首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The poorly crystalline Fe(III) hydroxide ferrihydrite is considered one of the most important sinks for (in)organic contaminants and nutrients within soils, sediments, and waters. The ripening of ferrihydrite to more stable and hence less reactive phases such as goethite is catalyzed by surface reaction with aqueous Fe(II). While ferrihydrite within most natural environments contains high concentrations of adsorbed or co-precipitated cations (particularly Al), little is known regarding the impact of these cations on Fe(II)-induced transformation of ferrihydrite to secondary phases. Accordingly, we explored the extent, rates, and pathways of Fe(II)-induced secondary mineralization of Al-ferrihydrites by reacting aqueous Fe(II) (0.2 and 2.0 mM) with 2-line ferrihydrite containing a range of Al levels substituted within (6-24 mol% Al) or adsorbed on the surface (0.1-27% Γmax). Here, we show that regardless of the Fe(II) concentration, Al substituted within or adsorbed on ferrihydrite results in diminished secondary mineralization and preservation of ferrihydrite. In contrast to pure ferrihydrite, the concentration of Fe(II) may not in fact influence the mineralization products of Al-compromised ferrihydrites. Furthermore, the secondary mineral profiles upon Fe(II) reaction with ferrihydrite are not only a function of Al concentration but also the mode of Al incorporation. While Al substitution impedes lepidocrocite formation and magnetite nucleation, Al adsorption completely inhibits goethite formation and appears to have a lesser impact on magnetite nucleation. When normalized to total Al content associated with ferrihydrite, Al adsorption results in greater degree of ferrihydrite preservation relative to Al substitution. These findings provide insight into mechanisms that may be responsible for ferrihydrite preservation and low levels of secondary magnetite typically found in sedimentary environments. Considering the preponderance of cation substitution within and adsorption on ferrihydrite in soils and sediments, the reactivity of natural (compromised) ferrihydrites and the subsequent impact on mineral evolution needs to be more fully explored.  相似文献   

2.
Iron (hydr)oxides are common in natural environments and typically contain large amounts of impurities, presumably the result of coprecipitation processes. Coprecipitation of Al with Fe (hydr)oxides occurs, for example, during alternating reduction-oxidation cycles that promote dissolution of Fe from Fe-containing phases and its re-precipitation as Fe-Al (hydr)oxides. We used chemical and spectroscopic analyses to study the formation and transformation of Al coprecipitates with Fe (hydr)oxides. In addition, periodic density functional theory (DFT) computations were performed to assess the structural and energetic effects of isolated or clustered Al atoms at 8 and 25 mol% Al substitution in the goethite structure. Coprecipitates were synthesized by raising the pH of dilute homogeneous solutions containing a range of Fe and Al concentrations (100% Fe to 100% Al) to 5. The formation of ferrihydrite in initial suspensions with ?20 mol% Al, and of ferrihydrite and gibbsite in initial suspensions with ?25 mol% Al was confirmed by infrared spectroscopic and synchrotron-based X-ray diffraction analyses. While base titrations showed a buffer region that corresponded to the hydrolysis of Fe in initial solutions with ?25 mol% Al, all of the Al present in these solutions was retained by the solid phases at pH 5, thus indicating Al coprecipitation with the primary Fe hydroxide precipitate. In contrast, two buffer regions were observed in solutions with ?30 mol% Al (at pH ∼2.25 for Fe3+ and at pH ∼4 for Al3+), suggesting the formation of Fe and Al (hydr)oxides as two separate phases. The Al content of initial coprecipitates influenced the extent of ferrihydrite transformation and of its transformation products as indicated by the presence of goethite, hematite and/or ferrihydrite in aged suspensions. DFT experiments showed that: (i) optimized unit cell parameters for Al-substituted goethites (8 and 25 mol% Al) in clustered arrangement (i.e., the formation of diaspore-like clusters) were in good agreement with available experimental data whereas optimized unit cell parameters for isolated Al atoms were not, and (ii) Al-substituted goethites with Al in diaspore-like clusters resulted in more energetically favored structures. Combined experimental and DFT results are consistent with the coprecipitation of Al with Fe (hydr)oxides and with the formation of diaspore-like clusters, whereas DFT results suggest isomorphous Al for Fe substitution within goethite is unlikely at ?8 mol% Al substitution.  相似文献   

