首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 926 毫秒
1.
Enthalpies of solution in 2PbO · B2O3 at 981 K have been measured for glasses in the system albite-orthoclase-silica and along the join Na1.6Al1.6Si2.4O8-K1.6Al1.6Si2.4O8. The join KAlSi3O8-Si4O8 shows zero heat of mixing similar to that found previously for NaAlSi3O8-Si4O8 glasses. Albite-orthoclase glasses show negative heats of mixing symmetric about Ab50Or50 (Wn = ? 2.4 ± 0.8 kcal). Negative heats of (Na, K) mixing are also found at Si(Si + Al) = 0.6. Ternary excess enthalpies of mixing in the glassy system Ab-Or-4Q are positive but rarely exceed 1 kcal mol?1.Using earlier studies of the thermodynamic properties of the crystals, the present calorimetric data and the “two-lattice” entropy model, the albite-orthoclase phase diagram is calculated in good agreement with experimental data. Attempts to calculate albite-silica and orthoclase-silica phase diagrams reveal complexities probably related to significant (but unknown) mutual solid solubility between cristobalite and alkali feldspar and to the very small heat and entropy of fusion of SiO2.  相似文献   

2.
New 27Al NMR data are presented in order to clarify the discrepancies in the interpretation of the previous 27Al Magic Angle Spinning (MAS) spectra from hydrous aluminosilicate glasses. The 27Al MAS data have been collected at much higher magnetic field (14.1 and 17.6 T) than hitherto, and in addition, multiple quantum (MQ) MAS NMR data are presented for dry and hydrous nepheline glasses and NaAlSi7.7O17.4 glass that, according to the model of Zeng et al. (Zeng Q., Nekvasil H., and Grey C. P. 2000. In support of a depolymerisation model for water in sodium aluminosilicate glasses: Information from NMR spectroscopy. Geochim. Cosmochim. Acta64, 883-896), should produce a high fraction (up to 30%) of Al in Al Q3-OH on hydration. Although small differences in the MAS spectra of anhydrous and hydrous nepheline glasses are observed, there is no evidence for the existence of significant (>∼2%) amounts of Q3 Al-OH in these glasses in either the MAS or MQMAS data.  相似文献   

3.
Enthalpies of solution in 2PbO · B2O3 at 974 K have been measured for glasses along the joins Ca2Si2O6 (Wo)-Mg2Si2O6 (En) and Mg2Si2O6-MgAl2SiO6 (MgTs). Heats of mixing are symmetric and negative for Wo-En with WH = ?31.0 ± 3.6 kJ mol?. Negative heats of mixing were also found for the En-MgTs glasses (WH = ?33.4 ± 3.7 kJ mol?).Enthalpies of vitrification of pyroxenes and pyroxenoids generally increase with decreasing alumina content and with decreasing basicity of the divalent cation.Heats of mixing along several glassy joins show systematic trends. When only non-tetrahedral cations mix (outside the aluminosilicate framework), small exothermic heats of mixing are seen. When both nontetrahedral and framework cations mix (on separate sublattices, presumably), the enthalpies of mixing are substantially more negative. Maximum enthalpy stabilization near compositions with Al/Si ≈ 1 is suggested.  相似文献   

4.
Solubility mechanisms of water in depolymerized silicate melts quenched from high temperature (1000°-1300°C) at high pressure (0.8-2.0 GPa) have been examined in peralkaline melts in the system Na2O-SiO2-H2O with Raman and NMR spectroscopy. The Na/Si ratio of the melts ranged from 0.25 to 1. Water contents were varied from ∼3 mol% and ∼40 mol% (based on O = 1). Solution of water results in melt depolymerization where the rate of depolymerization with water content, ∂(NBO/Si)/∂XH2O, decreases with increasing total water content. At low water contents, the influence of H2O on the melt structure resembles that of adding alkali oxide. In water-rich melts, alkali oxides are more efficient melt depolymerizers than water. In highly polymerized melts, Si-OH bonds are formed by water reacting with bridging oxygen in Q4-species to form Q3 and Q2 species. In less polymerized melts, Si-OH bonds are formed when bridging oxygen in Q3-species react with water to form Q2-species. In addition, the presence of Na-OH complexes is inferred. Their importance appears to increase with Na/Si. This apparent increase in importance of Na-OH complexes with increasing Na/Si (which causes increasing degree of depolymerization of the anhydrous silicate melt) suggests that water is a less efficient depolymerizer of silicate melts, the more depolymerized the melt. This conclusion is consistent with recently published 1H and 29Si MAS NMR and 1H-29Si cross polarization NMR data.  相似文献   

