOM) and sulfate reduction (SR) were investigated in sediments of the Chilean upwelling region at three stations between 800 and 3000 m water depth. Major goals of this study were to quantify and evaluate rates of AOM and SR in a coastal marine upwelling system with high organic input, to analyze the impact of AOM on the methane budget, and to determine the contribution of AOM to SR within the sulfate-methane transition zone (SMT). Furthermore, we investigated the formation of authigenic carbonates correlated with AOM. We determined the vertical distribution of AOM and SR activity, methane, sulfate, sulfide, pH, total chlorins, and a variety of other geochemical parameters. Depth-integrated rates of AOM within the SMT were between 7 and 1124 mmol m−2 a−1, effectively removing methane below the sediment-water interface. Single measurements revealed AOM peaks of 2 to 51 nmol cm−3 d−1, with highest rates at the shallowest station (800 m). The methane turnover was higher than in other diffusive systems of similar ocean depth. This higher turnover was most likely due to elevated organic matter input in this upwelling region offering significant amounts of substrates for methanogenesis. SR within the SMT was mostly fuelled by methane. AOM led to the formation of isotopically light DIC (δ13C: −24.6‰ VPDB) and of distinct layers of authigenic carbonates (δ13C: −14.6‰ VPDB).  相似文献   

6.
Wetlands are significant sources and sinks for arsenic (As), yet the geochemical conditions and processes causing a release of dissolved arsenic and its association with the solid phase of wetland soils are poorly known. Here we present experiments in which arsenic speciation was determined in peatland mesocosms in high spatiotemporal resolution over 10 months. The experiment included a drought/rewetting treatment, a permanently wet, and a defoliated treatment. Soil water content was determined by the TDR technique, and arsenic, iron and sulfate turnover from mass balancing stocks and fluxes in the peat, and solid phase contents by sequential extractions. Arsenic content ranged from 5 to 25 mg kg−1 and dissolved concentrations from 10 to 300 μg L−1, mainly in form of As(III), and secondarily of As(V) and dimethylated arsenic (DMA). Total arsenic was mainly associated with amorphous iron hydroxides (R2 > 0.95, α < 0.01) and deeper into the peat with an unidentified residual fraction. Arsenic release was linked to ferrous iron release and primarily occurred in the intensely rooted uppermost soil. Volumetric air contents of 2-13 % during drought eliminated DMA from the porewater and suppressed its release after rewetting for >30 d. Dissolved As(III) was oxidized and immobilized as As(V) at rates of up to 0.015 mmol m−3 d−1. Rewetting mobilized As(III) at rates of up to 0.018 mmol m−3 d−1 within days. Concurrently, Fe(II) was released at depth integrated rates of up 20 mmol m−3 d−1. The redox half systems of arsenic, iron, and sulfur were in persistent disequilibrium, with H2S being a thermodynamically viable reductant for As(V) to As(III). The study suggests that rewetting can lead to a rapid release of arsenic in iron-rich peatlands and that methylation is of lesser importance than co-release with iron reduction, which was largely driven by root activity.  相似文献   

