首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Recently, strong top-down (consumer) control of cordgrass (Spartina alterniflora) has been demonstrated. Here, we manipulated the densities of cordgrass consumers, acridid grasshoppers (Melanoplus bivittatus and Melanoplus femurrubrum), to examine their impact on cordgrass in the Plum Island Estuary (PIE), MA, USA. After 1 month, there was no detectable effect of grasshopper density on S. alterniflora biomass and grasshoppers at the highest densities (34 individuals per square meter) consumed only ~14% of the standing stock biomass. However, significant impacts of grasshopper density on grazing damage were seen. For example, plant damage and scarring length increased by 160% and 6,156%, respectively, at the highest grasshopper densities relative to exclusion (zero grasshoppers) densities. Plant height was significantly reduced with increasing grasshopper densities, although this may be a function of leaf tip removal instead of reduced plant growth. No other strong consumers of cordgrass (e.g., Littoraria irrorata, Prokelisia marginata) were observed in PIE and we suggest that consumer regulation of cordgrass is weak in this system.  相似文献   

2.
The salt marsh periwinkleLittoraria irrorata (Say) remains on the substratum during low tide but climbs above the water on stalks ofSpartina alterniflora Loisel during high tide. Rhythmic tidal migrations may allowL. irrorata to avoid predators such as blue crabsCallinectes sapidus Rathbun that forage when the marsh is inundated. These tidal rhythms may be driven by endogenous clocks or they may be easily entrained. Snails with flexible and entrainable climbing rhythms may be able to avoid predators in unpredictable environments (e.g., when water unexpectedly covers the substratum as in storm surges). We tested the behavioral response ofL. irrorata to different simulated tidal regimes in the laboratory, and the effect of remaining above mean high water (MHW) on snail survivorship in a smallS. alterniflora salt marsh. In laboratory mesocosms, vertical snail position was measured under constant water levels, simulated tidal cycles, and simulated tidal cycles 180° out of phase (reversed). Under constant water levels, snails ceased to migrate vertically after 1 d. When exposed to tidal and reversed tidal cycles, snails migrated in synchrony with the appropriate simulated rhythm.L. irrorata entrained quickly to differing tidal cycles and maintained their position above the water surfce when water levels were high. In a field experiment, snails were tethered toS. alteriflora plants near the substratum and above MHW in the marsh for 1 wk to assess survival. Survival of snails tethered above MHW was sigificantly greater than for snails tethered at the base of plants; no snails in control cages died. Rapid alteration of tidal vertical migrations may allowL. irrorata to avoid predators that forage when water inundates the marsh predictably or unexpectedly.  相似文献   

3.
Responses ofSpartina alterniflora marsh to combinations of feral horse grazing, clipping, simulated trampling, and a late winter burn were studied on Cumberland Island National Seashore, Georgia. Replicated 200-m2 plots were established and sampled bimonthly from July 1983 to November 1984. Clipping and trampling each reduced peak aboveground biomass by 20% in 1983 and 50% (clipping) and 55% (trampling) in 1984. A March burn reduced peak aboveground biomass by 35% in 1984. Trampling and burning earch reduced net aboveground primary production (NAPP) by 35%, but clipping did not reduce NAPP. Standing stocks of live rhizomes were correlated with aboveground biomass and were reduced with experimental treatments. Abundance of the periwinkle snail (Littorina irrorata) was also reduced. Horse grazing had a substantial impact on standing stocks and NAPP ofSpartina, but grazing was not uniform throughout the marsh. Moderately grazed plots had NAPP reduced by 25% compared to ungrazed plots. Heavily grazed plots had extremely low NAPP, and abovegroundSpartina never exceeded 40 g m?2 dry mass compared to 360 g m?2 within exclosures.  相似文献   