5.
Computer modelling techniques were used to elucidate the hydration behaviour of three iron (hydr)oxide minerals at the atomic level: white rust, goethite and hematite. A potential model was first adapted and tested against the bulk structures and properties of eight different iron oxides, oxyhydroxides and hydroxides, followed by surface simulations of Fe(OH)2, α-FeO(OH) and α-Fe2O3. The major interaction between the adsorbing water molecules and the surface is through interaction of their oxygen ions with surface iron ions, followed by hydrogen-bonding to surface oxygen ions. The energies released upon the associative adsorption of water range from 1 to 17 kJ mol−1 for Fe(OH)2, 26 to 80 kJ mol−1 for goethite and 40 to 85 kJ mol−1 for hematite, reflecting the increasing oxidation of the iron mineral. Dissociative adsorption at goethite and hematite surfaces releases larger hydration energies, ranging from 120 to 208 kJ mol−1 for goethite and 76 to 190 kJ mol−1 for hematite.The thermodynamic morphologies of the minerals, based on the calculated surface energies, agree well with experimental morphologies, where these are available. When the partial pressures required for adsorption of water from the gas phase are plotted against temperature for the goethite and hematite surfaces, taking into account experimental entropies for water, it appears that these minerals may well be instrumental in the retention of water during the cyclic variations in the atmosphere of Mars.  相似文献   

6.
7.
The local configurations around sodium ions in silicate glasses and melts and their distributions have strong implications for the dynamic and static properties of melts and thus may play important roles in magmatic processes. The quantification of distributions among charge-balancing cations, including Na+ in aluminosilicate glasses and melts, however, remains a difficult problem that is relevant to high-temperature geochemistry as well as glass science.Here, we explore the local environment around Na+ in charge-balanced aluminosilicate glasses (the NaAlO2-SiO2 join) and its distribution using 23Na magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy at varying magnetic fields of 9.4, 14.1, and 18.8 T, as well as triple-quantum (3Q)MAS NMR spectroscopy at 9.4 T, to achieve better understanding of the extent of disorder around this cation. We quantify the extent of this disorder in terms of changes in Na-O distance (d[Na-O]) distributions with composition and present a structural model favoring a somewhat ordered Na distribution, called a “perturbed” Na distribution model. The peak position in 23Na MAS spectra of aluminosilicate glasses moves toward lower frequencies with increasing Si/Al ratios, implying that the average d(Na-O) increases with increasing R. The peak width is significantly reduced at higher fields (14.1 and 18.8 T) because of the reduced effect of second-order quadrupolar interaction, and 23Na MAS NMR spectra thus provide relatively directly the Na chemical shift distribution and changes in atomic environment with composition. Chemical shift distributions obtained from 23Na 3Q MAS spectra are consistent with MAS NMR data, in which deshielding decreases with R. The average distances between Na and the three types of bridging oxygens (BOs) (Na-{Al-O-Al}, Na-{Si-O-Al}, and Na-{Si-O-Si}) were obtained from the correlation between d(Na-O) and isotropic chemical shift. The calculated d(Na-{Al-O-Al}) of 2.52 Å is shorter than the d(Na-{Si-O-Si}) of 2.81 Å, and d(Na-{Al-O-Al}) shows a much narrower distribution than the other types of BOs. 23Na chemical shifts in binary (Al-free) sodium silicate glasses are more deshielded and have ranges distinct from those of aluminosilicate glasses, implying that d(Na-NBO) (nonbridging oxygen) is shorter than d(Na-BO) and that d(Na-{Si-O-Si}) in binary silicates can be shorter than that in aluminosilicate glasses. The results given here demonstrate that high-field 23Na NMR is an effective probe of the Na+ environment, providing not only average structural information but also chemically and topologically distinct chemical shift ranges (distributions) and their variation with composition and their effects on static and dynamic properties.  相似文献   