3.
Due to the strong reducing capacity of ferrous Fe, the fate of Fe(II) following dissimilatory iron reduction will have a profound bearing on biogeochemical cycles. We have previously observed the rapid and near complete conversion of 2-line ferrihydrite to goethite (minor phase) and magnetite (major phase) under advective flow in an organic carbon-rich artificial groundwater medium. Yet, in many mineralogically mature environments, well-ordered iron (hydr)oxide phases dominate and may therefore control the extent and rate of Fe(III) reduction. Accordingly, here we compare the reducing capacity and Fe(II) sequestration mechanisms of goethite and hematite to 2-line ferrihydrite under advective flow within a medium mimicking that of natural groundwater supplemented with organic carbon. Introduction of dissolved organic carbon upon flow initiation results in the onset of dissimilatory iron reduction of all three Fe phases (2-line ferrihydrite, goethite, and hematite). While the initial surface area normalized rates are similar (∼10−11 mol Fe(II) m−2 g−1), the total amount of Fe(III) reduced over time along with the mechanisms and extent of Fe(II) sequestration differ among the three iron (hydr)oxide substrates. Following 16 d of reaction, the amount of Fe(III) reduced within the ferrihydrite, goethite, and hematite columns is 25, 5, and 1%, respectively. While 83% of the Fe(II) produced in the ferrihydrite system is retained within the solid-phase, merely 17% is retained within both the goethite and hematite columns. Magnetite precipitation is responsible for the majority of Fe(II) sequestration within ferrihydrite, yet magnetite was not detected in either the goethite or hematite systems. Instead, Fe(II) may be sequestered as localized spinel-like (magnetite) domains within surface hydrated layers (ca. 1 nm thick) on goethite and hematite or by electron delocalization within the bulk phase. The decreased solubility of goethite and hematite relative to ferrihydrite, resulting in lower Fe(III)aq and bacterially-generated Fe(II)aq concentrations, may hinder magnetite precipitation beyond mere surface reorganization into nanometer-sized, spinel-like domains. Nevertheless, following an initial, more rapid reduction period, the three Fe (hydr)oxides support similar aqueous ferrous iron concentrations, bacterial populations, and microbial Fe(III) reduction rates. A decline in microbial reduction rates and further Fe(II) retention in the solid-phase correlates with the initial degree of phase disorder (high energy sites). As such, sustained microbial reduction of 2-line ferrihydrite, goethite, and hematite appears to be controlled, in large part, by changes in surface reactivity (energy), which is influenced by microbial reduction and secondary Fe(II) sequestration processes regardless of structural order (crystallinity) and surface area.  相似文献   

4.
Reduction of As(V) and reductive dissolution and transformation of Fe (hydr)oxides are two dominant processes controlling As retention in soils and sediments. When developed within soils and sediments, Fe (hydr)oxides typically contain various impurities—Al being one of the most prominent—but little is known about how structural Al within Fe (hydr)oxides alters its biotransformation and subsequent As retention. Using a combination of batch and advective flow column studies with Fe(II) and Shewanella sp. ANA-3, we examined (1) the extent to which structural Al influences reductive dissolution and transformations of ferrihydrite, a highly reactive Fe hydroxide, and (2) the impact of adsorbed As on dissolution and transformation of (Al-substituted) ferrihydrite and subsequent As retention. Structural Al diminishes the extent of ferrihydrite reductive transformation; nearly three-orders of magnitude greater concentration of Fe(II) is required to induce Al-ferrihydrite transformation compared to pure two-line ferrihydrite. Structural Al decreases Fe(II) retention/incorporation on/into ferrihydrite and impedes Fe(II)-catalyzed transformation of ferrihydrite. Moreover, owing to cessation of Fe(II)-induced transformation to secondary products, Al-ferrihydrite dissolves (incongruently) to a greater extent compared to pure ferrihydrite during reaction with Shewanella sp. ANA-3. Additionally, adsorption of As(V) to Al-ferrihydrite completely arrests Fe(II)-catalyzed transformation of ferrihydrite, and it diminishes the difference in the rate and extent of ferrihydrite and Al-ferrihydrite reduction by Shewanella sp. ANA-3. Our study further shows that reductive dissolution of Al-ferrihydrite results in enrichment of Al sites, and As(V) reduction accelerates As release due to the low affinity of As(III) on these non-ferric sites.  相似文献   

