首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On recasting analyses of garnet into end-member molecules   总被引:5,自引:0,他引:5  
Most published analyses of garnet deviate from structural ideality. Consequently, compositions expressed as molecular percentages of end-member molecules may differ if different re-calculation sequences have been used. A suitable standard calculation procedure is presented, and is demonstrated to be satisfactory by its application to 69 published analyses of garnets both common and rare.It is seldom necessary to use molecules other than pyrope, almandine, spessartine, grossular, andradite, uvarovite and hydrogrossular, and most analyses can be recast into four or less molecules which exceed 3% of the garnet. This means that most analyses can be visually displayed in a composition tetrahedron.It is suggested, that the percentage number of cations which can be allocated to garnet molecules is a figure useful for assessment of analytical quality. More than 95% of the cations can be so allocated in the majority of the analyses considered.Full details of the proposed scheme are appended together with a worked example which demonstrates the abbreviated procedure which applies to most common garnets. A compilation is given of the common physical properties which have been measured for synthetic end-member garnets of the types used in the calculation scheme.S.A. UMP Publication No. 5.  相似文献   

2.
Raman spectra of silicate garnets   总被引:2,自引:1,他引:1  
The single-crystal polarized Raman spectra of four natural silicate garnets with compositions close to end-members almandine, grossular, andradite, and uvarovite, and two synthetic end-members spessartine and pyrope, were measured, along with the powder spectra of synthetic pyrope-grossular and almandine-spessartine solid solutions. Mode assignments were made based on a comparison of the different end-member garnet spectra and, in the case of pyrope, based on measurements made on additional crystals synthesized with 26Mg. A general order of mode frequencies, i.e. R(SiO4)>T(metal cation)>T(SiO4), is observed, which should also hold for most orthosilicates. The main factors controlling the changes in mode frequencies as a function of composition are intracrystalline pressure (i.e. oxygen-oxygen repulsion) for the internal SiO4-vibrational modes and kinematic coupling of vibrations for the external modes. Low frequency vibrations of the X-site cations reflect their weak bonding and dynamic disorder in the large dodecahedral site, especially in the case of pyrope. Two mode behavior is observed for X-site cation vibrations along the pyrope-grossular binary, but not along the almandine-spessartine join. Received: 3 December 1996 / Revised, accepted: 13 April 1997  相似文献   

3.
Three garnet-biotite pairs and eleven garnet-cordierite-biotite triplets from the Steinach aureole (Oberpfalz, North-East Bavaria) were analyzed using an electron probe microanalyzer.The regional metamorphic muscovite-biotite schists contain garnets strongly zoned with Mn-Ca-rich centers and Fe-rich edges, the average composition being almandine 67 — spessartine 4 — pyrope 4 — grossular (+andradite) 25.The first contact garnet that is formed in mica schists of the outermost part of the aureole is small, virtually unzoned, and has an average composition of almandine 52 — spessartine 37 — pyrope 8 — grossular (+andradite) 3. With increasing metamorphic grade, there is a consistent trend to form garnets richer in Fe ending up with a composition almandine 84.5 — spessartine 5.5 — pyrope 7.5 — grossular (+andradite) 2.5. This trend is accompanied by a general increase in grain size and modal amount of garnet. Associated cordierites and biotites also become richer in Fe with increasing grade. While the garnets in the highest grade sillimanite hornfelses are poorly zoned, the transitional andalusite-sillimanite hornfelses contain garnets with distinct but variable zonation profiles.These facts can possibly be explained by the time-temperature relationships in the thermal aureole. In a phase diagram such as the Al-Fe-Mg-Mn tetrahedron, the limiting mineral compositions of a four-phase volume or a three-phase triangle are fixed by T and P (the latter remaining effectively constant within a thermal aureole). Thus, in garnet-cordierite-biotite assemblages, garnet zonation should be controlled by temperature variation rather than by a non-equilibrium depletion process. Taking into account the experimental data of Dahl (1968), a zoned garnet from a transitional andalusite-sillimanite hornfels would reflect a temperature increase of about 40° C during its growth. A hypothetical P-X diagram is proposed to show semi-quantitatively the compositional variation of garnet-cordierite pairs with varying pressures (T constant).  相似文献   