8.
Structural interaction between dissolved fluorine and silicate glass (25°C) and melt (to 1400°C) has been examined with 19F and 29Si MAS NMR and with Raman spectroscopy in the system Na2O-Al2O3-SiO2 as a function of Al2O3 content. Approximately 3 mol.% F calculated as NaF dissolved in these glasses and melts. From 19F NMR spectroscopy, four different fluoride complexes were identified. These are (1) Na-F complexes (NF), (2) Na-Al-F complexes with Al in 4-fold coordination (NAF), (3) Na-Al-F complexes with Al in 6-fold coordination with F (CF), and (4) Al-F complexes with Al in 6-fold, and possibly also 4-fold coordination (TF). The latter three types of complexes may be linked to the aluminosilicate network via Al-O-Si bridges.The abundance of sodium fluoride complexes (NF) decreases with increasing Al/(Al + Si) of the glasses and melts. The NF complexes were not detected in meta-aluminosilicate glasses and melts. The NAF, CF, and TF complexes coexist in peralkaline and meta-aluminosilicate glasses and melts.From 29Si-NMR spectra of glasses and Raman spectra of glasses and melts, the silicate structure of Al-free and Al-poor compositions becomes polymerized by dissolution of F because NF complexes scavenge network-modifying Na from the silicate. Solution of F in Al-rich peralkaline and meta-aluminous glasses and melts results in Al-F bonding and aluminosilicate depolymerization.Temperature (above that of the glass transition) affects the Qn-speciation reaction in the melts, 2Q3 ⇔ Q4 + Q2, in a manner similar to other alkali silicate and alkali aluminosilicate melts. Dissolved F at the concentration level used in this study does not affect the temperature-dependence of this speciation reaction.  相似文献   

9.
Solubility and solution mechanisms of H2O in depolymerized melts in the system Na2O-Al2O3-SiO2 were deduced from spectroscopic data of glasses quenched from melts at 1100 °C at 0.8-2.0 GPa. Data were obtained along a join with fixed nominal NBO/T = 0.5 of the anhydrous materials [Na2Si4O9-Na2(NaAl)4O9] with Al/(Al+Si) = 0.00-0.25. The H2O solubility was fitted to the expression, XH2O=0.20+0.0020fH2O-0.7XAl+0.9(XAl)2, where XH2O is the mole fraction of H2O (calculated with O = 1), fH2O the fugacity of H2O, and XAl = Al/(Al+Si). Partial molar volume of H2O in the melts, , calculated from the H2O-solulbility data assuming ideal mixing of melt-H2O solutions, is 12.5 cm3/mol for Al-free melts and decreases linearly to 8.9 cm3/mol for melts with Al/(Al+Si) ∼ 0.25. However, if recent suggestion that is composition-independent is applied to constrain activity-composition relations of the hydrous melts, the activity coefficient of H2O, , increases with Al/(Al+Si).Solution mechanisms of H2O were obtained by combining Raman and 29Si NMR spectroscopic data. Degree of melt depolymerization, NBO/T, increases with H2O content. The rate of NBO/T-change with H2O is negatively correlated with H2O and positively correlated with Al/(Al+Si). The main depolymerization reaction involves breakage of oxygen bridges in Q4-species to form Q2 species. Steric hindrance appears to restrict bonding of H+ with nonbridging oxygen in Q3 species. The presence of Al3+ does not affect the water solution mechanisms significantly.  相似文献   

10.
The structural change and mineralogy of Al gel during aging time were investigated by using spectroscopy techniques. The results indicated that: 1) the aggregation extent of solution-gel system increases with aging time, and the structure of amorphous gel becomes more short-ordered; 2) after six months, the gel formats nordstrandite and little gibbsite; 3) a marked decrease in the number of (Al-OH)oh bands occurring at 610 cm−1 and increase in the number of (Al-OH2)oh bands occurring at 555 cm−1 indicate that the gel undergoes rearrangement-like process during aging; 4) the gel constantly contains Al-O tetrahedron of Keggin structure, but the signal peak occurring at ≈61×10−6 of 27Al MAS NMR have a slight shift to downfield with aging time. A mineralogical transformation mechanism for hydrolysis Al(III) solution was proposed.  相似文献   