5.
Iron (hydr)oxides are ubiquitous in soils and sediments and play a dominant role in the geochemistry of surface and subsurface environments. Their fate depends on local environmental conditions, which in structured soils may vary significantly over short distances due to mass-transfer limitations on solute delivery and metabolite removal. In the present study, artificial soil aggregates were used to investigate the coupling of physical and biogeochemical processes affecting the spatial distribution of iron (Fe) phases resulting from reductive transformation of ferrihydrite. Spherical aggregates made of ferrihydrite-coated sand were inoculated with the dissimilatory Fe-reducing bacterium Shewanella putrefaciens strain CN-32, and placed into a flow reactor, the reaction cell simulates a diffusion-dominated soil aggregate surrounded by an advective flow domain. The spatial and temporal evolution of secondary mineralization products resulting from dissimilatory Fe reduction of ferrihydrite were followed within the aggregates in response to a range of flow rates and lactate concentrations. Strong radial variations in the distribution of secondary phases were observed owing to diffusively controlled delivery of lactate and efflux of Fe(II) and bicarbonate. In the aggregate cortex, only limited formation of secondary Fe phases were observed over 30 d of reaction, despite high rates of ferrihydrite reduction. Under all flow conditions tested, ferrihydrite transformation was limited in the cortex (70-85 mol.% Fe remained as ferrihydrite) because metabolites such as Fe(II) and bicarbonate were efficiently removed in outflow solutes. In contrast, within the inner fractions of the aggregate, limited mass-transfer results in metabolite (Fe(II) and bicarbonate) build-up and the consummate transformation of ferrihydrite - only 15-40 mol.% Fe remained as ferrihydrite after 30 d of reaction. Goethite/lepidocrocite, and minor amounts of magnetite, formed in the aggregate mid-section and interior at low lactate concentration (0.3 mM) after 30 d of reaction. Under high lactate (3 mM) concentration, magnetite was observed only as a transitory phase, and rather goethite/lepidocrocite and siderite were the dominant secondary mineralization products. Our results illustrate the importance of slow diffusive transport of both electron donor and metabolites concentrations and concomitant biogeochemical reactions within soils and sediments, giving rise to heterogeneous products over small spatial (μm) scale.  相似文献   

6.
The behaviour of trace amounts of arsenate coprecipitated with ferrihydrite, lepidocrocite and goethite was studied during reductive dissolution and phase transformation of the iron oxides using [55Fe]- and [73As]-labelled iron oxides. The As/Fe molar ratio ranged from 0 to 0.005 for ferrihydrite and lepidocrocite and from 0 to 0.001 for goethite. For ferrihydrite and lepidocrocite, all the arsenate remained associated with the surface, whereas for goethite only 30% of the arsenate was desorbable. The rate of reductive dissolution in 10 mM ascorbic acid was unaffected by the presence of arsenate for any of the iron oxides and the arsenate was not reduced to arsenite by ascorbic acid. During reductive dissolution of the iron oxides, arsenate was released incongruently with Fe2+ for all the iron oxides. For ferrihydrite and goethite, the arsenate remained adsorbed to the surface and was not released until the surface area became too small to adsorb all the arsenate. In contrast, arsenate preferentially desorbs from the surface of lepidocrocite. During Fe2+ catalysed transformation of ferrihydrite and lepidocrocite, arsenate became bound more strongly to the product phases. X-ray diffractograms showed that ferrihydrite was transformed into lepidocrocite, goethite and magnetite whereas lepidocrocite either remained untransformed or was transformed into magnetite. The rate of recrystallization of ferrihydrite was not affected by the presence of arsenate. The results presented here imply that during reductive dissolution of iron oxides in natural sediments there will be no simple correlation between the release of arsenate and Fe2+. Recrystallization of the more reactive iron oxides into more crystalline phases, induced by the appearance of Fe2+ in anoxic aquifers, may be an important trapping mechanism for arsenic.  相似文献   

7.
Characterization of Fe(III) (hydr)oxides in soils near the Ichinokawa mine was conducted using X-ray absorption fine structure (XAFS) and Mössbauer spectroscopies, and the structural changes were correlated with the release of As into pore-water. The Eh values decreased monotonically with depth. Iron is mainly present as poorly-ordered Fe(III) (hydr)oxides, such as ferrihydrite, over a wide redox range (from Eh = 360 to −140 mV). Structural details of the short-range order of these Fe(III) (hydr)oxides were examined using Mössbauer spectroscopy by comparing the soil phases with synthesized ferrihydrite samples having varying crystallinities. The crystallinity of the soil Fe (hydr)oxides decreased slightly with depth and Eh. Thus, within the redox range of this soil profile, ferrihydrite dominated, even under very reducing conditions, but the crystalline domain size, and, potentially, particle size, changed with the variation in Eh. In the soil–water system examined here, where As concentration and the As(III)/As(V) ratio in soil water increased with depth, ferrihydrite persisted and maintained or even enhanced its capacity for As retention with increased reducing conditions. Therefore, it is concluded that As release from these soils largely depends on the transformation of As(V) to As(III) rather than reductive dissolution of Fe(III) (hydr)oxide.  相似文献   

