首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behaviour of trace amounts of arsenate coprecipitated with ferrihydrite, lepidocrocite and goethite was studied during reductive dissolution and phase transformation of the iron oxides using [55Fe]- and [73As]-labelled iron oxides. The As/Fe molar ratio ranged from 0 to 0.005 for ferrihydrite and lepidocrocite and from 0 to 0.001 for goethite. For ferrihydrite and lepidocrocite, all the arsenate remained associated with the surface, whereas for goethite only 30% of the arsenate was desorbable. The rate of reductive dissolution in 10 mM ascorbic acid was unaffected by the presence of arsenate for any of the iron oxides and the arsenate was not reduced to arsenite by ascorbic acid. During reductive dissolution of the iron oxides, arsenate was released incongruently with Fe2+ for all the iron oxides. For ferrihydrite and goethite, the arsenate remained adsorbed to the surface and was not released until the surface area became too small to adsorb all the arsenate. In contrast, arsenate preferentially desorbs from the surface of lepidocrocite. During Fe2+ catalysed transformation of ferrihydrite and lepidocrocite, arsenate became bound more strongly to the product phases. X-ray diffractograms showed that ferrihydrite was transformed into lepidocrocite, goethite and magnetite whereas lepidocrocite either remained untransformed or was transformed into magnetite. The rate of recrystallization of ferrihydrite was not affected by the presence of arsenate. The results presented here imply that during reductive dissolution of iron oxides in natural sediments there will be no simple correlation between the release of arsenate and Fe2+. Recrystallization of the more reactive iron oxides into more crystalline phases, induced by the appearance of Fe2+ in anoxic aquifers, may be an important trapping mechanism for arsenic.  相似文献   

2.
Depth profiles in the sediment porewaters of the Chattahoochee River (Georgia, USA) show that iron oxides scavenge arsenate in the water column and settle to the sediment-water interface (SWI) where they are reduced by iron-reducing bacteria. During their reduction, these particles seem to release arsenic to the porewaters in the form of arsenate only. Sediment slurry incubations were conducted to determine the effect of low concentrations of arsenic (?10 μM) on biogeochemical processes in these sediments. Experiments confirm that any arsenate (As(V)) added to these sediments is immediately adsorbed in oxic conditions and released in anoxic conditions during the microbial reduction of authigenic iron oxides. Incubations in the presence of ?1 μM As(V) reveal that arsenate is released but not concomitantly reduced during this process. Simultaneously, microbial iron reduction is enhanced significantly, spurring the simultaneous release of arsenate into porewaters and secondary formation of crystalline iron oxides. Above 1 μM As(V), however, the microbial reductive dissolution of iron oxides appears inhibited by arsenate, and arsenite is produced in excess in the porewaters. These incubations show that even low inputs of arsenic to riverine sediments may affect microbial processes, the stability of iron oxides and, indirectly, the cycling of arsenic. Possible mechanisms for such effects on iron reduction are proposed.  相似文献   

3.
Scorodite, ferric arsenate and arsenical ferrihydrite are important arsenic carriers occurring in a wide range of environments and are also common precipitates used by metallurgical industries to control arsenic in effluents. Solubility and stability of these compounds are controversial because of the complexities in their identification and characterization in heterogeneous media. To provide insights into the formation of scorodite, ferric arsenate and ferrihydrite, series of synthesis experiments were carried out at 70 °C and pH 1, 2, 3 and 4.5 from 0.2 M Fe(SO4)1.5 solutions also containing 0.02-0.2 M Na2HAsO4. The precipitates were characterized by transmission electron microscopy, X-ray diffraction and X-ray absorption fine structure techniques. Ferric arsenate, characterized by two broad diffuse peaks on the XRD pattern and having the structural formula of FeAsO4·4-7H2O, is a precursor to scorodite formation. As defined by As XAFS and Fe XAFS, the local structure of ferric arsenate is profoundly different than that of scorodite. It is postulated that the ferric arsenate structure is made of single chains of corner-sharing Fe(O,OH)6 octahedra with bridging arsenate tetrahedra alternating along the chains. Scorodite was precipitated from solutions with Fe/As molar ratios of 1 over the pH range of 1-4.5. The pH strongly controls the kinetics of scorodite formation and its transformation from ferric arsenate. The scorodite crystallite size increased from 7 to 33 nm by ripening and aggregation. Precipitates, resulting from continuous synthesis at pH 4.5 from solutions having Fe/As molar ratios ranging from 1 to 4 and resembling the compounds referred to as ferric arsenate, arsenical ferrihydrite and As-rich hydrous ferric oxide in the literature, represent variable mixtures of ferric arsenate and ferrihydrite. When the Fe/As ratio increases, the proportion of ferrihydrite increases at the expense of ferric arsenate. Arsenate adsorption appears to retard ferrihydrite growth in the precipitates with molar Fe/As ratios of 1-4, whereas increased reaction gradually transforms two-line ferrihydrite to six-line ferrihydrite at Fe/As ratios of 5 and greater.  相似文献   