4.
Salt marsh systems of the southeastern United States are characterized by extensive stands ofSpartina alterniflora. These marshes may influence the concentrations of material suspended in flooding and receding tidal waters. The ability of aSpartina alterniflora-dominated marsh to influence the concentration of suspended microbial biomass was investigated through the use of a 142-m long flume. The flume extended through stands of tall-, medium-, and short-heightSpartina. Water passing through the tallSpartina lost a considerable portion of microbial biomass. Initial samples from medium-heightSpartina were collected from water that had already passed through the tall grass. These samples contained 20 to 70% less microbial biomass than did water entering the tallSpartina. Calculations of mass transport suggest that the tallSpartina zone of marsh acts as a sink for microbial biomass while the short-heightSpartina tends to export biomass (to the tallSpartina zone). The marsh as a whole acts as a sink for microbial biomass. Transport estimates from 32 individual tide cycles were modeled to obtain an annual estimate of transport. As a consequence of high variability among individual transport estimates, no annual transport estimate could be distingushed from a net-zero transport.  相似文献   

5.
This paper documents horizontal and vertical dispersion patterns of a Texas population of the saltmarsh periwinkle, Littoraria irrorata, over a 15-month period. The study was conducted within a tidal marsh on the Anahuac National Wildlife Refuge in Galveston Bay. Two mark-recapture experiments demonstrated that L. irrorata rarely move more than 2 m from their release point over long periods of time and do not home to individual Spartina plants. Adult L. irrorata forage farther away from the base of Spartina stalks at low tide than do juvenile snails. Remaining near the plant base may decrease both temperature and desiccation stress on juveniles. During warm months, L. irrorata climb grass stalks with tidal inundation and forage on the substratum at low tide. Snails are inactive and aggregate in detrital debris at the base of Spartina clumps during the winter. *** DIRECT SUPPORT *** A01BY058 00016  相似文献   

6.
Much effort has been directed recently at restoring marshes, by the removal of the invasive common reed,Phragmites australis, yet it is not clear how fish and invertebrates have responded either to the invasion ofPhragmites or to marsh restoration. The blue crab,Callinectes sapidus, uses marsh habitats during much of its benthic life. We investigated the response of blue crabs toPhragmites invasion and restoration efforts by comparing crab abundance (catch per unit effort), mean size and size frequency distribution, sex ratio, and molting of crabs in three physically similar areas differing in marsh vegetation;Spartina-dominated,Phragmites-dominated, and a treated area (Phragmites removed and now dominated bySpartina) in one marsh in the upper portion of Delaware Bay. Field sampling occurred monthly (April to November) from 1999 to 2001 using replicate daytime otter trawls in large marsh creeks. Crabs were categorized by carapace width into recruits (<30 mm), juveniles (30–115 mm), and adults (>115 mm). Juveniles dominated the system, representing 69.4% of all crabs. Similar monthly increases in mean size and molting patterns during the growing season (May–August) occurred inSpartina (natural and treated sites) andPhragmites sites suggesting that, subtidal habitats, used for molting, in these areas do not differ. More juveniles in the feeding molt stage (i.e., intermolt) than in other molt stages and more recruits predominantly in the feeding molt stage than adults were inSpartina, suggesting differences in the marsh surfaces used as feeding habitats withSpartina being preferred. Sex ratios of each life history stage were skewed towards males, but this was related to the low salinity of Alloway Creek, rather than marsh surface vegetation. Our results suggest that marsh surface vegetation influences the way blue crabs use marsh surface habitats, thus restoration efforts focusing on changing vegetation type may have a positive influence on blue crabs.  相似文献   