4.
本文对中国十四个接触交代钙夕卡岩矿床和钙-镁夕卡岩矿床中的三百多个样品的石榴子石和辉石成分进行了电子探针分析。不同矿床类型的石榴子石和辉石成分代表着钙夕卡岩矿床的十个矿种(Fe、Fe-Cu、Pb-Zn、W、Sn、Sn-Mo-Bi-W、、W-Bi-Cu-Mo、Cu-Zn、Cu-Sn、W-Zn-Cu)和钙-镁夕卡岩矿床的三个矿种(Fe-Cu、Mo、Pb-Zn)。石榴子石和辉石成分变化范围大,大多数石榴子石是含锰铝榴石+铁铝榴石+镁铝榴石小于15%(摩尔百分数)的钙铝榴石-钙铁榴石固溶体;大多数辉石是含小于5%的锰钙辉石的透辉石-钙铁辉石固溶体。有些Pb-Zn钙-镁夕卡岩矿床中的辉石显示出Mn含量有所增加。只有Sn和W钙夕卡岩矿床及Pb-Zn钙-镁夕卡岩矿床含(Sps+Alm+Pyr)总量大于15%的石榴子石。石榴子石和辉石成分与夕卡岩矿床金属矿化类型之间有某些联系。  相似文献   

5.
Single-crystal Raman spectra of synthetic end-member uvarovite (Ca3Cr2Si3O12) and of a binary solution (59% uvarovite, 41% andradite) have been measured using single crystal techniques. For each of these garnets, 22 and 21 of the 25 Raman modes were located, respectively. The spectra for uvarovite garnets closely resemble those of the other calcic garnets, grossular, and andradite. The modes for uvarovites do not fit into the same trends as established by the other five anhydrous end-member garnets: the high energy “internal” Si–O modes do not depend on lattice constant in uvarovite. They exceed frequencies for both andradite and grossular. This is likely due to the large crystal field stabilization energy of trivalent chromium. The low energy and midrange modes are at similar frequencies to the other calcic garnets.  相似文献   

6.
The compression of synthetic pyrope Mg3Al2 (SiO4)3, almandine Fe3Al2(SiO4)3, spessartine Mn3Al2 (SiO4)3 grossular Ca3Al2(SiO4)3 and andradite Ca3Fe2 (SiO4)3 was studied by loading the crystals together in a diamond anvil cell. The unit-cell parameters were determined as a function of pressure by X-ray diffraction up to 15 GPa using neon as a pressure transmitting medium. The unit-cell parameters of pyrope and almandine were measured up to 33 and 21 GPa, respectively, using helium as a pressure medium. The bulk moduli, K T 0, and their first pressure derivatives, K T 0 , were simultaneously determined for all five garnets by fitting the volume data to a third order Birch-Murnaghan equation of state. Both parameters can be further constrained through a comparison of volume compressions between pairs of garnets, giving for K T 0 and K T 0 171(2) GPa and 4.4(2) for pyrope, 185(3) GPa and 4.2(3) for almandine, 189(1) GPa and 4.2 for spessartine, 175(1) GPa and 4.4 for grossular and 157(1) GPa and 5.1 for andradite, where the K T 0 are fixed in the case of spessartine, grossular and andradite. Direct comparisons of the unit-cell volumes determined at high pressures between pairs of garnets reveal anomalous compression behavior for Mg2+ in the 8-fold coordinated triangular dodecahedron in pyrope. This agrees with previous studies concerning the compression behaviors of Mg2+ in 6-fold coordinated polyhedra at high pressures. The results show that simple bulk modulus–volume systematics are not obeyed by garnets. Received: 29 July 1998 / Revised, accepted: 7 April 1999  相似文献   

7.
The volumes of the pure synthetic pyrope, spessartine and uvarovite garnets have been determined by powder x-ray diffraction as a function of pressure up to 25 GPa in a diamond anvil cell at room temperature. Experiments in different pressure transmitting media have been systematically carried out to determine the effects of anisotropic stress components, which were found to be substantial and have been taken into account. Assuming that the bulk moduli determined from ultrasonic experiments have the lowest uncertainties, the following values for the pressure derivatives of the bulk modulus of uvarovite, spessartine and pyrope were respectively obtained: 4.7±0.7, 7?7.3±1 and 3.4±1. The value for pyrope can be attributed to the small size of the Mg2+ cation in its dodecahedral site.  相似文献   