4.
Many groundwater systems contain anomalously high arsenic concentrations, associated with less than expected retention of As by adsorption to iron (hydr)oxides. Although carbonates are ubiquitous in aquifers, their relationship to arsenate mobilization is not well characterized. This research examines arsenate release from poorly crystalline iron hydroxides in abiotic systems containing calcium and magnesium with bicarbonate under conditions of static and dynamic flow (pH 7.5-8). Aqueous arsenic levels remained low when arsenate-bearing ferrihydrite was equilibrated with artificial groundwater solution containing Ca, Mg, and HCO3. In batch titrations in which a solution of Ca and HCO3 was added repeatedly, the ferrihydrite surface became saturated with adsorbed Ca and HCO3, and aqueous As levels increased by 1-2 orders of magnitude. In columns containing Ca or Mg and HCO3, As solubility initially mimicked titrations, but then rapidly increased by an additional order of magnitude (reaching 12 μM As). Separately, calcium chloride and other simple salts did not induce As release, although sodium bicarbonate and lactate facilitated minor As release under flow. Results indicate that adsorption of calcium or magnesium with bicarbonate leads to As desorption from ferrihydrite, to a degree greater than expected from competitive effects alone, especially under dynamic flow. This desorption may be an important mechanism of As mobilization in As-impacted, circumneutral aquifers, especially those undergoing rapid mineralization of organic matter, which induces calcite dissolution and the production of dissolved calcium and bicarbonate.  相似文献   

5.
Reduction of As(V) and reductive dissolution and transformation of Fe (hydr)oxides are two dominant processes controlling As retention in soils and sediments. When developed within soils and sediments, Fe (hydr)oxides typically contain various impurities—Al being one of the most prominent—but little is known about how structural Al within Fe (hydr)oxides alters its biotransformation and subsequent As retention. Using a combination of batch and advective flow column studies with Fe(II) and Shewanella sp. ANA-3, we examined (1) the extent to which structural Al influences reductive dissolution and transformations of ferrihydrite, a highly reactive Fe hydroxide, and (2) the impact of adsorbed As on dissolution and transformation of (Al-substituted) ferrihydrite and subsequent As retention. Structural Al diminishes the extent of ferrihydrite reductive transformation; nearly three-orders of magnitude greater concentration of Fe(II) is required to induce Al-ferrihydrite transformation compared to pure two-line ferrihydrite. Structural Al decreases Fe(II) retention/incorporation on/into ferrihydrite and impedes Fe(II)-catalyzed transformation of ferrihydrite. Moreover, owing to cessation of Fe(II)-induced transformation to secondary products, Al-ferrihydrite dissolves (incongruently) to a greater extent compared to pure ferrihydrite during reaction with Shewanella sp. ANA-3. Additionally, adsorption of As(V) to Al-ferrihydrite completely arrests Fe(II)-catalyzed transformation of ferrihydrite, and it diminishes the difference in the rate and extent of ferrihydrite and Al-ferrihydrite reduction by Shewanella sp. ANA-3. Our study further shows that reductive dissolution of Al-ferrihydrite results in enrichment of Al sites, and As(V) reduction accelerates As release due to the low affinity of As(III) on these non-ferric sites.  相似文献   