7.
Activity concentrations of the naturally occurring, short-lived and highly particle-reactive radionuclide tracer 234Th in the dissolved and particulate phase were determined at 7 shallow-water stations (maximum depths: 30 (S.1 and S.2), 65 (S.3), 97 (S.5), 105 (S.6) and 220 m (S.4 and S.7) in Saronikos Gulf and Elefsis Bay (central Aegean Sea, Greece) during 3 seasonal cruises (summer 2008, autumn 2008 and winter 2009) to assess the time scales of the dynamics and the depositional fate of particulate matter (POC, particulate 234Th). For that reason, in situ filtrating systems were deployed in several depths of the water column consisting of GF/A disc prefilters to scavenge particulate fraction of 234Th and organic carbon and impregnated cartridges to adsorb dissolved 234Th.The obtained data showed average particulate 234Th activity concentrations of 3.7 ± 0.4 Bq m−3 in summer, 2.1 ± 0.2 Bq m−3 in autumn and 2.4 ± 0.2 Bq m−3 in winter. The respective average dissolved 234Th activity concentrations were 30.1 ± 2.8 Bq m−3 in summer, 30.2 ± 2.9 Bq m−3 in autumn and 27.4 ± 3.0 Bq m−3 in winter. The activity ratios of total 234Th and its long-lived conservative parent 238U were below unity in most of the stations indicating radioactive disequilibrium throughout the water column, thus very dynamic trace-metal scavenging and particle export from the water column. These profiles (234Th and 238U) were used to estimate the export fluxes and scavenging rates of 234Th, as well as their residence times in the water column. The average cumulative export fluxes of particulate 234Th were estimated to be 33 ± 4 Bq m−2 d−1 in summer, 35 ± 5 Bq m−2 d−1 in autumn and 45 ± 6 Bq m−2 d−1 in winter, whereas the respective average cumulative scavenging rates of dissolved 234Th were 39 ± 5, 33 ± 5 and 50 ± 7 Bq m−2 d−1. Moreover, the cumulative average residence times of 234Th were 25 ± 4 d in summer, 45 ± 6 d in autumn and 64 ± 7 d in winter 2009 for the dissolved fraction and 4 ± 1, 3 ± 1 and 4 ± 1 d for the particulate one, respectively.POC/ ratio profiles decreased versus depth showing a variety of marine processes, such as loss of POC due to dissolution after biological activity, impact of minerals in particle sinking and microbial remineralization. Average cumulative export fluxes of POC were 162 ± 18 mmol m−2 d−1 in summer, 107 ± 19 mmol m−2 d−1 in autumn and 157 ± 25 mmol m−2 d−1 in winter 2009. The seasonal data of POC fluxes certified the existence of phytoplankton bloom in winter for Saronikos Gulf. In addition, after evaluating the maxima of POC fluxes in Elefsis Bay (a small embayment in northern Saronikos Gulf) during summer, potential bloom of phytoplankton also concluded; this approach is in agreement with previous data of the same area. Finally, the elevated POC concentrations and fluxes in the region certify that the Gulf is still one of the most organic polluted in the Mediterranean Sea.  相似文献   

8.
In a comprehensive study, we compared depositional conditions, organic matter (OM) composition, and organic carbon turnover in sediments from two different depositional systems along the Chilean continental margin: at ∼23° S off Antofagasta and at ∼36° S off Concepción. Both sites lie within the Chilean coastal upwelling system and have an extended oxygen minimum zone in the water column. However, the northern site (23° S) borders the Atacama Desert, while the southern site (36° S) has a humid hinterland. Eight surface sediment cores (up to 30 cm long) from water depths of 126-1350 m were investigated for excess 210Pb (210Pbxs) activity, total organic and total inorganic carbon concentrations (TOC and TIC, respectively), C/N-ratios, organic carbon isotopic compositions (δ13C), chlorin concentrations, Chlorin Indices (CI), and sulfate reduction rates (SRR). Sediment accumulation rates obtained from 210Pb-analysis were similar in both regions (0.04-0.15 cm yr−1 at 23° S, 0.10-0.19 cm yr−1 at 36° S), although total 210Pbxs fluxes indicated that the vertical particle flux was higher at 36° S than at 23° S. We propose that sediment focusing in isolated deposition centers led to high sediment accumulation rates at 23° S. Furthermore, there were no indications for sediment mixing at 23° S, while bioturbation was intense at 36° S. δ13C-values (−24.5‰ to −20.1‰ vs. VPDB) and C/N-ratios (molar, 8.6-12.8) were characteristic of a predominantly marine origin of the sedimentary OM in both investigated areas. The extent of OM alteration in the water column was partly reflected in the surface sediments as chlorin concentrations decreased and C/N-ratios and CI increased with increasing water depth of the sampling site. SRR were lower at 23° S (areal SRR 0.12-0.60 mmol m−2 d−1) than at 36° S (areal SRR 0.82-1.18 mmol m−2 d−1), which was partly due to the greater water depth of most of the sediments investigated in the northern region and consistent with a lower quality of the sedimentary OM at 23° S. Reaction rate constants for TOC degradation that were obtained from measured SRR (kSRR; 0.0004-0.0022 yr−1) showed a good correspondence to kTOC that were derived from the depth profiles of TOC (0.0003-0.0014 yr−1). Both, kSRR and kTOC, reflect differences in OM composition. At 36° S they were related to the degradation state of bulk OM (represented by C/N-ratios), whereas near 23° S they were related to the freshness of a small fraction of labile OM (represented by CI). Our study shows that although rates of organic carbon accumulation were similar in both investigated sites, the extent and kinetics of organic carbon degradation were closely linked to differing depositional conditions.  相似文献   