8.
Hexavalent uranium [U(VI)] dissolved in a modified lactate-C medium was treated under anoxic conditions with a mixture of an Fe(III)-(hydr)oxide mineral (hematite, goethite, or ferrihydrite) and quartz. The mass of Fe(III)-(hydr)oxide mineral was varied to give equivalent Fe(III)-mineral surface areas. After equilibration, the U(VI)-mineral suspensions were inoculated with sulfate-reducing bacteria, Desulfovibrio desulfuricans G20. Inoculation of the suspensions containing sulfate-limited medium yielded significant G20 growth, along with concomitant reduction of sulfate and U(VI) from solution. With lactate-limited medium, however, some of the uranium that had been removed from solution was resolubilized in the hematite treatments and, to a lesser extent, in the goethite treatments, once the lactate was depleted. No resolubilization was observed in the lactate-limited ferrihydrite treatment even after a prolonged incubation of 4 months. Uranium resolubilization was attributed to reoxidation of the uraninite by Fe(III) present in the (hydr)oxide phases. Analysis by U L3-edge XANES spectroscopy of mineral specimens sampled at the end of the experiments yielded spectra similar to that of uraninite, but having distinct features, notably a much more intense and slightly broader white line consistent with precipitation of nanometer-sized particles. The XANES spectra thus provided strong evidence for SRB-promoted removal of U(VI) from solution by reductive precipitation of uraninite. Consequently, our results suggest that SRB mediate reduction of soluble U(VI) to an insoluble U(IV) oxide, so long as a suitable electron donor is available. Depletion of the electron donor may result in partial reoxidation of the U(IV) to soluble U(VI) species when the surfaces of crystalline Fe(III)-(hydr)oxides are incompletely reduced.  相似文献   

9.
Iron oxides may undergo structural transformations when entering an anoxic environment. These transformations were investigated using the isotopic exchange between aqueous Fe(II) and iron oxides in experiments with 55Fe-labelled iron oxides. 55Fe was incorporated congruently into a ferrihydrite, two lepidocrocites (#1 and #2), synthesised at 10°C and 25°C, respectively, a goethite and a hematite. The iron oxides were then submerged in Fe2+ solutions (0-1.0 mM) with a pH of 6.5. In the presence of aqueous Fe2+, an immediate and very rapid release of 55Fe was observed from ferrihydrite, the two lepidocrocites and goethite, whereas in the absence of Fe2+ no release was observed. 55Fe was not released from hematite, even at the higher Fe2+ concentration. The release rate is mainly controlled by characteristics of the iron oxides, whereas the concentration of Fe2+ only has minor influence. Ferrihydrite and 5-nm-sized lepidocrocite crystals attained complete isotopic equilibration with aqueous Fe(II) within days. Within this timeframe ferrihydrite transformed completely into new and more stable phases such as lepidocrocite and goethite. Lepidocrocite #2 and goethite, having larger particles, did not reach isotopic equilibrium within the timeframe of the experiment; however, the continuous slow release of 55Fe suggests that isotopic equilibrium will ultimately be attained.Our results imply a recrystallization of solid Fe(III) phases induced by the catalytic action of aqueous Fe(II). Accordingly, iron oxides should properly be considered as dynamic phases that change composition when exposed to variable redox conditions. These results necessitate a reevaluation of current models for the release of trace metals under reducing conditions, the sequestration of heavy metals by iron oxides, and the significance of stable iron isotope signatures.  相似文献   

10.
The Fe(II) adsorption by non-ferric and ferric (hydr)oxides has been analyzed with surface complexation modeling. The CD model has been used to derive the interfacial distribution of charge. The fitted CD coefficients have been linked to the mechanism of adsorption. The Fe(II) adsorption is discussed for TiO2, γ-AlOOH (boehmite), γ-FeOOH (lepidocrocite), α-FeOOH (goethite) and HFO (ferrihydrite) in relation to the surface structure and surface sites. One type of surface complex is formed at TiO2 and γ-AlOOH, i.e. a surface-coordinated Fe2+ ion. At the TiO2 (Degussa) surface, the Fe2+ ion is probably bound as a quattro-dentate surface complex. The CD value of Fe2+ adsorbed to γ-AlOOH points to the formation of a tridentate complex, which might be a double edge surface complex. The adsorption of Fe(II) to ferric (hydr)oxides differs. The charge distribution points to the transfer of electron charge from the adsorbed Fe(II) to the solid and the subsequent hydrolysis of the ligands that coordinate to the adsorbed ion, formerly present as Fe(II). Analysis shows that the hydrolysis corresponds to the hydrolysis of adsorbed Al(III) for γ-FeOOH and α-FeOOH. In both cases, an adsorbed M(III) is found in agreement with structural considerations. For lepidocrocite, the experimental data point to a process with a complete surface oxidation while for goethite and also HFO, data can be explained assuming a combination of Fe(II) adsorption with and without electron transfer. Surface oxidation (electron transfer), leading to adsorbed Fe(III)(OH)2, is favored at high pH (pH > ∼7.5) promoting the deprotonation of two FeIII-OH2 ligands. For goethite, the interaction of Fe(II) with As(III) and vice versa has been modeled too. To explain Fe(II)-As(III) dual-sorbate systems, formation of a ternary type of surface complex is included, which is supposed to be a monodentate As(III) surface complex that interacts with an Fe(II) ion, resulting in a binuclear bidentate As(III) surface complex.  相似文献   