6.
Arsenic sequestration by sorption processes in high-iron sediments   总被引:3,自引:0,他引:3  
High-iron sediments in North Haiwee Reservoir (Olancha, CA), resulting from water treatment for removal of elevated dissolved arsenic in the Los Angeles Aqueduct system, were studied to examine arsenic partitioning between solid phases and porewaters undergoing shallow burial. To reduce arsenic in drinking water supplies, ferric chloride and a cationic polymer coagulant are added to the aqueduct upstream of Haiwee Reservoir, forming an iron-rich floc that scavenges arsenic from the water. Analysis by synchrotron X-ray absorption spectroscopy (XAS) showed that the aqueduct precipitate is an amorphous hydrous ferric oxide (HFO) similar to ferrihydrite, and that arsenic is associated with the floc as adsorbed and/or coprecipitated As(V). Arsenic-rich floc and sediments are deposited along the inlet channel as aqueduct waters enter the reservoir. Sediment core samples were collected in two consecutive years from the edge of the reservoir along the inlet channel using 30- or 90-cm push cores. Cores were analyzed for total and extractable arsenic and iron concentrations. Arsenic and iron speciation and mineralogy in sediments were examined at selected depths by synchrotron XAS and X-ray diffraction (XRD). Sediment-porewater measurements were made adjacent to the core sample sites using polyacrylamide gel probe samplers. Results showed that sediment As(V) is reduced to As(III) in all cores at or near the sediment-water interface (0-4 cm), and only As(III) was observed in deeper sediments. Analyses of EXAFS spectra indicated that arsenic is present in the sediments mostly as a bidentate-binuclear, inner-sphere sorption complex with local atomic geometries similar to those found in laboratory studies. Below about 10 cm depth, XAS indicated that the HFO floc had been reduced to a mixed Fe(II, III) solid with a local structure similar to that of synthetic green rust (GR) but with a slightly contracted average interatomic Fe-Fe distance in the hydroxide layer. There was no evidence from XRD for the formation of a crystalline GR phase. The release of dissolved iron (presumably Fe2+) and arsenic to solution, as monitored by in situ gel probes, was variable but, in general, occurred at greater depths than arsenic reduction in the sediments by spectroscopic observations and appears to be near or below the depth at which sediment GR was identified. These data point to reductive dissolution of the sorbent iron phase as the primary mechanism of release of sorbed arsenic to solution.  相似文献   

7.
Fourier transformed infrared (FTIR) spectroscopy was used to characterize arsenate-ferrihydrite sorption solids synthesized at pH 3-8. The speciation of sorbed arsenate was determined based on the As-O stretching vibration bands located at 650-950 cm−1 and O-H stretching vibration bands at 3000-3500 cm−1. The positions of the As-O and O-H stretching vibration bands changed with pH indicating that the nature of surface arsenate species on ferrihydrite was strongly pH dependent. Sorption density and synthesis media (sulfate vs. nitrate) had no appreciable effect. At acidic pH (3, 4), ferric arsenate surface precipitate formed on ferrihydrite and constituted the predominant surface arsenate species. X-ray diffraction (XRD) analyses of he sorption solids synthesized at elevated temperature (75 °C), pH 3 clearly showed the development of crystalline ferric arsenate (i.e. scorodite). In neutral and alkaline media (pH 7, 8), arsenate sorbed as a bidentate surface complex (in both protonated FeO2As(O)(OH) and unprotonated forms). For the sorption systems in slightly acidic media (pH 5, 6), both ferric arsenate and surface complex were probably present on ferrihydrite. It was further determined that the incorporated sulfate in ferrihydrite during synthesis was substituted by arsenate and was more easily exchangeable with increasing pH.  相似文献   

8.
Arsenate and antimonate are water-soluble toxic mining waste species which often occur together and can be sequestered with varying success by a hydrous ferric oxide known as ferrihydrite. The competitive adsorption of arsenate and antimonate to thin films of 6-line ferrihydrite has been investigated using primarily adsorption/desorption kinetics monitored by in situ attenuated total reflectance infrared (ATR-IR) spectroscopy on flowed solutions containing 10−3 and 10−5 mol L−1 of both species at pH 3, 5, and 7. ICP-MS analysis of arsenate and antimonate adsorbed to 6-line ferrihydrite from 10−3 mol L−1 mixtures in batch adsorption experiments at pH 3 and 7 was carried out to calibrate the relative surface concentrations giving rise to the IR spectral absorptions. The kinetic data from 10−3 and 10−5 mol L−1 mixtures showed that at pH 3 antimonate achieved a greater surface concentration than arsenate after 60 min adsorption on 6-line ferrihydrite. However, at pH 7, the adsorbed arsenate surface concentration remained relatively high while that of adsorbed antimonate was much reduced compared with pH 3 conditions. Both species desorbed slowly into pH 3 solution while at pH 7 most adsorbed arsenate showed little desorption and adsorbed antimonate concentration was too low to register its desorption behaviour. The nature of arsenate which is almost irreversibly adsorbed to 6-line ferrihydrite remains to be clarified.  相似文献   