9.
Sulfate reduction and sulfur-iron geochemistry were studied in 5-6 m deep gravity cores of Holocene mud from Aarhus Bay (Denmark). A goal was to understand whether sulfate is generated by re-oxidation of sulfide throughout the sulfate and methane zones, which might explain the abundance of active sulfate reducers deep below the main sulfate zone. Sulfate penetrated down to 130 cm where methane started to build up and where the concentration of free sulfide peaked at 5.5 mM. Below this sulfate-methane transition, sulfide diffused downwards to a sulfidization front at 520 cm depth, below which dissolved iron, Fe2+, accumulated in the pore water. Sulfate reduction rates measured by 35S-tracer incubations in the sulfate zone were high due to high concentrations of reactive organic matter. Within the sulfate-methane transition, sulfate reduction was distinctly stimulated by the anaerobic oxidation of methane. In the methane zone below, sulfate remained at positive “background” concentrations of <0.5 mM down to the sulfidization front. Sulfate reduction decreased steeply to rates which at 300-500 cm depth were 0.2-1 pmol SO42− cm−3 d−1, i.e., 4-5 orders of magnitude lower than rates measured near the sediment surface. The turn-over time of sulfate increased from 3 years at 12 cm depth to 100-1000 years down in the methane zone. Sulfate reduction in the methane zone accounted for only 0.1% of sulfate reduction in the entire sediment column and was apparently limited by the low pore water concentration of sulfate and the low availability of organic substrates. Amendment of the sediment with both sulfate and organic substrates immediately caused a 10- to 40-fold higher, “potential sulfate reduction” which showed that a physiologically intact community of sulfate reducing bacteria was present. The “background” sulfate concentration appears to be generated from the reaction of downwards diffusing sulfide with deeply buried Fe(III) species, such as poorly-reactive iron oxides or iron bound in reactive silicates. The oxidation of sulfide to sulfate in the sulfidic sediment may involve the formation of elemental sulfur and thiosulfate and their further disproportionation to sulfide and sulfate. The net reaction of sulfide and Fe(III) to form pyrite requires an additional oxidant, irrespective of the formation of sulfate. This could be CO2 which is reduced with H2 to methane. The methane subsequently diffuses upwards to become re-oxidized at the sulfate-methane transition and thereby removes excess reducing power and enables the formation of excess sulfate. We show here how the combination of these well-established sulfur-iron-carbon reactions may lead to the deep formation of sulfate and drive a cryptic sulfur cycle. The iron-rich post-glacial sediments underlying Holocene marine mud stimulate the strong sub-surface sulfide reoxidation observed in Aarhus Bay and are a result of the glacial to interglacial history of the Baltic Sea area. Yet, processes similar to the ones described here probably occur widespread in marine sediments, in particular along the ocean margins.  相似文献   