11.
Tecto-aluminosilicate and peraluminous glasses have been prepared by conventional and laser heating techniques, respectively, in the CaO-Al2O3-SiO2 system. The structure of these glasses were studied using Raman spectroscopy, X-ray absorption at the Al K-edge and 27Al NMR spectroscopy with two different high fields (400 and 750 MHz). Raman spectroscopy and X-ray absorption are techniques sensitive to the network polymerization and, in particular, show different signal as a function of silica content. However, these two techniques are less sensitive than NMR to describe the local aluminium environment. For tectosilicate glasses, aluminium in five-fold coordination, [5]Al, was found and a careful quantification allows the determination of a significant amount of [5]Al (7% in the anorthite glass). The proportion of [5]Al increases for the peraluminous glasses with small amounts (<2%) of six-fold coordination, [6]Al. The presence of [5]Al agrees with previous observations of the existence of nonbridging oxygens (NBOs) in tectosilicate compositions. However, the proportion of [5]Al in the present study indicates that no major proportion of triclusters (oxygen coordinated to three (Si,Al)O4 tetrahedra) is required to explain these NBOS.  相似文献   

12.
Revealing the atomic structure and disorder in oxide glasses, including sodium silicates and aluminosilicates, with varying degrees of polymerization, is a challenging problem in high-temperature geochemistry as well as glass science. Here, we report 17O MAS and 3QMAS NMR spectra for binary sodium silicate and ternary sodium aluminosilicate glasses with varying degrees of polymerization (Na2O/SiO2 ratio and Na2O/Al2O3 ratio), revealing in detail the extent of disorder (network connectivity and topological disorder) and variations of NMR parameters with the glass composition. In binary sodium silicate glasses [Na2O-k(SiO2)], the fraction of non-bridging oxygens (NBOs, Na-O-Si) increases with the Na2O/SiO2 ratio (k), as predicted from the composition. The 17O isotropic chemical shifts (17O δiso) for both bridging oxygen (BO) and NBO increase by about 10-15 ppm with the SiO2 content (for k = 1-3). The quadrupolar coupling products of BOs and NBOs also increase with the SiO2 content. These trends suggest that both NBOs and BOs strongly interact with Na; therefore, the Na distributions around BOs and NBOs are likely to be relatively homogenous for the glass compositions studied here, placing some qualitative limits on the extent of segregation of alkali channels from silica-enriched regions as suggested by modified random-network models. The peak width (in the isotropic dimension) and thus bond angle and length distributions of Si-O-Si and Na-O-Si increase with the SiO2 content, indicating an increase in the topological disorder with the degree of polymerization. In the ternary aluminosilicate glasses [Na2O]x[Al2O3]1−xSiO2, the NBO fraction decreases while the Al-O-Si and Al-O-Al fractions apparently increase with increasing Al2O3 content. The variation of oxygen cluster populations suggests that deviation from “Al avoidance” is more apparent near the charge-balanced join (Na/Al = 1). The Si-O-Si fraction, which is closely related to the activity coefficient of silica, would decrease with increasing Al2O3 content at a constant mole fraction of SiO2. Therefore, the activity of silica may decrease from depolymerized binary silicates to fully polymerized sodium aluminosilicate glasses at a constant mole fraction of SiO2.  相似文献   

13.
Variations in the 17O nuclear quadrupole coupling constant, NQCC, and the 17O NMR shielding constant, σO, are evaluated for bridging oxygens in H3T-O-T′H3 linkages (with T, T′=Al, Si, P), and for nonbridging O in SiH3O?, SiH3OH and SiH3OMg+ and the 19F NMR shielding constant, σF, is evaluated for bridging F in H3SiFSiH 3 ? using Hartree-Fock methods with large, flexible Gaussian basis sets. Trends in 17O NQCC as a function of T and T′ identity agree with experiment but the value for the Si-O-Al case is underestimated, indicative of neglected contributions from charge compensating cations. For H3SiOSiH3 the decrease in NQCC over the range from 180° to 140° is substantial but somewhat slower than the variation of -cosSi and σO decrease as Si of the nonbridging oxygen of SiH3O? compared to the bridging oxygen of H3SiOSiH3 but the calculated σSi in H3SiOAlH 3 ? is too large and σO too small, indicative of important contributions from counter ions. By contrast, σO for PH3OAlH3 compared to SiH3OSiH3 is consistent with experiment. In H3SiFSiH 3 + (a model for bridging F in amorphous Si:H:F) the value of σSi is smaller and the NQCC at F is considerably larger than for H3SiF, suggesting distinctive 29Si and 19F NMR spectra for this species.  相似文献   

