首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study, theoretically and with N-body simulations, the formation of spiral patterns in retrograde galaxy encounters. A one-armed leading spiral dominates in a disk if the tidal perturbation from the companion is large and the disk is surrounded by a massive halo. Otherwise, a trailing pattern forms. The leading arm is made up of particles in slightly elongated orbits whose turning points outline the arm. The arm rotates opposite to the disk rotation. We have found one spiral galaxy, NGC4622, with a leading arm near its nucleus. From the literature, we find that very few spirals, if any, in a sample of strongly perturbed galaxies have leading arms. A possible reason for this is that few spiral galaxies have a halo with larger mass than the disk within the visible disk.  相似文献   

2.
The non‐linear dynamics of bending instability and vertical structure of a galactic stellar disc embedded into a spherical halo are studied with N‐body numerical modelling. Development of the bending instability in stellar galactic disc is considered as the main factor that increases the disc thickness. Correlation between the disc vertical scale height and the halo‐to‐disc mass ratio is predicted from the simulations. The method of assessment of the spherical‐to‐disc mass ratio for edge‐on spiral galaxies with a small bulge is considered. Modelling of eight edge‐on galaxies: NGC 891, NGC 4738, NGC 5170, UGC 6080, UGC 7321, UGC 8286, UGC 9422 and UGC 9556 is performed. Parameters of stellar discs, dark haloes and bulges are estimated. The lower limit of the dark‐to‐luminous mass ratio in our galaxies is of the order of one within the limits of their stellar discs. The dark haloes dominate by mass in the galaxies with very thin stellar discs (NGC 5170, UGC 7321 and UGC 8286) (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We have studied the stability of finite gaseous discs, against large-scale perturbations, under the influence of spherical, massive haloes. A surface-density distribution consistent with the observed spiral-tracer profiles in disc galaxies is considered for the disc. We find that growing eigenmodes with both ‘trailing’ and ‘leading’ spirals exist in ‘cold’ discs for a wide range of values of the halo mass and its radius. The amplification rates of the unstable modes reduce as the ratio of the mass of the halo to the mass of the disc is increased. A uniform halo is not very effective towards stabilizing the disc against these modes. The results from the present study are consideredvis-a-vis previous studies on the global modes of self-gravitating discs.  相似文献   

4.
Neutral hydrogen line observations of the extended rotation curves of spiral galaxies imply that there exist significant discrepancies between the luminous and dynamical mass beyond the bright optical discs. This means either that galaxies contain significant quantities of non-luminous matter (matter with a mass-to-light ratio very much higher than that of ordinary stars), or that the law of gravity on the scale of galaxies is not the usual Newtonian inverse square law. Attempts to account for the observed discrepancy in the context of these two explanations are reviewed here with emphasis given to the second and less conventional alternative. It is argued that the standard picture of spiral galaxy halo and disc formation in the context of cold dark matter cannot account for the observed systematics of the discrepancy — notably rotation curves which are seen to be flat and featureless from the bright inner regions where the visible matter dominates the dynamics (in some cases overwhelmingly) to the outer regions where the dark halo dominates. It is demonstrated that in those galaxies with well-observed rotation curves, the discrepancy apparently appears below a critical acceleration. Any dark matter explanation of the discrepancy must account for this fact. Moreover, this would also eliminate empirically motivated modifications of Newton's law in which the deviation from 1/r occurs beyond a fundamental length scale. The suggestion by Milgrom in which the force law becomes essentially 1/r below a critical acceleration (MOND) can account for most of the observed systematics of galaxy rotation curves and, significantly, leads to the observed luminosity-velocity relationship in spiral galaxies (the Tully-Fisher law). Generally covariant theories of gravity which predict this phenomenology in the weak-field limit are described. Although there is not yet a theory which obviously meets all of the requirements for a physically viable alternative to dark matter, a generalized scalar-tensor theory of the form suggested by Bekenstein (phase coupling gravitation) is the currently leading candidate and has the advantage of being testable locally.  相似文献   

5.
Rotation curves of spiral galaxies in clusters are compared with their counterparts in the field using three criteria: (1) inner and outer velocity gradients, (2)M/L gradients, and (3) Burstein's mass type methodology. Both H emission-line rotation curves and more extendedHi rotation curves are used. A good correlation is found between the outer gradient of the rotation curve and the galaxy's distance from the centre of the cluster, in the sense that the inner galaxies tend to have falling rotation curves while the outer galaxies, and field galaxies, tend to have flat or rising rotation curves. A correlation is also found between theM/L gradient across a galaxy and the galaxy's position in the cluster, with the outer galaxies having steeperM/L gradients. Mass types for field spirals are shown to be a function of both Hubble-type and luminosity, contrary to earlier results. The statistical difference between the distribution of mass types in clusters and in the field reported by Bursteinet al. is confirmed. These correlations indicate that the inner cluster environment can strip away some fraction of the mass in the outer halo of a spiral galaxy, or alternatively, may not allow the halo to form.  相似文献   