10.
I present a numerical diffusion-advection-reaction model to simulate CO2 chemistry, δ13C, and oxidation of organic carbon and methane in sediment porewater. The model takes into account detailed reaction kinetics of dissolved CO2 compounds, H2O, H+, OH, boron and sulfide compounds. These reactions are usually assumed to be in local equilibrium, which is shown to be a good approximation in most cases. The model also includes a diffusive boundary layer across which chemical species are transported between bottom water and the sediment-water interface. While chemical concentrations and δ13CTCO2 at these locations are frequently assumed equal, I demonstrate that they can be quite different. In this case, shells of benthic foraminifera do not reflect the desired properties of bottom water, even for species living at the sediment-water interface (z = 0 cm). Environmental conditions recorded in their shells are strongly influenced by processes occurring within the sediment. The model is then applied to settings in the Santa Barbara Basin and at Hydrate Ridge (Cascadia Margin), locations of strong organic carbon and methane oxidation. In contrast to earlier studies, I show that a limited contribution of methane-derived carbon to porewater TCO2 in the Santa Barbara Basin cannot be ruled out. Simulation of methane venting shows that at oxidation rates greater than , the δ13C of porewater TCO2 at z > 1 cm is depleted by more than 15‰ relative to bottom water. Depletions of this magnitude have not been observed in living benthic foraminifera, even at methane vents with much higher oxidation rates. This suggests that foraminifera at these sites either calcify at very shallow sediment depth or during times when oxidation rates are much lower than ∼50 μmol cm−2 y−1.  相似文献   

11.
Methane microseepage is the result of natural gas migration from subsurface hydrocarbon accumulations to the Earth’s surface, and it is quite common in commercial petroleum fields. While the role of microseepage as a pathfinder in petroleum exploration has been known for about 80 a, its significance as an atmospheric CH4 source has only recently been studied, and flux data are currently available only in the USA and Europe. With the aim of increasing the global data-set and better understanding flux magnitudes and variabilities, microseepage is now being extensively studied in China. A static flux chamber method was recently applied to study microseepage emissions into the atmosphere in four different sectors of the Yakela condensed gas field in Tarim Basin, Xinjiang, China, and specifically in: (a) a faulted sector, across the Luntai fault systems; (b) an oil–water interface sector, at the northern margin of the field; (c) an oil–gas interface sector, in the middle of the field; (d) an external area, outside the northern gas field boundaries. The results show that positive CH4 fluxes are pervasive in all sectors and therefore, only part of the CH4 migrating from the deep oil–gas reservoirs is consumed in the soil by methanotrophic oxidation. The intensity of gas seepage seems to be controlled by subsurface geologic settings and lateral variabilities of natural gas pressure in the condensed gas field. The highest CH4 fluxes, up to ∼14 mg m−2 d−1 (mean of 7.55 mg m−2 d−1) with higher spatial variability (standard deviation, σ: 2.58 mg m−2 d−1), occur in the Luntai fault sector. Merhane flux was lower in the oil–water area (mean of 0.53 mg m−2 d−1) and the external area (mean of 1.55 mg m−2 d−1), and at the intermediate level in the gas–oil sector (mean of 2.89 mg m−2 d−1). These values are consistent with microseepage data reported for petroleum basins in the USA and Europe. The build-up of methane concentration in the flux chambers is always coupled with an enrichment of 13C, from δ13C1 of −46‰ to −42.5‰ (VPDB), which demonstrates that seeping methane is thermogenic, as that occurring in the deep Yakela reservoir. Daily variations of microseepage are very low, with minima in the afternoon, corresponding to higher soil temperature (and higher methanotrophic consumption), and maxima in the early morning (when soil temperatures are lowest). A preliminary and rough estimate of the total amount of CH4 exhaled from the Yakela field is in the order of 102 tonnes a−1.  相似文献   