14.
As part of a study of the effect of geologically common network modifiers on polymerization in silicate melts, glasses, and silica-rich aqueous solutions, we have studied the energies, electronic structures, and inferred chemical properties of IVT-O-IVT linkages in the tetrahedral dimers H6,Si2O7, H6AlSiO71?, and H6Al2O72? using semi-empirical molecular orbital theory (CNDO/2). Our results indicate that the electron donating character of the bridging oxygen, O(br), linking two tetrahedra increases with increasing T-O(br) bond length but decreases with decreasing T-O(br)-T angles and increasing O-T-O(br) angles. This increase or decrease of the donor character of O(br) coincides with an increase or decrease of the affinity of O(br) for hard acceptors. The calculated electronic structure for the H6Si2O7 molecule is compared with the observed X-ray emission, absorption, and photoelectron spectra of quartz and vitreous silica; the reasonable match between calculated and observed oxygen Kα emission spectra of vitreous silica supports our assertion that non-bonded O(br) electron density energetically at the top of the valence band controls the chemical reactivity of IVT-O-IVT linkages in polymerized tetrahedral environments.  相似文献   

15.
The effects of phosphate speciation on both rates of isotopic exchange and oxygen isotope equilibrium fractionation factors between aqueous phosphate and water were examined over the temperature range 70 to 180°C. Exchange between phosphate and water is much faster at low pH than at high pH, an observation that is similar to what has been observed in the analogous sulfate-water system. Oxygen isotope fractionations between protonated species like H3PO4 and H2PO4 that are dominant at relatively low pH and species like PO43− and ion pairs like KHPO4 that are dominant at relatively high pH, range between 5 and 8‰ at the temperatures of the experiments. In aqueous phosphate systems at equilibrium, 18O/16O ratios increase with increasing degree of protonation of phosphate. This effect can be explained in part by the relative magnitudes of the dissociation constants of the protonated species. Under equilibrium conditions, carbonate in solution or in solid phases concentrates 18O relative to orthophosphate in solution or in solid phases at all temperatures, supporting the traditional view that biogenic phosphate is precipitated in near oxygen isotope equilibrium with body/ambient aqueous fluids with no attendant vital effects.  相似文献   

16.
Infrared (IR) and Raman spectroscopic methods are important complementary techniques in structural studies of aluminosilicate glasses. Both techniques are sensitive to small-scale (<15 Å) structural features that amount to units of several SiO4 tetrahedra. Application of IR spectroscopy has, however, been limited by the more complex nature of the IR spectrum compared with the Raman spectrum, particularly at higher frequencies (1200–800 cm?1) where strong antisymmetric Si-O and Si-O-Si absorptions predominate in the former. At lower frequencies, IR spectra contain bands that have substantial contributions from ‘cage-like’ motions of cations in their oxygen co-ordination polyhedra. In aluminosilicates these bands can provide information on the structural environment of Al that is not obtainable directly from Raman studies. A middle frequency envelope centred near 700 cm?1 is indicative of network-substituted AlO4 polyhedra in glasses with Al/(Al+Si)>0·25 and a band at 520–620cm?1 is shown to be associated with AlO6 polyhedra in both crystals and glasses. The IR spectra of melilite and melilite-analogue glasses and crystals show various degrees of band localization that correlate with the extent of Al, Si tetrahedral site ordering. An important conclusion is that differences in Al, Si ordering may lead to very different vibrational spectra in crystals and glasses of otherwise gross chemical similarity.  相似文献   