9.
High levels of arsenic in groundwater and drinking water are a major health problem. Although the processes controlling the release of As are still not well known, the reductive dissolution of As-rich Fe oxyhydroxides has so far been a favorite hypothesis. Decoupling between arsenic and iron redox transformations has been experimentally demonstrated, but not quantitatively interpreted. Here, we report on incubation batch experiments run with As(V) sorbed on, or co-precipitated with, 2-line ferrihydrite. The biotic and abiotic processes of As release were investigated by using wet chemistry, X-ray diffraction, X-ray absorption and genomic techniques. The incubation experiments were carried out with a phosphate-rich growth medium and a community of Fe(III)-reducing bacteria under strict anoxic conditions for two months. During the first month, the release of Fe(II) in the aqueous phase amounted to only 3% to 10% of the total initial solid Fe concentration, whilst the total aqueous As remained almost constant after an initial exchange with phosphate ions. During the second month, the aqueous Fe(II) concentration remained constant, or even decreased, whereas the total quantity of As released to the solution accounted for 14% to 45% of the total initial solid As concentration. At the end of the incubation, the aqueous-phase arsenic was present predominately as As(III) whilst X-ray absorption spectroscopy indicated that more than 70% of the solid-phase arsenic was present as As(V). X-ray diffraction revealed vivianite Fe(II)3(PO4)2.8H2O in some of the experiments. A biogeochemical model was then developed to simulate these aqueous- and solid-phase results. The two main conclusions drawn from the model are that (1) As(V) is not reduced during the first incubation month with high Eh values, but rather re-adsorbed onto the ferrihydrite surface, and this state remains until arsenic reduction is energetically more favorable than iron reduction, and (2) the release of As during the second month is due to its reduction to the more weakly adsorbed As(III) which cannot compete against carbonate ions for sorption onto ferrihydrite. The model was also successfully applied to recent experimental results on the release of arsenic from Bengal delta sediments.  相似文献   

10.
The pool of iron oxides, available in sediments for reductive dissolution, is usually estimated by wet chemical extraction methods. Such methods are basically empirically defined and calibrated against various synthetic iron oxides. However, in natural sediments, iron oxides are present as part of a complex mixture of iron oxides with variable crystallinity, clays and organics etc. Such a mixture is more accurately described by a reactive continuum covering a range from highly reactive iron oxides to non-reactive iron oxide. The reactivity of the pool of iron oxides in sediment can be determined by reductive dissolution in 10 mM ascorbic acid at pH 3. Parallel dissolution experiments in HCl at pH 3 reveal the release of Fe(II) by proton assisted dissolution. The difference in Fe(II)-release between the two experiments is attributed to reductive dissolution of iron oxides and can be quantified using the rate equation J/m0 = k′(m/m0)γ, where J is the overall rate of dissolution (mol s−1), m0 the initial amount of iron oxide, k′ a rate constant (s−1), m/m0 the proportion of undissolved mineral and γ a parameter describing the change in reaction rate over time. In the Rømø aquifer, Denmark, the reduction of iron oxides is an important electron accepting process for organic matter degradation and is reflected by the steep increase in aqueous Fe2+ over depth. Sediment from the Rømø aquifer was used for reductive dissolution experiments with ascorbic acid. The rate parameters describing the reactivity of iron oxides in the sediment are in the range k′ = 7·10−6 to 1·10−3 s−1 and γ = 1 to 2.4. These values are intermediate between a synthetic 2-line ferrihydrite and a goethite. The rate constant increases by two orders of magnitude over depth suggesting an increase in iron oxide reactivity with depth. This increase was not captured by traditional oxalate and dithionite extractions.  相似文献   