7.
Although top-down control of plant growth has been shown in a variety of marine systems, it is widely thought to be unimportant in salt marshes. Recent caging experiments in Virginia and Georgia have challenged this notion and shown that the dominant marsh grazer (the periwinkle,Littoraria irrorata) not only suppresses plant growth, but can denude marsh substrate at high densities. In these same marshes, our field observations suggest that the black-clawed mud crab,Panopeus herbstii, is an abundant and potentially important top-down determinant of periwinkle density. No studies have quantitatively examinedPanopeus distribution or trophic interactions in marsh systems, and its potential impacts on community structure remained unexplored. We investigated distribution and feeding habits ofPanopeus in eight salt marshes along the Mid-Atlantic seashore (Delaware-North Carolina). We found that mud crabs were abundant in tall (4–82 ind m?2), intermediate (0–15 ind m?2), and short-form (0–5 ind m?2)Spartina alterniflora zones in all marshes and that crab densities were negatively correlated with tidal height and positively correlated with bivalve density. Excavation of crab lairs r?utinely produced shells of plant-grazing snails (up to 36 lair?1) and bivalves. Lab experiments confirmed that mud crabs readily consume these abundant marsh molluscs. To experimentally examine potential community effects of observed predation patterns, we manipulated crab and periwinkle densities in a 1-mo field experiment. Results showed thatPanopeus can suppress gastropod abundance and that predation rates increase with increasing snail density. In turn, crab suppression of snail density reduces grazing intensity on salt marsh cordgrass, suggesting presence of a trophic cascade. These results indicate that this previously under-appreciated consumer is an important and indirect determinant of community structure and contribute to a growing body of evidence challenging the long-standing notion that consumers play a minor role in regulating marsh plant growth.  相似文献   

8.
Phragmites australis has been invading Spartina-alterniflora-dominated salt marshes throughout the mid-Atlantic. Although, Phragmites has high rates of primary production, it is not known whether this species supports lower trophic levels of a marsh food web in the same manner as Spartina. Using several related photochemical and biological assays, we compared patterns of organic matter flow of plant primary production through a key salt marsh metazoan, the ribbed mussel (Geukensia demissa), using a bacterial intermediate. Dissolved organic matter (DOM) was derived from plants collected from a Delaware Bay salt marsh and grown in the laboratory with 14C-CO2. Bacterial utilization of plant-derived DOM measured as carbon mineralization revealed that both species provided bioavailable DOM to native salt marsh bacteria. Total carbon mineralization after 19 days was higher for Spartina treatments (36% 14CO2 ± 3 SE) compared with Phragmites treatments (29% ±2 SE; Wilcoxon–Kruskal–Wallis rank sums test, P < 0.01). Pre-exposing DOM to natural sunlight only enhanced or decreased bioavailability of the DOM to the bacterioplankton during initial measurements (e.g., 7 days or less) but these differences were not significant over the course of the incubations. Mixtures of 14C-labeled bacterioplankton (and possibly organic flocs) from 14C-DOM treatments were cleared by G. demissa at similar rates between Spartina and Phragmites treatments. Moreover, 14C assimilation efficiencies for material ingested by mussels were high for both plant sources ranging from 74% to 90% and not significantly different between plant sources. Sunlight exposure did not affect the nutritional value of the bacterioplankton DOM assemblage for mussels. There are many possible trophic and habitat differences between Spartina- and Phragmites-dominated marshes that could affect G. demissa but the fate of vascular plant dissolved organic carbon in the DOM to bacterioplankton to mussel trophic pathway appears comparable between these marsh types.  相似文献   

9.
Net annual productivity of tall and medium form cordgrass,Spartina alterniflora, was estimated by a new clip sampling method in a sloping foreshore salt marsh at Wallops Island, Virginia. This method measured live standing crops only, to avoid problems of measuring dead biomass inherent in other methods. Losses from live standing crops by shoot mortality and by leaf shedding were estimated from these measurements and added separately to production of live tillers and of live culms. This allowed quantification of various components of production.Spartina tillering in different zones of the marsh produced 62 to 211 g dry weight per m2 per yr. Tiller mortality removed 37 to 106 g per m2 per yr from live standing crops. Culms produced 348 to 1,132 g per m2 before flowering and die-back. Culm mortality removed 28 to 246 g per m2 before flowering. Leaf shedding removed an additional 83 g per m2 in tall formSpartina. Altogether, net annual productivity These estimates are much higher than previous estimates of productivity and standing crops inSpartina marshes nearby.  相似文献   