12.
Two sediment cores retrieved at the northern slope of Sakhalin Island, Sea of Okhotsk, were analyzed for biogenic opal, organic carbon, carbonate, sulfur, major element concentrations, mineral contents, and dissolved substances including nutrients, sulfate, methane, major cations, humic substances, and total alkalinity. Down-core trends in mineral abundance suggest that plagioclase feldspars and other reactive silicate phases (olivine, pyroxene, volcanic ash) are transformed into smectite in the methanogenic sediment sections. The element ratios Na/Al, Mg/Al, and Ca/Al in the solid phase decrease with sediment depth indicating a loss of mobile cations with depth and producing a significant down-core increase in the chemical index of alteration. Pore waters separated from the sediment cores are highly enriched in dissolved magnesium, total alkalinity, humic substances, and boron. The high contents of dissolved organic carbon in the deeper methanogenic sediment sections (50-150 mg dm−3) may promote the dissolution of silicate phases through complexation of Al3+ and other structure-building cations. A non-steady state transport-reaction model was developed and applied to evaluate the down-core trends observed in the solid and dissolved phases. Dissolved Mg and total alkalinity were used to track the in-situ rates of marine silicate weathering since thermodynamic equilibrium calculations showed that these tracers are not affected by ion exchange processes with sediment surfaces. The modeling showed that silicate weathering is limited to the deeper methanogenic sediment section whereas reverse weathering was the dominant process in the overlying surface sediments. Depth-integrated rates of marine silicate weathering in methanogenic sediments derived from the model (81.4-99.2 mmol CO2 m−2 year−1) are lower than the marine weathering rates calculated from the solid phase data (198-245 mmol CO2 m−2 year−1) suggesting a decrease in marine weathering over time. The production of CO2 through reverse weathering in surface sediments (4.22-15.0 mmol CO2 m−2 year−1) is about one order of magnitude smaller than the weathering-induced CO2 consumption in the underlying sediments. The evaluation of pore water data from other continental margin sites shows that silicate weathering is a common process in methanogenic sediments. The global rate of CO2 consumption through marine silicate weathering estimated here as 5-20 Tmol CO2 year−1 is as high as the global rate of continental silicate weathering.  相似文献   

13.
A steady-state reaction-transport model is applied to sediments retrieved by gravity core from two stations (S10 and S13) in the Skagerrak to determine the main kinetic and thermodynamic controls on anaerobic oxidation of methane (AOM). The model considers an extended biomass-implicit reaction network for organic carbon degradation, which includes extracellular hydrolysis of macromolecular organic matter, fermentation, sulfate reduction, methanogenesis, AOM, acetogenesis and acetotrophy. Catabolic reaction rates are determined using a modified Monod rate expression that explicitly accounts for limitation by the in situ catabolic energy yields. The fraction of total sulfate reduction due to AOM in the sulfate-methane transition zone (SMTZ) at each site is calculated. The model provides an explanation for the methane tailing phenomenon which is observed here and in other marine sediments, whereby methane diffuses up from the SMTZ to the top of the core without being consumed. The tailing is due to bioenergetic limitation of AOM in the sulfate reduction zone, because the methane concentration is too low to engender favorable thermodynamic drive. AOM is also bioenergetically inhibited below the SMTZ at both sites because of high hydrogen concentrations (∼3-6 nM). The model results imply there is no straightforward relationship between pore water concentrations and the minimum catabolic energy needed to support life because of the highly coupled nature of the reaction network. Best model fits are obtained with a minimum energy for AOM of ∼11 kJ mol−1, which is within the range reported in the literature for anaerobic processes.  相似文献   

14.
Strontium-90 is a beta emitting radionuclide produced during nuclear fission, and is a problem contaminant at many nuclear facilities. Transport of 90Sr in groundwaters is primarily controlled by sorption reactions with aquifer sediments. The extent of sorption is controlled by the geochemistry of the groundwater and sediment mineralogy. Here, batch sorption experiments were used to examine the sorption behaviour of 90Sr in sediment–water systems representative of the UK Sellafield nuclear site based on groundwater and contaminant fluid compositions. In experiments with low ionic strength groundwaters (<0.01 mol L−1), pH variation is the main control on sorption. The sorption edge for 90Sr was observed between pH 4 and 6 with maximum sorption occurring (Kd ∼ 103 L kg−1) at pH 6–8. At ionic strengths above 10 mmol L−1, and at pH values between 6 and 8, cation exchange processes reduced 90Sr uptake to the sediment. This exchange process explains the lower 90Sr sorption (Kd ∼ 40 L kg−1) in the presence of artificial Magnox tank liquor (IS = 29 mmol L−1). Strontium K-edge EXAFS spectra collected from sediments incubated with Sr2+ in either HCO3-buffered groundwater or artificial Magnox tank liquor, revealed a coordination environment of ∼9 O atoms at 2.58–2.61 Å after 10 days. This is equivalent to the Sr2+ hydration sphere for the aqueous ion and indicates that Sr occurs primarily in outer sphere sorption complexes. No change was observed in the Sr sorption environment with EXAFS analysis after 365 days incubation. Sequential extractions performed on sediments after 365 days also found that ∼80% of solid associated 90Sr was exchangeable with 1 M MgCl2 in all experiments. These results suggest that over long periods, 90Sr in contaminated sediments will remain primarily in weakly bound surface complexes. Therefore, if groundwater ionic strength increases (e.g. by saline intrusion related to sea level rise or by design during site remediation) then substantial remobilisation of 90Sr is to be expected.  相似文献   