11.
Characterization of Fe(III) (hydr)oxides in soils near the Ichinokawa mine was conducted using X-ray absorption fine structure (XAFS) and Mössbauer spectroscopies, and the structural changes were correlated with the release of As into pore-water. The Eh values decreased monotonically with depth. Iron is mainly present as poorly-ordered Fe(III) (hydr)oxides, such as ferrihydrite, over a wide redox range (from Eh = 360 to −140 mV). Structural details of the short-range order of these Fe(III) (hydr)oxides were examined using Mössbauer spectroscopy by comparing the soil phases with synthesized ferrihydrite samples having varying crystallinities. The crystallinity of the soil Fe (hydr)oxides decreased slightly with depth and Eh. Thus, within the redox range of this soil profile, ferrihydrite dominated, even under very reducing conditions, but the crystalline domain size, and, potentially, particle size, changed with the variation in Eh. In the soil–water system examined here, where As concentration and the As(III)/As(V) ratio in soil water increased with depth, ferrihydrite persisted and maintained or even enhanced its capacity for As retention with increased reducing conditions. Therefore, it is concluded that As release from these soils largely depends on the transformation of As(V) to As(III) rather than reductive dissolution of Fe(III) (hydr)oxide.  相似文献   

12.
Speciation and colloid transport of arsenic from mine tailings   总被引:2,自引:0,他引:2  
In addition to affecting biogeochemical transformations, the speciation of As also influences its transport from tailings at inoperative mines. The speciation of As in tailings from the Sulfur Bank Mercury Mine site in Clear Lake, California (USA) (a hot-spring Hg deposit) and particles mobilized from these tailings have been examined during laboratory-column experiments. Solutions containing two common, plant-derived organic acids (oxalic and citric acid) were pumped at 13 pore volumes d−1 through 25 by 500 mm columns of calcined Hg ore, analogous to the pedogenesis of tailings. Chemical analysis of column effluent indicated that all of the As mobilized was particulate (1.5 mg, or 6% of the total As in the column through 255 pore volumes of leaching). Arsenic speciation was evaluated using X-ray absorption spectroscopy (XAS), indicating the dominance of arsenate [As(V)] sorbed to poorly crystalline Fe(III)-(hydr)oxides and coprecipitated with jarosite [KFe3(SO4, AsO4)2(OH)6] with no detectable primary or secondary minerals in the tailings and mobilized particles. Sequential chemical extractions (SCE) of <45 μm mine tailings fractions also suggest that As occurs adsorbed to Fe (hydr)oxides (35%) and coprecipitated within poorly crystalline phases (45%). In addition, SCEs suggest that As is associated with 1 N acid-soluble phases such as carbonate minerals (20%) and within crystalline Fe-(hydr)oxides (10%). The finding that As is transported from these mine tailings dominantly as As(V) adsorbed to Fe (hydr)oxides or coprecipitated within hydroxysulfates such as jarosite suggests that As release from soils and sediments contaminated with tailings will be controlled by either organic acid-promoted dissolution or reductive dissolution of host phases.  相似文献   

13.
Pyridine-2,6-bis(monothiocarboxylate) (pdtc), a metabolic product of microorganisms, including Pseudomonas putida and Pseudomonas stutzeri was investigated for its ability of dissolve Fe(III)(hydr)oxides at pH 7.5. Concentration dependent dissolution of ferrihydrite under anaerobic environment showed saturation of the dissolution rate at the higher concentration of pdtc. The surface controlled ferrihydrite dissolution rate was determined to be 1.2 × 10−6 mol m−2 h−1. Anaerobic dissolution of ferrihydrite by pyridine-2,6-dicarboxylic acid or dipicolinic acid (dpa), a hydrolysis product of pdtc, was investigated to study the mechanism(s) involved in the pdtc facilitated ferrihydrite dissolution. These studies suggest that pdtc dissolved ferrihydrite using a reduction step, where dpa chelates the Fe reduced by a second hydrolysis product, H2S. Dpa facilitated dissolution of ferrihydrite showed very small increase in the Fe dissolution when the concentration of external reductant, ascorbate, was doubled, suggesting the surface dynamics being dominated by the interactions between dpa and ferrihydrite. Greater than stoichiometric amounts of Fe were mobilized during dpa dissolution of ferrihydrite assisted by ascorbate and cysteine. This is attributed to the catalytic dissolution of Fe(III)(hydr)oxides by the in situ generated Fe(II) in the presence of a complex former, dpa.  相似文献   