10.
Private docks are common in estuaries worldwide. Docks in Massachusetts (northeast USA) cumulatively overlie ~ 6 ha of salt marsh. Although regulations are designed to minimize dock impacts to salt marsh vegetation, few data exist to support the efficacy of these policies. To quantify impacts associated with different dock designs, we compared vegetation characteristics and light levels under docks with different heights, widths, orientations, decking types and spacing, pile spacing, and ages relative to adjacent control areas across the Massachusetts coastline (n = 212). We then evaluated proportional changes in stem density and biomass of the dominant vegetation (Spartina alterniflora and Spartina patens) in relation to dock and environmental (marsh zone and nitrogen loading) characteristics. Relative to adjacent, undeveloped habitat, Spartina spp. under docks had ~ 40% stem density, 60% stem biomass, greater stem height and nitrogen content, and a higher proportion of S. alterniflora. Light availability was greater under taller docks and docks set at a north-south orientation but did not differ between decking types. Dock height best predicted vegetation loss, but orientation, pile spacing, decking type, age, and marsh zone also affected marsh production. We combined our proportional biomass and stem elemental composition estimates to calculate a statewide annual loss of ~ 2200 kg dry weight of Spartina biomass (367 kg per ha of dock coverage). Managers can reduce impacts through design modifications that maximize dock height (> 150 cm) and pile spacing while maintaining a north-south orientation, but dock proliferation must also be addressed to limit cumulative impacts.  相似文献   

11.
Salt marsh fucoid algae are a conspicuous component of north temperate marshes, yet comparatively little research has been conducted to examine their ecological effects. We examined the influence of salt marsh fucoids on physical conditions and the biotic community in a manipulative experiment conducted in a southern Maine back-barrier salt marsh. The biomass of salt marsh fucoids was higher than that of aboveground Spartina alterniflora in the zone where we conducted the experiment. Average daytime temperatures at the sediment surface were significantly reduced by the presence of salt marsh fucoids. Density and biomass of standing-dead S. alterniflora was significantly higher when salt marsh fucoids were removed. In contrast, the abundance of various species of epifauna and infauna were significantly enhanced by the presence of salt marsh fucoids. A regional survey indicated that results from the study site may be conservative because the biomass of salt marsh fucoids was lowest among other back-barrier marshes. Salt marsh fucoids are little studied ecosystem engineers whose presence affects the microclimate and biotic community, especially the animals that constitute the basal components of the salt marsh trophic relay.  相似文献   

12.
We explored to what extent morphological variation and habitat modification are correlated for an autogenic ecosystem engineer, which is an organism that modifies its habitat via its own physical structures. The intertidal salt marsh speciesSpartina anglica is well known for its capacity to enhance sediment accretion within its canopy by reducing hydrodynamic energy. Sediment accretion is favorable toSpartina, as it reduces inundation stress, enhances soil drainage, and enhances nutrient availability. Shoot density and clonal architecture showed a large variation that was strongly correlated with the marsh elevation and sediment type. This correlation showed that at the lowest elevations at the muddy site,Spartina tussocks had the highest shoot density, which is known to be favorable for sediment accretion by reduction of hydrodynamic energy. There was also a strong positive correlation between the amount of sediment that accumulated within a tussock and gully formation around thatSpartina tussock. The tussocks at the lowest elevations at the muddy site had the lowest lateral tussock growth. At the highest elevations at the sandy site, stem densities were lower and there was a relatively high rate of clonal expansion and marsh formation. At this location, we also observed tussock mortality due to erosion of several of these openly structured tussocks. Based on the observed correlations, we hypothesize that the morphology ofSpartina represents trade-offs between the capacity to maximize habitat modification through sediment trapping by having a high shoot density versus the capacity to maximize clonal expansion by spreading shoots widely and the capacity of maximal clonal expansion by spreading shoots widely versus the risk of tussock mortality due to insufficient modification of the habitat that makes the tussock vulnerable to erosion. Our results indicated that morphological variation and habitat modification are strongly correlated for the autogenic ecosystem engineerS. anglica.  相似文献   