8.
This is the third in a series of papers on glaucophane schistsfrom the Franciscan Formation near Cazadero, California. Previouspapers describe three distinct types of glaucophane-bearingFranciscan metamorphic rocks near Cazadero. The purpose of this study is to investigate the garnets presentin metamorphic types III (bedrock schists) and IV (tectonicblocks) as defined by Coleman & Lee (1963). Twenty-fourgarnet analyses are presented. Sixteen of these are from (aragonite-bearing)type III glaucophane schists, and eight are from type IV glaucophaneschists. Type IV rocks include California eclogites. Type III rocks include metabasalt, metachert, metashale, meta-ironstone,and metacarbonate that were formed under high pressure and relativelylow temperature. These rocks contain garnets that display awide range of composition, but the dominant molecules representedare consistently almandine, spessartine, and grossular. Type IV rocks are mainly metabasalts that were probably formedunder higher temperatures and pressures than type III rocks.There is a distinct difference between garnets from type IIIrocks and those from type IV (including eclogites); the lattercontainless spessartine and more pyrope, and the dominant moleculesare almandine and grossular. The four analyses of garnets fromCalifornia eclogites have an average pyrope content of aboutten molecular per cent, and they extend the range of compositionreported for eclogite garnets. Quantitative spectrographic determinations of minor elementsare listed for each of the garnets described. The values determinedfor some of the minor elements have a wide range and a capriciousdistribution over a few feet of outcrop area. As a group, both the garnets from type III rocks and those fromtype IV are pyralspites with large contents (as much as 35 molecularper cent) of ugrandite. This unusual admixture of the pyralspiteand ugrandite garnet series may have resulted in part from theconditions (high pressures and relatively low temperatures)under which the enclosing rocks were recrystallized.  相似文献   

9.
《Chemical Geology》2006,225(3-4):336-346
We present results of high temperature, high pressure atomistic simulations aimed at determining the thermodynamic mixing properties of key binary garnet solid solutions. Computations cover the pressure range 0–15 GPa and the temperature range 0–2000 K. Through a combination of Monte-Carlo and lattice-dynamics calculations, we derive thermodynamic mixing properties for garnets with compositions along the pyrope–almandine and pyrope–grossular joins, and compare these with existing experimental data. Across the pressure–temperature range considered, simulations show virtually ideal mixing behaviour in garnet on the pyrope–almandine join, while large excess volumes and enthalpies of mixing are predicted for garnet along the pyrope–grossular join. Excess heat capacities and entropies are also examined. These simulations shed additional light on the link between the behaviour at the atomic level and macroscopic thermodynamic properties: we illustrate the importance of certain atomistic Ca–Mg contacts in the pyrope–grossular solid solutions. For simulation techniques of this type to become sufficiently accurate for direct use in geological applications such as geothermobarometry, there is an urgent need for improved experimental determinations of several key quantities, such as the enthalpies of mixing along both joins.  相似文献   

10.
A newly identified skarn occurrence is described from the Neoproterozoic rocks of the SW Arabian shield. It is exposed to the SE, E and NE of the Al-Madhiq town. The skarn attributes correspond to those typical of the calcic skarns that host W-deposits. It is characterized as an exoskarn of the proximal type, related to a granitoid contact close to an impure quartzite bed within the regional metamorphic rocks of mixed sedimentary and volcanic derivation. The skarn is localized along a shear zone parallel to the regional faults and other major shear zones. Samples from the studied area contain characteristic skarn minerals that include both the prograde (brownish red grossular, ferrosalite, aluminian titanite-grothite, albite-oligoclase, scapolite), and retrograde (epidote, quartz, hornblende, calcite) assemblages. The pyroxenes are ferrosalites, Mn-bearing, and more like those from “oxidized” skarns; although garnets indicate it to be a “reduced” type skarn. Epidote mimicks that from typical skarns, as it bears a pistacite content of 15.9–20.7%. Grossular composition reflects a largely reduced genetic environment; as it is in solid solution with 6.5–21.6% andradite, 0–0.15% uvarovite, 0–0.47% pyrope, 4.33–18.75% almandine, and 0.4–8.58% spessartine molecules. Titanite composition varies from aluminian titanite to grothite, that may be analogous to the newly described Al-rich titanite from the low-pressure calc-silicate rocks.  相似文献   

11.
Garnets in epidote-bearing gneisses and mica schists from the western Hohe Tauern, Austria, have been analyzed by optical, x-ray powder diffraction, wet chemical and electron microprobe methods.The garnets frequently show zonal structure and their core compositions are in the range 45–52% grossular, 31–44% almandine, 3–13% spessartine, 0–7% andradite and 0–2% pyrop. The refractive indices n=1.780–1.786 and the lattice parameter a=11.68–11.73 Å likewise are intermediate between almandine and grossular. It is suggested that there is complete solid solution between almandine and grossular, at least under the conditions of greenschist to low-temperature amphibolite facies of regional metamorphism of the Tauern area.