11.
Sunlight-induced reduction and dissolution of colloidal Fe-Mn (hydr)oxide minerals yields elevated concentrations of Fe2+ and Mn2+ in natural waters. Since these elements may be biolimiting micronutrients, photochemical reactions might play a significant role in biogeochemical cycles. Reductive photodissolution of Fe (hydr)oxide minerals may also release sorbed metals. The reactivity of Fe-Mn (hydr)oxide minerals to sunlight-induced photochemical dissolution is determined by the electronic structure of the mineral-water interface. In this work, oxygen K-edge absorption and emission spectra were used to determine the electronic structures of iron(III) (hydr)oxides (hematite, goethite, lepidocrocite, akaganeite and schwertmannite) and manganese(IV) oxides (pyrolusite, birnessite, cryptomelane). The band gaps in the iron(III) (hydr)oxide minerals are near 2.0-2.5 eV; the band gaps in the manganese (IV) oxide phases are 1.0-1.8 eV. Using published values for the electrochemical flat-band potential for hematite together with experimental pHpzc values for the (hydr)oxides, it is possible to predict the electrochemical potentials of the conduction and valence bands in aqueous solutions as a function of pH. The band potentials enable semiquantitative predictions of the susceptibilities of these minerals to photochemical dissolution in aqueous solutions. At pH 2 (e.g., acid-mine waters), photoreduction of iron(III) (hydr)oxides could yield millimolal concentrations of aqueous Fe2+ (assuming surface detachment of Fe2+ is not rate limiting). In seawater (pH 8.3), however, the direct photo-reduction of colloidal iron(III) (hydr)oxides to give nanomolal concentrations of dissolved, uncomplexed, Fe2+ is not thermodynamically feasible. This supports the hypothesis that the apparent photodissolution of iron(III) (hydr)oxides in marines systems results from Fe3+ reduction by photochemically produced superoxide. In contrast, the direct photoreduction of manganese oxides should be energetically feasible at pH 2 and 8.3.  相似文献   

12.
Iron (hydr)oxides not only serve as potent sorbents and repositories for nutrients and contaminants but also provide a terminal electron acceptor for microbial respiration. The microbial reduction of Fe (hydr)oxides and the subsequent secondary solid-phase transformations will, therefore, have a profound influence on the biogeochemical cycling of Fe as well as associated metals. Here we elucidate the pathways and mechanisms of secondary mineralization during dissimilatory iron reduction by a common iron-reducing bacterium, Shewanella putrefaciens (strain CN32), of 2-line ferrihydrite under advective flow conditions. Secondary mineralization of ferrihydrite occurs via a coupled, biotic-abiotic pathway primarily resulting in the production of magnetite and goethite with minor amounts of green rust. Operating mineralization pathways are driven by competing abiotic reactions of bacterially generated ferrous iron with the ferrihydrite surface. Subsequent to the initial sorption of ferrous iron on ferrihydrite, goethite (via dissolution/reprecipitation) and/or magnetite (via solid-state conversion) precipitation ensues resulting in the spatial coupling of both goethite and magnetite with the ferrihydrite surface. The distribution of goethite and magnetite within the column is dictated, in large part, by flow-induced ferrous Fe profiles. While goethite precipitation occurs over a large Fe(II) concentration range, magnetite accumulation is only observed at concentrations exceeding 0.3 mmol/L (equivalent to 0.5 mmol Fe[II]/g ferrihydrite) following 16 d of reaction. Consequently, transport-regulated ferrous Fe profiles result in a progression of magnetite levels downgradient within the column. Declining microbial reduction over time results in lower Fe(II) concentrations and a subsequent shift in magnetite precipitation mechanisms from nucleation to crystal growth. While the initial precipitation rate of goethite exceeds that of magnetite, continued growth is inhibited by magnetite formation, potentially a result of lower Fe(III) activity. Conversely, the presence of lower initial Fe(II) concentrations followed by higher concentrations promotes goethite accumulation and inhibits magnetite precipitation even when Fe(II) concentrations later increase, thus revealing the importance of both the rate of Fe(II) generation and flow-induced Fe(II) profiles. As such, the operating secondary mineralization pathways following reductive dissolution of ferrihydrite at a given pH are governed principally by flow-regulated Fe(II) concentration, which drives mineral precipitation kinetics and selection of competing mineral pathways.  相似文献   