13.
Top–down and bottom–up effects interact to structure communities, especially in salt marshes, which contain strong gradients in bottom–up drivers such as salinity and nutrients. How omnivorous consumers respond to variation in prey availability and plant quality is poorly understood. We used a mesocosm experiment to examine how salinity, nutrients, an omnivore (the katydid Orchelimum fidicinium) and an herbivore (the planthopper Prokelisia spp.) interacted to structure a simplified salt marsh food web based on the marsh grass Spartina alterniflora. Bottom–up effects were strong, with both salinity and nutrients decreasing leaf C/N and increasing Prokelisia abundance. Top–down effects on plants were also strong, with both the herbivore and the omnivore affecting S. alterniflora traits and growth, especially when nutrients or salt were added. In contrast, top–down control by Orchelimum of Prokelisia was independent of bottom–up conditions. Orchelimum grew best on a diet containing both Spartina and Prokelisia, and in contrast to a sympatric omnivorous crab, did not shift to an animal-based diet when prey were present, suggesting that it is constrained to consume a mixed diet. These results suggest that the trophic effects of omnivores depend on omnivore behavior, dietary constraints, and ability to suppress lower trophic levels, and that omnivorous katydids may play a previously unrecognized role in salt marsh food webs.  相似文献   

14.
Epiphytic microbial biomass (as chlorophylla) was measured monthly in North Inlet Estuary, South Carolina, for 16 months on spatially distinct stem sections (bottom and middle) of dead and livingSpartina alterniflora growth forms (tall, medium, and short) exposed at low tide. The highest biomass was located on the bottom section of tall plants, presumably due to their relatively longer contact with creek water and associated phytoplankton, and their closer proximity to marsh sediments with associated benthic microalgae, both recruitment sources for epiphytes. Dead plants left standing from the previous year’s growth cycle had higher epiphytic biomass than living plants, which occurred mostly in late spring through fall. Epiphytic biomass was highest in the winter (mean of 1.77 mg chla (m2 marsh)−1) and lowest in the summer (mean of 0.34 mg chla (m2 marsh)−1). Because phytoplankton andSpartina production are lowest in the winter, the results emphasize the relative importance of epiphytes to growth of herbivores in this season.  相似文献   

15.
Killifish are ecologically important components of salt marsh ecosystems, but no studies have determined the importance of locally produced versus allochthonous food sources on a scale of less than multiple kilometers. The goal of our study was to examine diet and movement of the killifish,Fundulus heteroclitus, collected from a Maine salt marsh to assess the importance of locally produced versus allochthonous food sources on a scale of several hundred meters. We compared the gut contents and stable isotope signatures ofF. heteroclitus from four regions along the central river of a Maine salt marsh to the distinct food sources and isotopic signatures of the region of the marsh in which they were caught.F. heteroclitus were relying on locally produced food sources even on the scale of several hundred meters. They fed daily in a small area less than 6 ha and maintained relatively strong site fidelities over the course of several months. Phytoplankton and salt marsh detritus both contributed to the high production ofF. heteroclitus; terrestrial plant detritus was not an important component of their diet. The diet and feeding patterns ofF. heteroclitus from this small Maine salt marsh were similar to the patterns found in much larger salt marshes, suggesting that locally produced organic matter is essential to the production of these ecologically important fish.  相似文献   