15.
Submarine mud volcanism is an important pathway for transfer of deep-sourced fluids enriched in hydrocarbons and other elements into the ocean. Numerous mud volcanoes (MVs) have been discovered along oceanic plate margins, and integrated elemental fluxes are potentially significant for oceanic chemical budgets. Here, we present the first detailed study of the spatial variation in fluid and chemical fluxes at the Carlos Ribeiro MV in the Gulf of Cadiz. To this end, we combine analyses of the chemical composition of pore fluids with a 1-D transport-reaction model to quantify fluid fluxes, and fluxes of boron, lithium and methane, across the sediment-seawater interface. The pore fluids are significantly depleted in chloride, but enriched in lithium, boron and hydrocarbons, relative to seawater. Pore water profiles of sulphate, hydrogen sulphide and total alkalinity indicate that anaerobic oxidation of methane occurs at 34-180 cm depth below seafloor. Clay mineral dehydration, and in particular the transformation of smectite to illite, produces pore fluids that are depleted in chloride and potassium. Profiles of boron, lithium and potassium are closely related, which suggests that lithium and boron are released from the sediments during this transformation. Pore fluids are expelled into the water column by advection; fluid flow velocities are 4 cm yr−1 at the apex of the MV but they rapidly decrease to 0.4 cm yr−1 at the periphery. The associated fluxes of boron, lithium and methane vary between 7-301, 0.5-6 and 0-806 mmol m−2 yr−1, respectively. We demonstrate that fluxes of Li and B due to mud volcanism may be important on a global scale, however, release of methane into the overlying water column is suppressed by microbial methanotrophy.  相似文献   

16.
Bromine was historically termed a cyclic salt in terrestrial freshwater environments due to its perceived conservative cycling between the oceans and the continents. This basic assumption has been challenged recently, with evidence that bromine is involved in dynamic chemical cycles in soils and freshwaters. We present here a study on dissolved bromine species (bromide, organically bound bromine, DOBr) concentrations and fluxes as well as sediment trap bromine levels and fluxes in Lake Constance, a large lake in southern Germany. Water samples were obtained from all major and some minor inflows and outflows over one year, where-after dissolved bromine species were measured by a combination of ICP-MS and ion chromatography coupled to an ICP-MS (IC-ICP-MS). Sediment traps were deployed at two locations for two years with Br, Ti and Zr levels being measured by μ-XRF.190 t yr−1 of total dissolved bromine (TDBr) was delivered to the lake via 14 rivers and precipitation, with the rivers Alpenrhein (84 t TDBr yr−1) and the Schussen (50 t TDBr yr−1) providing the largest sources. The estimated particulate bromine flux contributed an extra 24-26 t Br yr−1. In comparison, only 40 t TDBr yr−1 was deposited to the lake’s catchment by precipitation, and thus ∼80% of the riverine TDBr flux came from soils and rocks. Bromide was the dominant species accounting for, on average, 78% of TDBr concentrations and 93% of TDBr flux to the lake. Despite some high concentrations in the smaller lowland rivers, DOBr was only a minor component of the total riverine bromine flux (∼12 t yr−1, 7%), most of which came from the rivers Schussen, Bregenzer Ach and Argen. In contrast, most of the bromine in the sediment traps was bound to organic matter, and showed a clear seasonal pattern in concentrations, with a maximum in winter and minimum in summer. The summer minimum is thought to be due to dilution of a high Br autochthonous component by low bromine mineral and organic material from the catchment, which is supported by Ti, Zr and Br/Corg data. In the lake bromine was irreversibly lost to the sediments, with best flux estimates based on mass-balance and sediment trap data of +50-90 μg Br m−2 d−1. Overall, it appears that bromine is not simply a cyclic salt in the case of Lake Constance, with a clear geological component and dynamic lacustrine biogeochemistry.  相似文献   