17.
Rates of steady exchange of oxygens between bulk solution and the largest known aluminum polyoxocation: Al2O8Al28(OH)56(H2O)2618+(aq) (Al30) are reported at pH≈4.7 and 32-40°C. The Al30 molecule is a useful model for geochemists because it is ≈2 nm in length, comparable to the smallest colloidal solids, and it has structural complexity greater than the surfaces of most aluminum (hydr)oxide minerals. The Al30 molecule has 15 distinct hydroxyl sites and eight symmetrically distinct bound waters. Among the hydroxyl bridges are two sets of μ3-OH, which are not present in any of the other aluminum polyoxocations that have yet been studied by NMR methods. Rates of isotopic equilibration of the μ2-OH and μ3-OH hydroxyls and bound water molecules fall within the same range as we have determined for other aluminum solutes, although it is impossible to determine rate laws for exchange at the large number of individual oxygen sites. After injection of 17O-enriched water, growth of the 17O-NMR peak near 37 ppm, which is assigned to μ2-OH and μ3-OH hydroxyl bridges, indicates that these bridges equilibrate within two weeks at temperatures near 35°C. The peak at +22 ppm in the 17O-NMR spectra, assigned to bound water molecules (η-OH2), varies in width with temperature in a similar fashion as for other aluminum solutes, suggesting that most of the η-OH2 sites exchange with bulk solution at rates that fall within the range observed for other aluminum complexes. Signal from one anomalous group of four η-OH2 sites is not observed, indicating that these sites exchange at least a factor of ten more rapidly than the other η-OH2 sites on the Al30.  相似文献   

18.
We describe here high-field 17O magic-angle-spinning (MAS) and triple-quantum MAS (3QMAS) NMR spectra for several alkali silicate and Na, K, and Ca aluminosilicate glasses containing up to 10 wt.% water. The H2O site appears to have a large quadrupolar coupling constant, and its chemical shift increases from Na- to K- glasses, suggesting significant cation-H2O interactions. In 17O one-pulse MAS and 3QMAS and 27Al one-pulse NMR experiments, major differences were seen between spectra for anhydrous and hydrous calcium aluminosilicate glasses. The changes in the 17O MAS spectra can be explained by the addition of an H2O peak and to the disappearance of an Al-O-Al peak from the 17O NMR spectrum for the hydrous glass. The 27Al results are consistent with this interpretation.  相似文献   

19.
The heat capacity and vibrational entropy of a calcium aluminate and three peraluminous calcium aluminosilicate glasses have been determined from 2 to 300 K by heat-pulse relaxation calorimetry. Together with previous adiabatic data for six other glasses in the system CaO-Al2O3-SiO2, these results have been used to determine partial molar heat capacities and entropies for five species namely, SiO2, CaO and three different sorts of Al2O3 in which Al is 4-, 5- and 6-fold coordinated by oxygen. Given the determining role of oxygen coordination on low-temperature heat capacity, the composition independent entropies found for SiO2 and CaO indicate that short-range order around Si and Ca is not sensitive to aluminum speciation up to the highest fraction of 25% observed for VAl by NMR spectroscopy. Because of the higher room-temperature vibrational entropy of IVAl2O3 (72.8 J/mol K) compared to VAl2O3 (48.5 J/mol K), temperature-induced changes from IVAl to VAl give rise to a small negative contribution of the order of 1 J/mol K to the partial molar configurational heat capacity of Al2O3 in melts. Near 0 K, pure SiO2 glass distinguishes itself by the importance of the calorimetric boson peak. On a g atom basis, the maximum of this peak varies with the composition of calcium aluminosilicate glasses by a factor of about 2. It does not show smooth variations, however, either as a function of SiO2 content, at constant CaO/Al2O3 ratio, or as a function of Al2O3 content, at constant SiO2 content.  相似文献   

20.
The shear viscosity of 66 liquids in the systems CaO-Al2O3-SiO2 (CAS) and MgO-Al2O3-SiO2 (MAS) have been measured in the ranges 1-104 Pa s and 108-1012 Pa s. Liquids belong to series, nominally at 50, 67, and 75 mol.% SiO2, with atomic M2+/(M2++2Al) typically in the range 0.60 to 0.40 for each isopleth. In the system CAS at 1600°C, viscosity passes through a maximum at all silica contents. The maxima are clearly centered in the peraluminous field, but the exact composition at which viscosity is a maximum is poorly defined. Similar features are observed at 900°C. In contrast, data for the system MAS at 1600°C show that viscosity decreases with decreasing Mg/(Mg + 2Al) at all silica contents, but that a maximum in viscosity must occur in the field where Mg/2Al >1. On the other hand, the viscosity at 850°C increases with decreasing Mg/(Mg + 2Al) and shows no sign of reaching a maximum, even for the most peraluminous composition studied. The data from both systems at 1600°C have been analysed assuming that shear viscosity is proportional to average bond strength and considering the equilibrium:
Al[4]-(Mg,Ca)0.5⇔(Mg,Ca)0.5-NBO+AlXS  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号