16.
The invasion ofPhragmites australis into tidal marshes formerly dominated bySpartina alterniflora has resulted in considerable interest in the consequences of this invasion for the ecological functions of marsh habitat. We examined the provision of trophic support for a resident marsh fish,Fundulus heteroclitus, in marshes dominated byP. australis, byS. alterniflora, and in restored marshes, using multiple stable isotope analysis. We first evaluated our ability to distinguish among potential primary producers using the multiple stable isotope approach. Within a tidal creek system we found significant marsh and elevation effects on microalgal isotope values, and sufficient variability and overlap in primary producer isotope values to create some difficulty in identifying unique end members. The food webs supportingF. heteroclitus production were examined using dual isotope plots. At both sites, the δ13C values ofF. heteroclitus were clustered over values for benthic microalgae (BMI) and approximately midway between δ13C values ofSpartina andPhragmites. Based on comparisons of fish and primary producer δ13C, δ15N, and δ34S values, and consideration ofF. heteroclitus feeding habits, we conclude that BMI were a significant component of the food web supportingF. heteroclitus in these brackish marshes, especially recently-hatched fish occupying pools on the marsh surface. A 2‰ difference in δ13C betweenFundulus occupying nearly adjacentSpartina andPhragmites marshes may be indicative of relatively less reliance on BMI and greater reliance onPhragmites production inPhragmites-dominated marshes, a conclusion consistent with the reduced BMI biomass found inPhragmites marshes. The mean δ13C value ofF. heteroclitus from restored marshes was intermediate between values of fish from naturally occurringSpartina marshes and areas invaded byPhragmites. We also examined the isotopic evidence for ontogenetic changes in the trophic position of larval and juvenileF. heteroclitus. We found significant positive relationships betweenF. heteroclitus δ15N values and total length, reflective of an increase in trophic position as fish grow.F. heteroclitus δ15N values indicate that these fish are feeding approximately two trophic levels above primary producers.  相似文献   

17.
Sediment microphytobenthos, such as diatoms and photosynthetic bacteria, are functionally important components of food webs and are key mediators of nutrient dynamics in marine wetlands. The medium to long-term recovery of benthic microproducers in restored habitats designed to improve degraded coastal wetland sites is largely unknown. Using taxon-specific photopigments, we describe the composition of microphytobenthic communities in a large restoration site in southern California and differences in the temporal recovery of biomass (chlorophylla), composition, and taxonomic diversity between vegetatedSpartina foliosa salt marsh and unvegetated mudflat. Visually distinct, spatially discreet, microphytobenthic patches appeared after no more than 7 mo within the restoration site and were distinguished by significant differences in biomass, taxonomic diversity, and the relative abundance of cyanobacteria versus diatoms. Sediment chlorophylla concentrations within the restored site were similar to concentrations in nearby natural habitat 0.2–2.2 yr following marsh creation, suggesting rapid colonization by microproducers. RestoredSpartina marsh very rapidly (between 0.2 and 1.2 yr) acquired microphytobenthic communities of similar composition and diversity to those in naturalSpartina habitat, but restored mudflats took at least 1.6 to 2.2 yr to resemble natural mudflats. These results suggest relatively rapid recovery of microphytobenthic communities at the level of major taxonomic groups. Sediment features, such as pore water salinity andSpartina density, explained little variation in microphytobenthic taxonomic composition. The data imply that provision of structural heterogeneity in wetland construction (such as pools and vascular plants) might speed development of microproducer communities, but no direct seeding of sediment microfloras may be necessary.  相似文献   

18.
Flow hindrance by salt‐marsh vegetation is manifested in the structure of the tidal current; it has a significant impact on sediment transport and it has been related to increased sediment accretion. The flow characteristics in three different vegetation types (Spartina maritima, Sp. anglica and Salicornia sp./Suaeda maritima) were measured on three salt‐marshes in Portugal and England. These in situ measurements differ from laboratory flume experiments with ‘clean’ vegetation by the complexity of natural canopies. Skimming flow develops above the Spartina canopy when the vegetation is fully submerged. In this situation, a low turbulence zone with nearly constant velocity in the denser canopy is separated from the skimming flow above by an interface characterized by high Reynolds stresses. In the low turbulence zone, a positive relationship exists between turbulence intensity and shoot density, which is due to wake turbulence generated locally in the canopy. The rate of particle settling should be increased in that zone. The lower limit of skimming flow is best predicted by the height within the canopy that includes 85% of the biomass. For emergent Spartina canopies and the short Salicornia/Suaeda marsh, the maximal velocity‐gradient is shifted upwards compared to a standard boundary layer over bare sediment and the turbulence is attenuated near the bed, but to a lesser extent than for fully submerged Spartina canopies. A turbulence reduction near the bed was observed in all measured profiles; that should enhance sediment deposition and protects the bed against subsequent erosion.  相似文献   