14.
The reductive biotransformation of 6-line ferrihydrite located within porous silica (intragrain ferrihydrite) by Shewanella oneidensis MR-1 was investigated and compared to the behavior of 6-line ferrihydrite in suspension (free ferrihydrite). The effect of buffer type (PIPES and NaHCO3), phosphate (P), and an electron shuttle (AQDS) on the extent of reduction and formation of Fe(II) secondary phases was investigated under anoxic conditions. Electron microscopy and micro X-ray diffraction were applied to evaluate the morphology and mineralogy of the biogenic precipitates and to study the distribution of microorganisms on the surface of porous silica after bioreduction. Kinetic reduction experiments with free and intragrain ferrihydrite revealed contrasting behavior with respect to the buffer and presence of P. The overall amount of intragrain ferrihydrite reduction was less than that of free ferrihydrite [at 5 mmol L−1 Fe(III)T]. Reductive mineralization was not observed in the intragrain ferrihydrite incubations without P, and all biogenic Fe(II) concentrated in the aqueous phase. Irrespective of buffer and AQDS addition, rosettes of Fe(II) phosphate of approximate 20-30 μm size were observed on porous silica when P was present. The rosettes grew not only on the silica surface but also within it, forming a coherent spherical structure. These precipitates were well colonized by microorganisms and contained extracellular materials at the end of incubation. Microbial extracellular polymeric substances may have adsorbed Fe(II) promoting Fe(II) phosphate nucleation with subsequent crystal growth proceeding in different directions from a common center.  相似文献   

15.
The abandoned Sb deposit Pezinok in Slovakia is a significant source of As and Sb pollution that can be traced in the upper horizons of soils kilometers downstream. The source of the metalloids are two tailing impoundments which hold ∼380,000 m3 of mining waste. The tailings and the discharged water have circumneutral pH values (7.0 ± 0.6) because the acidity generated by the decomposition of the primary sulfides (pyrite, FeS2; arsenopyrite, FeAsS; berthierite, FeSb2S4) is rapidly neutralized by the abundant carbonates. The weathering rims on the primary sulfides are iron oxides which act as very efficient scavengers of As and Sb (with up to 19.2 wt% As and 23.7 wt% Sb). In-situ μ-XANES experiments indicate that As in the weathering rims is fully oxidized (As5+). The pore solutions in the impoundment body contain up to 81 ppm As and 2.5 ppm Sb. Once these solutions are discharged from the impoundments, they precipitate or deposit masses of As-rich hydrous ferric oxide (As-HFO) with up to 28.3 wt% As2O5 and 2.7 wt% Sb. All As-HFO samples are amorphous to X-rays. They contain Fe and As in their highest oxidation state and in octahedral and tetrahedral coordination, respectively, as suggested by XANES and EXAFS studies on Fe K and As K edges. The iron octahedra in the As-HFO share edges to form short single chains and the chains polymerize by sharing edges or corners with the adjacent units. The arsenate ions attach to the chains in a bidentate-binuclear and monodentate fashion. In addition, hydrogen-bonded complexes may exist to satisfy the bonding requirements of all oxygen atoms in the first coordination sphere of As5+. Structural changes in the As-HFO samples were traced by chemical analyses and Fe EXAFS spectroscopy during an ageing experiment. As the samples age, As becomes more easily leachable. EXAFS spectra show a discernible trend of increasing number of Fe-Fe pairs at a distance of 3.3-3.5 Å, that is, increasing polymerization of the iron octahedra to form larger units with fewer adsorption sites. Therefore, although ferrihydrite is an excellent material for capturing arsenic, its use as a medium for a long-term storage of As has to be considered with a great caution because it will tend to release arsenic as it ages.  相似文献   