13.
The reductive dissolution of FeIII (hydr)oxides by dissimilatory iron-reducing bacteria (DIRB) could have a large impact on sediment genesis and Fe transport. If DIRB are able to reduce FeIII in minerals of high structural order to carry out anaerobic respiration, their range could encompass virtually every O2-free environment containing FeIII and adequate conditions for cell growth. Previous studies have established that Shewanella putrefaciens CN32, a known DIRB, will reduce crystalline Fe oxides when initially grown at high densities in a nutrient-rich broth, conditions that poorly model the environments where CN32 is found. By contrast, we grew CN32 by batch culture solely in a minimal growth medium. The stringent conditions imposed by the growth method better represent the conditions that cells are likely to encounter in their natural habitat. Furthermore, the expression of reductases necessary to carry out dissimilatory Fe reduction depends on the method of growth. It was found that under anaerobic conditions CN32 reduced hydrous ferric oxide (HFO), a poorly crystalline FeIII mineral, and did not reduce suspensions containing 4 mM FeIII in the form of poorly ordered nanometer-sized goethite (α-FeOOH), well-ordered micron-sized goethite, or nanometer-sized hematite (α-Fe2O3) crystallites. Transmission electron microscopy (TEM) showed that all minerals but the micron-sized goethite attached extensively to the bacteria and appeared to penetrate the outer cellular membrane. In the treatment with HFO, new FeII and FeIII minerals formed during reduction of HFO-Fe in culture medium containing 4.0 mmol/L Pi (soluble inorganic P), as observed by TEM with energy-dispersive X-ray spectroscopy, selected area electron diffraction, and X-ray diffraction. The minerals included magnetite (Fe3O4), goethite, green rust, and vivianite [Fe3(PO4)2 · 8H2O]. Vivianite appeared to be the stable end product and the mean coherence length was influenced by the rate of FeIII reduction. When Pi was 0.4 mol/L under otherwise identical conditions, goethite was the only mineral observed to form, and less Fe2+ was produced overall. Hence, the ability of DIRB to reduce Fe (hydr)oxides may be limited when the bacteria are grown under nutrient-limited conditions, and the minerals that result depend on the vigor of FeIII reduction.  相似文献   

14.
骆少勇  周跃飞  刘星 《地学前缘》2020,27(5):218-226
通过在滇池开展原位实验,研究探讨了湖泊沉积物中磷灰石制约水铁矿分解和转化的机制,以及二者共存时的环境效应。结果表明:将水铁矿放置到沉积物中1个月,矿物保持稳定;放置时间达到3个月时,添加磷灰石实验中水铁矿发生了显著物相转变。冬天(12—2月)实验中,转化产物随深度的变化趋势为针铁矿+磁(赤)铁矿→针铁矿+纤铁矿→针铁矿;夏天(6—9月)实验中,转化产物随深度的变化趋势为针铁矿+纤铁矿+磁(赤)铁矿→针铁矿+纤铁矿→未转化。透射电镜分析结果显示冬天实验中生成的磁性铁氧化物为纳米磁铁矿和磁赤铁矿,夏天实验中产生的则主要为纳米磁铁矿。X射线光电子能谱分析结果显示冬天表层实验样品具有较高P含量。分析表明的湖泊沉积物中磷灰石促进水铁矿转化的过程为:(1)微生物促进磷灰石溶解;(2)磷灰石溶解释放的P促进铁还原菌生长;(3)铁还原菌促进水铁矿还原;(4)水铁矿还原产生的溶解态Fe2+催化水铁矿向针铁矿、纤铁矿和磁铁矿转化。冬天及沉积氧化-还原界面最适宜磷灰石分解菌和铁还原菌生长,水铁矿的转化和P释放能力也更强,相应地内源磷释放的风险也更大。  相似文献   

15.
Pyridine-2,6-bis(monothiocarboxylate) (pdtc), a metabolic product of microorganisms, including Pseudomonas putida and Pseudomonas stutzeri was investigated for its ability of dissolve Fe(III)(hydr)oxides at pH 7.5. Concentration dependent dissolution of ferrihydrite under anaerobic environment showed saturation of the dissolution rate at the higher concentration of pdtc. The surface controlled ferrihydrite dissolution rate was determined to be 1.2 × 10−6 mol m−2 h−1. Anaerobic dissolution of ferrihydrite by pyridine-2,6-dicarboxylic acid or dipicolinic acid (dpa), a hydrolysis product of pdtc, was investigated to study the mechanism(s) involved in the pdtc facilitated ferrihydrite dissolution. These studies suggest that pdtc dissolved ferrihydrite using a reduction step, where dpa chelates the Fe reduced by a second hydrolysis product, H2S. Dpa facilitated dissolution of ferrihydrite showed very small increase in the Fe dissolution when the concentration of external reductant, ascorbate, was doubled, suggesting the surface dynamics being dominated by the interactions between dpa and ferrihydrite. Greater than stoichiometric amounts of Fe were mobilized during dpa dissolution of ferrihydrite assisted by ascorbate and cysteine. This is attributed to the catalytic dissolution of Fe(III)(hydr)oxides by the in situ generated Fe(II) in the presence of a complex former, dpa.  相似文献   