Prof. Dr. F. Karl starb am 15. 8.1972.

Dank. Die Mikrosonde wurde von der Stiftung Volkswagenwerk bereitgestellt, und die Probenahme wurde von der Deutschen Forschungsgemeinschaft unterstützt. Wir danken Herrn Dr. P. K. Hörmann (Kiel) für die naßchemische Granatanalyse und Herrn Dr. K. Abraham (Bochum) für die Bereitstellung seines Korrekturprogrammes für Mikrosondenanalysen.  相似文献   

12.
The i.r. spectrum of 13 analyzed garnets of the pyralspite group has been investigated in the 1400-200 cm–1 region, and correlations have been found between the spectrum and the chemical composition. The results include: typical features in the spectrum of the end-members pyrope, almandine and spessartine; relationships between the spectrum and the pyrope percentage in pyrope-almandine solid solutions; and the influence of the CaO (grossularite) amount on the shape of the low-frequency absorption bands. These data allow a semiquantitative determination of the pyrope percentage in pyrope-almandine solid solutions.  相似文献   

13.
王松  李双应  杨栋栋  程成 《地质学报》2014,88(5):918-931
库车坳陷三叠系发育良好,出露齐全,主要由陆相碎屑岩组成。本文运用电子探针微区成分分析方法,对库车坳陷北部三叠系砂岩中石榴石、电气石、铬尖晶石进行了矿物化学成分分析。结果显示,碎屑石榴石主要富含铁铝榴石,其次为镁铝榴石、锰铝榴石,钙铝榴石含量较低,他们主要来自于低级-高级变质岩和花岗岩;电气石主要来自于变质沉积岩和花岗岩;铬尖晶石则主要源自岛弧玄武岩、洋岛玄武岩和与俯冲相关的橄榄岩。综合石榴石与电气石研究结果表明,上三叠统碎屑物质更多的来自于高级变质岩和花岗岩,而下三叠统碎屑物质主要源自低级变质岩和花岗岩。通过对比西天山榴辉岩、片麻岩中石榴石成分,本文所研究的高镁石榴石以低钙铝榴石含量与榴辉岩中石榴石相区别,而与片麻岩中石榴石成分相似。西天山榴辉岩在三叠纪时期可能尚未剥露至地表,但片麻岩已有相当范围的出露。上三叠统的碎屑铬尖晶石可能主要来自于中天山及南天山的岛弧岩浆岩及蛇绿岩,部分源自洋岛玄武岩,为南天山为多岛海造山提供了沉积学证据。  相似文献   

14.
赵劲松 《矿物学报》1989,9(2):154-164
用电子探针数据研究了该矿床中主要夕卡岩矿物特点及其变化规律。采用理想结晶溶液固溶体位置混合模式,计算了石榴子石和辉石矿物对中钙铁榴石和钙铁辉石的摩尔分数。在计算纯固相和流体相参加的反应抵达平衡时的边界方程中,加上理想结晶固溶体中端元组分摩尔分数的修正项后,我们便可以计算出有纯固相、流体相和理想结晶溶液固溶体参加反应的在给定T、P条件下的lgfo_2值。计算结果表明:无变度点4周围的Hed+And+Wol组合对本矿区具有重要的地质地球化学意义。  相似文献   

15.
The compositions of more than 300 granets and pyroxenes from 14 contact-metasomatic calcic skarn deposits and calcic-magnesia skarn skarn deposits in China have been examined using electron microprobe technique. The compositions of garnets and pyroxenes from a wide variety of ore types represent ten major classes of calcic skarn deposits (Fe, Fe-Cu, Pb-Zn,W, Sn, Sn-Mo-Bi-W, W-Bi-Cu-Mo, Cu-Zn and W-Zn-Cu) and three major classes of calcic-magnesia skarn deposits (Fe-Cu, Mo, Pb-Zn). Garnets and pyroxenes show a wide range of variation in composition, but the majority of garnets are grossular-andradite solid solutions containing less than 15 mol% (spessartine + almandine + pyrope), whereas most pyroxenes are diopside-hedenbergite solid solutions containing less than 5 mol% johannesenile. Some pyroxenes from a Pb-Zn calcic-magnesia skarn deposit display an increase in Mn content. Only Sn-W calcic skarn deposits and Pb-Zn calcic-magnesia skarn deposits contain garnets with more than 15 mol% (spessartine + almandine + pyrope). Some relationships have been established between the compositions of garnets and pyroxenes and the metallization types of economically important metals in skarn deposits.  相似文献   