16.
Published solubility data for amorphous ferric arsenate and scorodite have been reevaluated using the geochemical code PHREEQC with a modified thermodynamic database for the arsenic species. Solubility product calculations have emphasized measurements obtained under conditions of congruent dissolution of ferric arsenate (pH < 3), and have taken into account ion activity coefficients, and ferric hydroxide, ferric sulfate, and ferric arsenate complexes which have association constants of 104.04 (FeH2AsO42+), 109.86 (FeHAsO4+), and 1018.9 (FeAsO4). Derived solubility products of amorphous ferric arsenate and crystalline scorodite (as log Ksp) are −23.0 ± 0.3 and −25.83 ± 0.07, respectively, at 25 °C and 1 bar pressure. In an application of the solubility results, acid raffinate solutions (molar Fe/As = 3.6) from the JEB uranium mill at McClean Lake in northern Saskatchewan were neutralized with lime to pH 2-8. Poorly crystalline scorodite precipitated below pH 3, removing perhaps 98% of the As(V) from solution, with ferric oxyhydroxide (FO) phases precipitated starting between pH 2 and 3. Between pH 2.18 and 7.37, the apparent log Ksp of ferric arsenate decreased from −22.80 to −24.67, while that of FO (as Fe(OH)3) increased from −39.49 to −33.5. Adsorption of As(V) by FO can also explain the decrease in the small amounts of As(V)(aq) that remain in solution above pH 2-3. The same general As(V) behavior is observed in the pore waters of neutralized tailings buried for 5 yr at depths of up to 32 m in the JEB tailings management facility (TMF), where arsenic in the pore water decreases to 1-2 mg/L with increasing age and depth. In the TMF, average apparent log Ksp values for ferric arsenate and ferric hydroxide are −25.74 ± 0.88 and −37.03 ± 0.58, respectively. In the laboratory tests and in the TMF, the increasing crystallinity of scorodite and the amorphous character of the coexisting FO phase increases the stability field of scorodite relative to that of the FO to near-neutral pH values. The kinetic inability of amorphous FO to crystallize probably results from the presence of high concentrations of sulfate and arsenate.  相似文献   

17.
The present study examines the processes that control the oxidation attenuation of a pyrite-rich sludge (72 wt% pyrite) from the Iberian Pyrite Belt by the buffer capacity of a fly ash from Los Barrios power station (S Spain), using saturated column experiments. In addition, in order to understand the behaviour of both materials inside these experiments, a fly-ash leaching test and flow-through experiments with pyritic sludge were carried out. The fly-ash leaching test showed that after leaching this material with a slightly acid solution (Millipore MQ water; pH 5.6) the pH raised up to 10.2 and that the metals released by the fly-ash dissolution did not increase significantly the metal concentrations in the output solutions. The flow-through experiments with the pyritic sludge were performed at pH 9, 22 °C and O2 partial pressure of 0.21 atm, to calculate the dissolution rate of this residue simulating the fly-ash addition. In the experiments Fe bearing oxyhydroxides precipitated as the sludge dissolved. In two non-stirred experiments the iron precipitates formed Fe-coatings on the pyrite surfaces preventing the interaction between the oxidizing agents and the pyrite grains, halting pyrite oxidation (this process is known as pyrite microencapsulation), whereas in two stirred experiments, stirring hindered the iron precipitates to coat the pyrite grains. Thus, based on the release of S (aqueous sulphate) the steady-state pyritic sludge dissolution rate obtained was 9.0 ± 0.2 × −11 mol m−2 s−1.In the saturated column experiments, the sludge dissolution was examined at acidic and basic pH at 22 °C and oxygen-saturated atmosphere. In a saturated column experiment filled with the pyritic sludge, pyrite oxidation occurred favourably at pH approx. 3.7. As the leachates of the fly ash yielded high basic pH, in another saturated column, consisting of an initial thick layer of fly-ash material and a layer of pyritic sludge, the pyrite dissolution took place at pH approx. 10.45. In this experiment, iron was depleted completely from the solution and attenuation of the sludge oxidation was produced in this conditions. The attenuation was likely promoted by precipitation of iron-bearing phases upon the pyritic surface forming Fe-coatings (of ferrihydrite and/or Fe(III) amorphous phases) that halted the pyrite oxidation (as in non-stirred flow-through experiments). Results suggest that buffering capacity of fly ash can be used to attenuate the pyrite-rich sludge oxidation.  相似文献   