19.
Phragmites expansion rates (linear at 1–3% yr−1) and impacts of this expansion on high marsh macroinvertebrates, aboveground production, and litter decomposition fromPhragmites and other marsh graminoids were studied along a polyhaline to oligohaline gradient. These parameters, and fish use of creeks and high marsh, were also studied inPhragmites control sites (herbicide, mowing, and combined herbicide/mow treatments).Phragmites clones established without obvious site preferences on oligohaline marshes, expanding radially. At higher salinities,Phragmites preferentially colonized creekbank levees and disturbed upland borders, then expanded into the central marsh. Hydroperiods, but not salinities or water table, distinguishedPhragmites-dominated transects. Pooled samples ofPhragmites leaves, stems, and flowers decompose more slowly than other marsh angiosperms;Phragmites leaves alone decompose as or more rapidly than those of cattail. AbovegroundPhragmites production was 1,300 to 2,400 g m−2 (about 23% of this as leaves), versus 600–800 g m−2 for polyhaline to mesohaline meadow and 1,300 g m−2 for oligohaline cattail-sedge marsh. Macroinvertebrates appear largely unaffected byPhragmites expansion or control efforts; distribution and densities are unrelated to elevation or hydroperiod, but densities are positively related to litter cover. Dominant fish captured leaving flooded marsh wereFundulus heteroclitus andAnguilla rostrata; both preyed heavily on marsh macroinvertebrates.A. rostrata andMorone americana tended to be more common inPhragmites, but otherwise there were no major differences in use patterns betweenPhragmites and brackish meadow vegetation. SAV and macroalgal cover were markedly lower within aPhragmites-dominated creek versus one withSpartina-dominated banks. The same fish species assemblage was trapped in both plus a third within the herbicide/mow treatment. Fish biomass was greatest from theSpartina creek and lowest from thePhragmites creek, reflecting abundances ofF. heteroclitus. Mowing depressedPhragmites aboveground production and increased stem density, but was ineffective for control.Phragmites, Spartina patens, andJuncus gerardii frequencies after herbicide-only treatment were 0.53-0.21; total live cover was <8% with a heavy litter and dense standing dead stems. After two growing seasonsAgrostis stolonifera/S. patens/J. gerardii brackish meadow characterized most of the herbicide/mow treatment area;Phragmites frequency here was 0.53, contributing 3% cover. Both values more than doubled after four years; a single treatment is ineffective for long-termPhragmites control.  相似文献   

20.
The stable isotope signatures of marine transient and resident nekton were used to investigate trophic linkages between primary producers, marsh macrophytes, phytoplankton, benthic microalgae, and consumers within the Delaware Bay. A whole estuary approach was used to compare the flux of nutrients from primary producers to juvenile weakfish (Cynoscion regalis), bay anchovy (Anchoa mitchilli), and white perch (Morone americana) in open waters of the lower and upper Bay and adjacent salt marshes dominated by eitherSpartina alterniflora orPhragmites australis. Our results suggest that trophic linkages vary significantly along the salinity gradient, reflecting the transition fromSpartina toPhragmites-dominated marshes, and secondarily, in a marsh to open water (offshore) direction at a given salinity. Superimposed on this pattern was a gradient in the proximate use of organic matter that depended on life history traits of each species ranging from pelagic to benthic in the order bay anchovy > weakfish > white perch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号