16.
Origin of garnet phenocrysts in calc-alkaline rocks   总被引:2,自引:0,他引:2  
A large number of garnet phenocrysts from Palaeozoic rhyodacites and granodiorite porphyrites from Central and Northeastern Victoria have been analyzed using the electron microprobe. These garnets, from an area of several thousand square miles, are very uniform in composition (dominantly almandine, with subordinate pyrope and minor grossular and spessartine). They show minor zoning with a very thin outer rim slightly richer in almandine and spessartine than the remainder of the phenocryst. They are surrounded by a complex intergrowth of cordierite and hypersthene forming a reaction rim. Resorbed quartz phenocrysts are typically associated with the garnet phenocrysts. The uniform composition, the conspicuous size and the subhedral-euhedral form of the garnet phenocrysts indicate that they crystallized directly from the acid calc-alkaline magma at an early stage of its crystallization. High pressure experimental work on a natural garnet-bearing rhyodacite glass demonstrates that almandine-rich garnet and quartz are near-liquidus phases at 18 and 27 kb , but garnet does not appear until well below the liquidus at 9 kb. A comparison of the composition of the experimentally crystallized garnets with the natural garnets suggests that these acid calc-alkaline magmas began to crystallize at pressures between 9 and 18 kb, i.e. at depths corresponding to the lower crust or upper mantle.  相似文献   

17.
Metamorphic and magmatic garnets are known to fractionate REE, with generally HREE-enriched patterns, and high Lu/Hf and Sm/Nd ratios, making them very useful as geochemical tracers and in geochronological studies. However, these garnets are typically Al-rich (pyrope, almandine, spessartine, and grossular) and little is known about garnets with a more andraditic (Fe3+) composition, as frequently found in skarn systems. This paper presents LA-ICP-MS data for garnets from the Crown Jewel Au-skarn deposit (USA), discusses the factors controlling incorporation of REE into garnets, and strengthens the potential of garnet REE geochemistry as a tool to help understand the evolution of metasomatic fluids.Garnets from the Crown Jewel deposit range from Adr30Grs70 to almost pure andradite (Adr>99). Fe-rich garnets (Adr>90) are isotropic, whereas Al-rich garnets deviate from cubic symmetry and are anisotropic, often showing sectorial dodecahedral twinning. All garnets are extremely LILE-depleted, Ta, Hf, and Th and reveal a positive correlation of ΣREE3+ with Al content. The Al-rich garnets are relatively enriched in Y, Zr, and Sc and show “typical” HREE-enriched and LREE-depleted patterns with small Eu anomalies. Fe-rich garnets (Adr>90) have much lower ΣREE and exhibit LREE-enriched and HREE-depleted patterns, with a strong positive Eu anomaly. Incorporation of REE into garnet is in part controlled by its crystal chemistry, with REE3+ following a coupled, YAG-type substitution mechanism , whereas Eu2+ substitutes for X2+ cations. Thermodynamic data (e.g., Hmixing) in grossular-andradite mixtures suggest preferential incorporation of HREE in grossular and LREE in more andraditic compositions.Variations in textural and optical features and in garnet geochemistry are largely controlled by external factors, such as fluid composition, W/R ratios, mineral growth kinetics, and metasomatism dynamics, suggesting an overall system that shifts dynamically between internally and externally buffered fluid chemistry driven by fracturing. Al-rich garnets formed by diffusive metasomatism, at low W/R ratios, from host-rock buffered metasomatic fluids. Fe-rich garnets grow rapidly by advective metasomatism, at higher W/R ratios, from magmatic-derived fluids, consistent with an increase in porosity by fracturing.  相似文献   