18.
Sediments from the Red River and from an adjacent floodplain aquifer were investigated with respect to the speciation of Fe and As in the solid phase, to trace the diagenetic changes in the river sediment upon burial into young aquifers, and the related mechanisms of arsenic release to the groundwater. Goethite with subordinate amounts of hematite were, using Mössbauer spectroscopy, identified as the iron oxide minerals present in both types of sediment. The release kinetics of Fe, As, Mn and PO4 from the sediment were investigated in leaching experiments with HCl and 10 mM ascorbic acid, both at pH 3. From the river sediments, most of the Fe and As was mobilized by reductive dissolution with ascorbic acid while HCl released very little Fe and As. This suggests As to be associated with an Fe-oxide phase. For oxidized aquifer sediment most Fe was mobilized by ascorbic acid but here not much As was released. However, the reduced aquifer sediments contained a large pool of Fe(II) and As that is readily leached by HCl, probably derived from an unidentified authigenic Fe(II)-containing mineral which incorporates As as well. Extraction with ascorbic acid indicates that the river sediments contain both As(V) and As(III), while the reduced aquifer sediment almost exclusively releases As(III). The difference in the amount of Fe(II) leached from river and oxidized aquifer sediments by ascorbic acid and HCl, was attributed to reductive dissolution of Fe(III). The reactivity of this pool of Fe(III) was quantified by a rate law and compared to that of synthetic iron oxides. In the river mud, Fe(III) had a reactivity close to that of ferrihydrite, while the river sand and oxidized aquifer sediment exhibited a reactivity ranging from lepidocrocite or poorly crystalline goethite to hematite. Mineralogy by itself appears to be a poor predictor of the iron oxide reactivity in natural samples using the reactivity of synthetic Fe-oxides as a reference. Sediments were incubated, both unamended and with acetate added, and monitored for up to 2 months. The river mud showed the fastest release of both Fe and As, while the effect of acetate addition was minor. This suggests that the presence of reactive organic carbon is not rate limiting. In the case of the river and aquifer sediments, the release of Fe and As was always stimulated by acetate addition and here reactive organic carbon was clearly the rate limiting factor. The reduced aquifer sediment apparently can sustain slower but prolonged microbially-driven release of As. The highly reactive pools of Fe(III) and As in the river mud could be due to reoxidation of As and Fe contained in the reducing groundwater from the floodplain aquifers that are discharging into the river. Deposition of the suspended mud on the floodplain during high river stages is proposed to be a major flux of As onto the floodplain and into the underlying aquifers.  相似文献   

19.
Arsenic Speciation in a Contaminated Gold Processing Tailings Dam   总被引:1,自引:0,他引:1  
Gold recovery in ores containing arsenopyrite releases significant amounts of arsenic into the environment due to mineral processing and oxidation during storage. The extent of arsenic weathering in a tailings dam has been investigated. Speciation of As in surface and pore waters and pond sediments showed that for gold tailings in the dam, As enrichment took place in the pore water relative to the surface water. In pond sediments As was predominantly present as residual arsenopyrite and partly as a substance co-precipitated with iron hydroxide. The arsenic release from the sediment results from a reductive dissolution of the arsenopyrite and Fe oxides. In the surface water, arsenate and arsenite are the main arsenic species (arsenate is dominant), but in the pore waters methylation processes play a significant role. Arsenic transport is accompanied by the transformation of As into the less toxic compounds (methylated species) co-existing with the most toxic species (arsenite).  相似文献   

20.
Fragments in the size range from 40 μm to several hundred μm in the CI chondrites Orgueil, Ivuna, Alais, and Tonk show a wide range of chemical compositions with variations in major elements such as iron (10.4-42.4 wt% FeO), silicon (12.7-42.2 wt% SiO2), and sulfur (1.01-15.8 wt% SO3), but also important minor elements such as phosphorous (up to 5.2 wt% P2O5) or calcium (up to 6.6 wt% CaO). These variations are the result of the varying mineralogical compositions of these fragments. The distribution of phyllosilicates, magnetites, and possibly ferrihydrite, in particular, control the abundances of these elements. High REE contents—up to 150 times the solar abundances—were observed in phosphates, while matrix and sulfates are REE-depleted. The studied 113 fragments were subdivided into eight lithologies with similar mineralogical and thus chemical properties. The most common is the CGA lithology, consisting of a groundmass of Mg-rich, coarse-grained phyllosilicates and varying abundances of inclusions such as magnetite. The second most abundant lithology is the FGA lithology, consisting of a groundmass of fine-grained Fe-rich phyllosilicates. A rare, but important lithology consists of fragments with high contents of phosphates and other minerals. The proposed model for the evolution of these lithologies is based on a closed system alteration, where mineralogical differences in the lithologies reflect heterogeneities in the starting material. Comparison of our results with literature data indicates a general similarity of the four CI chondrites analyzed. Further comparison of bulk analyses suggests that the mass ‘threshold’ for chemical heterogeneities in CI chondrite samples is smaller than ∼1-2 g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号