17.
Benthic nitrogen (N) cycling was investigated at six stations along a transect traversing the Peruvian oxygen minimum zone (OMZ) at 11°S. An extensive dataset including porewater concentration profiles and in situ benthic fluxes of nitrate (NO3), nitrite (NO2) and ammonium (NH4+) was used to constrain a 1-D reaction-transport model designed to simulate and interpret the measured data at each station. Simulated rates of nitrification, denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA) by filamentous large sulfur bacteria (e.g. Beggiatoa and Thioploca) were highly variable throughout the OMZ yet clear trends were discernible. On the shelf and upper slope (80-260 m water depth) where extensive areas of bacterial mats were present, DNRA dominated total N turnover (?2.9 mmol N m−2 d−1) and accounted for ?65% of NO3 + NO2 uptake by the sediments from the bottom water. Nonetheless, these sediments did not represent a major sink for dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4+) since DNRA reduces NO3 and, potentially NO2, to NH4+. Consequently, the shelf and upper slope sediments were recycling sites for DIN due to relatively low rates of denitrification and high rates of ammonium release from DNRA and ammonification of organic matter. This finding contrasts with the current opinion that sediments underlying OMZs are a strong sink for DIN. Only at greater water depths (300-1000 m) did the sediments become a net sink for DIN. Here, denitrification was the major process (?2 mmol N m−2 d−1) and removed 55-73% of NO3 and NO2 taken up by the sediments, with DNRA and anammox accounting for the remaining fraction. Anammox was of minor importance on the shelf and upper slope yet contributed up to 62% to total N2 production at the 1000 m station. The results indicate that the partitioning of oxidized N (NO3, NO2) into DNRA or denitrification is a key factor determining the role of marine sediments as DIN sinks or recycling sites. Consequently, high measured benthic uptake rates of oxidized N within OMZs do not necessarily indicate a loss of fixed N from the marine environment.  相似文献   

18.
Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20 a of production (116 MWe). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (W m−2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO2 gas samples were also analysed for stable C isotopes. Following 20 a of production, current CO2 emissions equated to 111 ± 6.7 T/d. Observed heat flow was 70 ± 6.4 MW, compared with a pre-production value of 122 MW. This 52 MW reduction in surface heat flow is due to production-induced drying up of all alkali–Cl outflows (61.5 MW) and steam-heated pools (8.6 MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali–Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18 MW (from 25 MW to 43.3 ± 5 MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20 a of production, with an observed heat flow of 26.7 ± 3 MW and a CO2 emission rate of 39 ± 3 T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali–Cl outflows once contributed significantly to the natural surface heat flow (∼50%) they contributed little (<1%) to pre-production CO2 emissions due to the loss of >99% of the original CO2 content due to depressurisation and boiling as the fluids ascended to the surface. Consequently, the soil has persisted as the major (99%) pathway of CO2 release to the atmosphere from the high temperature reservoir at Ohaaki. The CO2 flux and heat flow surveys indicate that despite 20 a of production the variability in location, spatial extent and magnitude of CO2 flux remains consistent with established geochemical and geophysical models of the Ohaaki Field. At both OHW and OHE carbon isotopic analyses of soil gas indicate a two-stage fractionation process for moderate-flux (>60 g m−2 d−1) sites; boiling during fluid ascent within the underlying reservoir and isotopic enrichment as CO2 diffuses through porous media of the soil zone. For high-flux sites (>300 g m−2 d−1), the δ13CO2 signature (−7.4 ± 0.3‰ OHW and −6.5 ± 0.6‰ OHE) is unaffected by near-surface (soil zone) fractionation processes and reflects the composition of the boiled magmatic CO2 source for each respective upflow. Flux thresholds of <30 g m−2 d−1 for purely diffusive gas transport, between 30 and 300 g m−2 d−1 for combined diffusive–advective transport, and ?300 g m−2 d−1 for purely advective gas transport at Ohaaki were assigned. δ13CO2 values and cumulative probability plots of CO2 flux data both identified a threshold of ∼15 g m−2 d−1 by which background (atmospheric and soil respired) CO2 may be differentiated from hydrothermal CO2.  相似文献   