16.
The Fe(II)-catalysed transformation of synthetic schwertmannite, ferrihydrite, jarosite and lepidocrocite to more stable, crystalline Fe(III) oxyhydroxides is prevented by high, natural concentrations of Si and natural organic matter (NOM). Adsorption isotherms demonstrate that Si adsorbs to the iron minerals investigated and that increasing amounts of adsorbed Si results in a decrease in isotope exchange between aqueous Fe(II) and the Fe(III) mineral. This suggests that the adsorption of Si inhibits the direct adsorption of Fe(II) onto the mineral surface, providing an explanation for the inhibitory effect of Si on the Fe(II)-catalysed transformation of Fe(III) minerals. During the synthesis of lepidocrocite and ferrihydrite, the presence of equimolar concentrations of Si and Fe resulted in the formation of 2-line ferrihydrite containing co-precipitated Si in both cases. Isotope exchange experiments conducted with this freeze-dried Si co-precipitated ferrihydrite species (Si-ferrihydrite) demonstrated that the rate and extent of isotope exchange between aqueous Fe(II) and solid 55Fe(III) was very similar to that of 2-line ferrihydrite formed in the absence of Si and which had not been allowed to dry. In contrast to un-dried ferrihydrite formed in the absence of Si, Si-ferrihydrite did not transform into a more crystalline Fe(III) mineral phase over the 7-day period of investigation. Reductive dissolution studies using ascorbic acid demonstrated that both dried Si-ferrihydrite and un-dried 2-line ferrihydrite were very reactive, suggesting these species may be major contributors to the rapid release of dissolved iron following flooding and the onset of conditions conducive to reductive dissolution in acid sulphate soil environments.  相似文献   

17.
Evidence for a simple pathway to maghemite in Earth and Mars soils   总被引:1,自引:0,他引:1  
Soil magnetism is greatly influenced by maghemite (γ-Fe2O3), the presence of which is usually attributed to the following: (1) heating of goethite in the presence of organic matter; (2) oxidation of magnetite (Fe3O4); or (3) dehydroxylation of lepidocrocite (γ-FeOOH). Formation of the latter two minerals in turn requires the presence of Fe(II) in the system. No laboratory experiment or soil study to date has shown whether maghemite can form from ferrihydrite, a poorly crystalline Fe(III) oxide [∼Fe4.5(O,OH,H2O)13.5], below 250°C. However, ferrihydrite is the usual precursor of goethite (α-FeOOH) and hematite (α-Fe2O3), the most frequently occurring crystalline Fe(III) oxides in soils. Here is presented in vitro evidence that ferryhidrite can partly transform into maghemite at 150°C. This transformation occurs upon aging of ferrihydrite precipitated in the presence of phosphate or other ligands capable of ligand exchange with Fe-OH surface groups. This maghemite coexists with hematite and is a transient phase in the transformation of ferrihydrite to hematite, which is apparently stabilized by the adsorbed ligands. Its particle size is small (10 to 30 nm), and its X-ray diffraction pattern exhibits superstructure reflections. The possible formation of maghemite in Mars and in different Earth soils can partly be explained in the light of this pathway with minimal ad hoc assumptions.  相似文献   

18.
The biologically-mediated reduction of synthetic samples of the Fe(III)-bearing minerals hematite, goethite, lepidocrocite, feroxhyte, ford ferrihydrite, akaganeite and schwertmannite by Geobacter sulfurreducens has been investigated using microbiological techniques in conjunction with X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). This combination of approaches offers unique insights into the influence of subtle variations in the crystallinity of a given mineral on biogeochemical processes, and has highlighted the importance of (oxyhydr)oxide crystallite morphology in determining the changes occurring in a given mineral phase. Problems arising from normalising the biological Fe(III) reduction rates relative to the specific surface areas of the starting materials are also highlighted. These problems are caused primarily by particle aggregation, and compounded when using spectrophotometric assays to monitor reduction. For example, the initial rates of Fe(III) reduction observed for two synthetic feroxyhytes with different crystallinities (as shown by XRD and TEM studies) but almost identical surface areas, differ substantially. Both microbiological and high-resolution TEM studies show that hematite and goethite are susceptible to limited amounts of Fe(III) reduction, as evidenced by the accumulation of Fe(II) during incubation with G. sulfurreducens and the growth of nodular structures on crystalline goethite laths during incubation. Lepidocrocite and akaganeite readily transform into mixtures of magnetite and goethite, and XRD data indicate that the proportion of magnetite increases within the transformation products as the crystallinity of the starting material decreases. The presence of anthraquinone-2,6-disulfonate (AQDS) as an electron shuttle increases both the initial rate and longer term extent of biological Fe(III) reduction for all of the synthetic minerals examined. High-resolution XPS indicates subtle but measurable differences in the Fe(III):Fe(II) ratios at the mineral surfaces following extended incubation. For example, for a poorly crystalline schwertmannite, deconvolution of the Fe2p3/2 peak suggests that the Fe(III):Fe(II) ratio of the near-surface regions varies from 1.0 in the starting material to 0.9 following 144 h of incubation with G.sulfurreducens, and to 0.75 following the same incubation period in the presence of 10 μM AQDS. These results have important implications for the biogeochemical cycling of iron.  相似文献   