6.
Spiral galaxies host dynamically important magnetic fields which can affect gas flows in the disks and halos. Total magnetic fields in spiral galaxies are strongest (up to 30 μG) in the spiral arms where they are mostly turbulent or tangled. Polarized synchrotron emission shows that the resolved regular fields are generally strongest in the interarm regions (up to 15 μG). Faraday rotation measures of radio polarization vectors in the disks of several spiral galaxies reveal large-scale patterns which are signatures of coherent fields generated by a mean-field dynamo. Magnetic fields are also observed in radio halos around edge-on galaxies at heights of a few kpc above the disk. Cosmic-ray driven galactic winds transport gas and magnetic fields from the disk into the halo. The halo scale height and the electron lifetime allow to estimate the wind speed. The magnetic energy density is larger than the thermal energy density, but smaller than the kinetic energy density of the outflow. There is no observation yet of a halo with a large-scale coherent dynamo pattern. A global wind outflow may prevent the operation of a dynamo in the halo. Halo regions with high degrees of radio polarization at very large distances from the disk are excellent tracers of interaction between galaxies or ram pressure of the intergalactic medium. The observed extent of radio halos is limited by energy losses of the cosmic-ray electrons. Future low-frequency radio telescopes like LOFAR and the SKA will allow to trace halo outflows and their interaction with the intergalactic medium to much larger distances.  相似文献   

7.
We study the formation of tidal tails in pairs of merging disc galaxies with structural properties motivated by current theories of cold dark matter (CDM) cosmologies. In a recent study, Dubinski, Mihos & Hernquist showed that the formation of prominent tidal tails can be strongly suppressed by massive and extended dark haloes. For the large halo-to-disc mass ratio expected in CDM cosmologies their sequence of models failed to produce strong tails like those observed in many well-known pairs of interacting galaxies. In order to test whether this effect can constrain the viability of CDM cosmologies, we construct N ‐body models of disc galaxies with structural properties derived in analogy to the recent analytical work of Mo, Mao & White. With a series of self-consistent collisionless simulations of galaxy–galaxy mergers we demonstrate that even the discs of very massive dark haloes have no problems developing long tidal tails, provided the halo spin parameter is large enough. For our class of models, the halo-to-disc mass ratio is not a good indicator of the ability to produce tails. Instead, the relative size of disc and halo or, alternatively, the ratio of circular velocity to local escape speed at the half mass radius of the disc is a more useful criterion. This result holds in all CDM models. While tidal tails can provide useful information on the structure of galaxies, it thus appears unlikely that they are able to constrain the values of the cosmological parameters within these models.  相似文献   

8.
We investigate the dynamical response, in terms of disc size and rotation velocity, to mass loss by supernovae in the evolution of spiral galaxies. A thin baryonic disc having the Kuzmin density profile embedded in a spherical dark matter halo having a density profile proposed by Navarro, Frenk & White is considered. For the purpose of comparison, we also consider the homogeneous and   r −1  profiles for dark matter in a truncated spherical halo. Assuming for simplicity that the dark matter distribution is not affected by mass-loss from discs and the change of baryonic disc matter distribution is homologous, we evaluate the effects of dynamical response in the resulting discs. We found that the dynamical response only for an adiabatic approximation of mass-loss can simultaneously account for the rotation velocity and disc size as observed particularly in dwarf spiral galaxies, thus reproducing the Tully–Fisher relation and the size versus magnitude relation over the full range of magnitude. Furthermore, we found that the mean specific angular momentum in discs after the mass-loss becomes larger than that before the mass-loss, suggesting that the mass-loss would most likely occur from the central disc region where the specific angular momentum is low.  相似文献   

9.
We study the gravitational lensing effects of spiral galaxies by taking a model of the Milky Way and computing its lensing properties. The model is composed of a spherical Hernquist bulge, a Miyamoto–Nagai disc and an isothermal halo. As a strong lens, a spiral galaxy like the Milky Way can give rise to four different imaging geometries. They are (i) three images on one side of the galaxy centre ('disc triplets'), (ii) three images with one close to the centre ('core triplets'), (iii) five images and (iv) seven images. Neglecting magnification bias, we show that the core triplets, disc triplets and fivefold imaging are roughly equally likely. Even though our models contain edge-on discs, their image multiplicities are not dominated by disc triplets. The halo is included for completeness, but it has a small effect on the caustic structure, the time delays and brightnesses of the images.
The Milky Way model has a maximum disc (i.e. the halo is not dynamically important in the inner parts). Strong lensing by nearly edge-on disc galaxies breaks the degeneracy between the relative contributions of the disc and halo to the overall rotation curve. If a spiral galaxy has a submaximum disc, then the astroid caustic shrinks dramatically in size, whilst the radial caustic shrinks more modestly. This causes changes in the relative likelihood of the image geometries, specifically (i) core triplets are now ∼9/2 times more likely than disc triplets, (ii) the cross-section for threefold imaging is reduced by a factor of ∼2/3, whilst (iii) the cross-section for fivefold imaging is reduced by ∼1/2. Although multiple imaging is less likely (the cross-sections are smaller), the average total magnification is greater. The time delays are smaller, as the total projected lensing mass is reduced.  相似文献   