19.
Lakes worldwide are commonly oversaturated with CO2, however the source of this CO2 oversaturation is not well understood. To examine the magnitude of the C flux to the atmosphere and determine if an excess of respiration (R) over gross primary production (GPP) is sufficient to account for this C flux, metabolic parameters and stable isotopes of dissolved O2 and C were measured in 23 Québec lakes. All of the lakes sampled were oversaturated with CO2 over the sampling period, on average 221 ± 25%. However, little evidence was found to conclude that this CO2 oversaturation was the result of an excess of pelagic R over GPP. In lakes Croche and à l’Ours, where CO2 flux, R and GPP were measured weekly, the annual difference between pelagic GPP and R, or net primary production (NPP), was not sufficient to account for the size of the CO2 flux to the atmosphere. In Lac Croche average annual NPP was 14.4 mg C m−2 d−1 while the average annual flux of CO2 to the atmosphere was 34 mg C m−2 d−1. In Lac à l’Ours average annual NPP was −9.1 mg C m−2 d−1 while the average annual flux of CO2 to the atmosphere was 55 mg C m−2 d−1. In all of the lakes sampled, O2 saturation averaged 104.0 ± 1.7% during the ice-free season and the isotopic composition of dissolved O218ODO) was 22.9 ± 0.3‰, lower than atmospheric values and indicative of net autotrophy. Carbon evasion was not a function of R, nor did the isotopic signature of dissolved CO2 in the lakes present evidence of excess R over GPP. External inputs of C must therefore subsidize the lake to explain the continued CO2 oversaturation. The isotopic composition of dissolved inorganic C (δ13CDIC) indicates that the CO2 oversaturation cannot be attributed to in situ aerobic respiration. δ13CDIC reveals a source of excess C enriched in 13C, which may be accounted for by anaerobic sediment respiration or groundwater inputs followed by kinetic isotope fractionation during degassing under open system conditions.  相似文献   

20.
Rates of anaerobic respiration are of central importance for the long-term burial of carbon (C) in peatlands, which are a relevant sink in the global C cycle. To identify constraints on anaerobic peat decomposition, we determined detailed concentration depth profiles of decomposition end-products, i.e. methane (CH4) and dissolved inorganic carbon (DIC), along with concentrations of relevant decomposition intermediates at an ombrotrophic Canadian peat bog. The magnitude of in situ net production rates of DIC and CH4 was estimated by inverse pore-water modeling. Vertical transport in the peat was slow and dominated by diffusion leading to the buildup of DIC and CH4 with depth (5500 μmol L−1 DIC, 500 μmol L−1 CH4). Highest DIC and CH4 production rates occurred close to the water table (decomposition constant kd ∼ 10−3-10−4 a−1) or in some distinct zones at depth (kd ∼ 10−4 a−1). Deeper into the peat, decomposition proceeded very slowly at about kd = 10−7 a−1. This pattern could be related to thermodynamic and transport constraints. The accumulation of metabolic end-products diminished in situ energy yields of acetoclastic methanogenesis to the threshold for microbially mediated processes (−20 to −25 kJ mol−1 CH4). The methanogenic precursor acetate also accumulated (150 μmol L−1). In line with these findings, CH4 was formed by hydrogenotrophic methanogenesis at Gibbs free energies of −35 to −40 kJ mol−1 CH4. This was indicated by an isotopic fractionation αCO2-CH4 of 1.069-1.079. Fermentative degradation of acetate, propionate and butyrate attained Gibbs free energies close to 0 kJ mol−1 substrate. Although methanogenesis was apparently limited by some other factor in some peat layers, transport and thermodynamic constraints likely impeded respiratory processes in the deeper peat. Constraints on the removal of DIC and CH4 may thus slow decomposition and contribute to the sustained burial of C in northern peatlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号