18.
A suite of 11 gem-quality, optically completely clear garnet crystals with a broad variety of compositions in the space of the end members pyrope–almandine–spessartine–grossular–andradite–goldmanite were analyzed for trace amounts of “water” by nuclear reaction analysis, NRA, based on the reaction 1H(15N, αγ)12C, and by single-crystal absorption spectroscopy in the νOH vibrational range using microscope-FTIR-spectroscopic methods. The aim was to establish a calibration of the highly sensitive IR method with high areal resolution for “water” determination in garnets, by studying garnets of a wide compositional range, and to check for compositional dependencies of the integral molar absorptivities of the “water” component, ?int[1molH2O?1cm?2], in the nominally “water”-free garnets. The results of NRA show a broad variation of water contents in the range (14 ± 3) to (950 ± 80) wt ppmH2O, the values being low and very high for the garnet solid solutions (PyrAlm)SS and close-to-end-member GrossSS, respectively. There were no indications of inhomogeneities in the OH distribution, except possibly for one of the garnets (grossular, variety hessonite, from Tanzania). The quantitative evaluation of the complex νOH spectra, which showed similar shape only for members of the (PyrAlm)SS, yielded integral absorption coefficients, αint (cm?2), which allowed the calculation of integral molar absorptivities, ?int, using the “water” values of NRA. The ?int values obtained varied in a wide range but with no obvious correlation with the composition of the garnet except for the extremely high values, in the 104 range, of the two specimen with compositions close to end-member grossular. In all other garnets, ?int was in the 103 range with an average of ?int=3630±1580[1molH2O?1cm?2]. Therefore, this value is proposed for the use in routine “water” determinations of compositionally different garnets by the micro-IR method, except for garnets near to end-member grossular.  相似文献   

19.
The chemistry of garnet can provide clues to the formation of skarn deposits. The chemical analyses of garnets from the Astamal Fe-LREE distal skarn deposit were completed using an electron probe micro-analyzer. The three types of garnet were identified in the Astamal skarn are: (I) euhedral coarse-grained isotropic garnets (10–30 mm across), which are strongly altered to epidote, calcite and quartz in their rim and core, with intense pervasive retrograde alteration and little variation in the overall composition (Adr94.3–84.4 Grs8.5–2.7 Alm1.9–0.2) (garnet I); (II) anhedral to subhedral brecciated isotropic garnets (5–10 mm across) with minor alteration, a narrow compositional range along the growth lines (Adr82–65.4 Grs21.9–11.7 Alm11.1–2.4) and relatively high Cu (up to 1997 ppm) and Ni (up to 1283 ppm) (garnet II); and (III) subhedral coarser grained garnets (> 30 mm across) with moderate alteration, weak diffusion and irregular zoning of discrete grossular-almandine-rich domains (Adr84.2–48.8 Grs32.4–7.6 Alm19.9–3.5) (garnet III). In the third type, the almandine content increases with increasing grossular/andradite ratio and increasing substitutions of Al for Fe3 +.Almost all three garnet types have been replaced by fine-grained, dark-brown allanite that is typically disseminated and has the same relief as andradite. The Cu content increases while Ni content decreases slightly towards the rim of garnet II and garnet III. Copper in garnet II is positively correlated with increasing almandine content and decreasing andradite content, indicating that the almandine structure, containing relatively more Fe2 +, is more suitable than andradite and grossular to host divalent cations such as Cu2 +. Nickel in garnet II is positively correlated with increasing andradite content, total Fe, and decreasing almandine content. This is because Ni2 + substitutes for Fe3 + in the Y (octahedral) position. There are unusual discrete grossular-almandine rich domains within andraditic garnet III, indicating the low diffusivity of Ca compared to Fe at high temperatures.  相似文献   

20.
The Raman spectra of the natural end members of the garnet-group minerals,which include pyrope, almandine and spessarite of Fe-Al garnet series and grossularite ,andradite and uvarovite of Ca-Fe garnet series, have been strdied.Measured Raman spectra of these minerals are reasonably and qualitatively assigned to the internal modes, translational and rotatory modes of SiO4 tetrahedra, as well as the translational motion of bivalent cations in the X site.The stretch and rotatory A1g modes for the Fe-Al garnet series show obvious Raman shifts as compared with those for the Ca-Fe garnet series ,owing to the cations residing in the Xsite connected with SiO4 tetrahedra by sharing the two edges.The Raman shifts of all members within either of the series are attributed mainly to the properties of cations in the X site for the Fe-Al garnet series andin the Y site for the Ca-Fe garnet series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号