19.
Microbial sulfidogenesis plays a potentially important role in Fe and As biogeochemistry within wetland soils, sediments and aquifers. This study investigates the specific effects of microbial sulfidogenesis on Fe mineralogy and associated As mobility in mildly acidic (pH 6) and mildly basic (pH 8) advective-flow environments. A series of experiments were conducted using advective-flow columns, with an initial solid-phase comprising As(III)-bearing ferrihydrite-coated quartz sand. Columns for each pH treatment were inoculated with the sulfate-reducing bacteria Desulfovibrio vulgaris, and were compared to additional abiotic control columns. Over a period of 28 days, microbial sulfidogenesis (as coupled to the incomplete oxidation of lactate) caused major changes in Fe mineralogy, including replacement of ferrihydrite by mackinawite and magnetite at the in-flow end of the inoculated columns. At pH 8, the Fe2+ produced by electron transfer between sulfide and ferrihydrite was mainly retained near its zone of formation. In contrast, at pH 6, much of the produced Fe2+ was transported with advecting groundwater, facilitating the downstream Fe2+-catalyzed transformation of ferrihydrite to goethite. At both pH 6 and pH 8, the sulfide-driven reductive dissolution of ferrihydrite and its replacement by mackinawite at the in-flow end of the inoculated columns resulted in substantial mobilization of As into the pore-water. At pH 8, this caused the downstream As concentrations within the inoculated columns to be greater than the corresponding abiotic column. However, the opposite occurred under pH 6 conditions, with the Fe2+-catalyzed transformation of ferrihydrite to goethite in the inoculated columns causing a decrease in downstream As concentrations compared to the abiotic column. Although thermodynamically favorable at intermediate times and depth intervals within the inoculated columns, solid As sulfide phases were undetectable by As XANES spectroscopy. Our findings show that microbial sulfidogenesis can trigger significant As mobilization in subsurface environments with advective groundwater flow. The results also demonstrate that formation of mackinawite by sulfidization of ferric (hydr)oxides is not effective for the immobilization of As, whereas the Fe2+-catalyzed transformation of ferrihydrite to goethite under mildly acidic conditions may mitigate As mobility.  相似文献   

20.
Fe(III) solid phases are the products of Fe(II) oxidation by Fe(II)-oxidizing bacteria, but the Fe(III) phases reported to form within growth experiments are, at times, poorly crystalline and therefore difficult to identify, possibly due to the presence of ligands (e.g., phosphate, carbonate) that complex iron and disrupt iron (hydr)oxide precipitation. The scope of this study was to investigate the influences of geochemical solution conditions (pH, carbonate, phosphate, humic acids) on the Fe(II) oxidation rate and Fe(III) mineralogy. Fe(III) mineral characterization was performed using 57Fe-Mössbauer spectroscopy and μ-X-ray diffraction after oxidation of dissolved Fe(II) within Mops-buffered cell suspensions of Acidovorax sp. BoFeN1, a nitrate-reducing, Fe(II)-oxidizing bacterium. Lepidocrocite (γ-FeOOH) (90%), which also forms after chemical oxidation of Fe(II) by dissolved O2, and goethite (α-FeOOH) (10%) were produced at pH 7.0 in the absence of any strongly complexing ligands. Higher solution pH, increasing concentrations of carbonate species, and increasing concentrations of humic acids promoted goethite formation and caused little or no changes in Fe(II) oxidation rates. Phosphate species resulted in Fe(III) solids unidentifiable to our methods and significantly slowed Fe(II) oxidation rates. Our results suggest that Fe(III) mineralogy formed by bacterial Fe(II) oxidation is strongly influenced by solution chemistry, and the geochemical conditions studied here suggest lepidocrocite and goethite may coexist in aquatic environments where nitrate-reducing, Fe(II)-oxidizing bacteria are active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号