10.
We study the formation of galaxies in a Λ cold dark matter (ΛCDM) universe using high-resolution hydrodynamical simulations with a multiphase treatment of gas, cooling and feedback, focusing on the formation of discs. Our simulations follow eight isolated haloes similar in mass to the Milky Way and extracted from a large cosmological simulation without restriction on spin parameter or merger history. This allows us to investigate how the final properties of the simulated galaxies correlate with the formation histories of their haloes. We find that, at   z = 0  , none of our galaxies contains a disc with more than 20 per cent of its total stellar mass. Four of the eight galaxies nevertheless have well-formed disc components, three have dominant spheroids and very small discs, and one is a spheroidal galaxy with no disc at all. The   z = 0  spheroids are made of old stars, while discs are younger and formed from the inside-out. Neither the existence of a disc at   z = 0  nor the final disc-to-total mass ratio seems to depend on the spin parameter of the halo. Discs are formed in haloes with spin parameters as low as 0.01 and as high as 0.05; galaxies with little or no disc component span the same range in spin parameter. Except for one of the simulated galaxies, all have significant discs at   z ≳ 2  , regardless of their   z = 0  morphologies. Major mergers and instabilities which arise when accreting cold gas is misaligned with the stellar disc trigger a transfer of mass from the discs to the spheroids. In some cases, discs are destroyed, while in others, they survive or reform. This suggests that the survival probability of discs depends on the particular formation history of each galaxy. A realistic ΛCDM model will clearly require weaker star formation at high redshift and later disc assembly than occurs in our models.  相似文献   

11.
We explore properties of close galaxy pairs and merging systems selected from the Sloan Digital Sky Survey Data Release 4 in different environments with the aim to assess the relative importance of the role of interactions over global environmental processes. For this purpose, we perform a comparative study of galaxies with and without close companions as a function of local density and host halo mass, carefully removing sources of possible biases. We find that at low- and high-local-density environments, colours and concentration indices of close galaxy pairs are very similar to those of isolated galaxies. At intermediate densities, we detect significant differences, indicating that close pairs could have experienced a more rapid transition on to the red sequence than isolated galaxies. The presence of a correlation between concentration index and colours indicates that the physical mechanism responsible for the colour transformation also operates in the transformation of the luminous matter distribution. At fixed local densities, we find a dependence of the red galaxy fraction on dark matter halo mass for galaxies with or without a close companion. This suggests the action of host halo mass related effects. Regardless of dark matter halo mass, we show that the percentage of red galaxies in close pairs and in the control sample are comparable at low- and high-local-density environments. However, at intermediate local densities, the gap in the red fraction between close pairs and the control galaxies increases from ∼10 per cent in low-mass haloes up to ∼50 per cent in the most massive ones. Interestingly, we also detect that 50 per cent of merging systems populate the intermediate local environments, with a large fraction of them being extremely red and bulge dominated. Our findings suggest that in intermediate-density environments galaxies are efficiently pre-processed by close encounters and mergers before entering higher local density regions.  相似文献   

12.
The chemical evolution history of a galaxy hides clues about how it formed and has been changing through time. We have studied the chemical evolution history of the Milky Way (MW) and Andromeda (M31) to find which are common features in the chemical evolution of disc galaxies as well as which are galaxy-dependent. We use a semi-analytic multizone chemical evolution model. Such models have succeeded in explaining the mean trends of the observed chemical properties in these two Local Group spiral galaxies with similar mass and morphology. Our results suggest that while the evolution of the MW and M31 shares general similarities, differences in the formation history are required to explain the observations in detail. In particular, we found that the observed higher metallicity in the M31 halo can be explained by either (i) a higher halo star formation efficiency (SFE), or (ii) a larger reservoir of infalling halo gas with a longer halo formation phase. These two different pictures would lead to (i) a higher [O/Fe] at low metallicities, or (ii) younger stellar populations in the M31 halo, respectively. Both pictures result in a more massive stellar halo in M31, which suggests a possible correlation between the halo metallicity and its stellar mass.  相似文献   

13.
Analyses of halo shapes for disc galaxies are said to give conflicting results. I point out that the modified dynamics (MOND) predicts for disc galaxies a distribution of fictitious dark matter that comprises two components: a pure disc and a rounder halo. The former dominates the true disc in regions of small accelerations, where it controls the z -dynamics in the disc (disc flaring etc.); it has a finite total mass. It also dominates the round component near the centre where the geometry is nearly planar. The second component controls motions far from the plane, has a total enclosed mass that diverges linearly with radius, and determines the rotation curve at large radii. Its ellipticity may be appreciable at small radii but vanishes asymptotically. This prediction of MOND differs from what one expects from galaxy formation scenarios with dark matter. Analyses to date, which, as they do, assume one component – usually with a constant ellipticity – perforce give conflicting results for the best value of ellipticity, depending on whether they probe the disc or the sphere, small radii or large ones.  相似文献   

14.
Lopsidedness is a common feature in galaxies, both in the distribution of light and in the kinematics. We investigate the kinematics of a model for lopsided galaxies that consists of a disc lying off-centre in a dark halo, and circling around the halo centre. We search for families of stable, closed, non-crossing orbits, and assume that gas in our galaxies moves on these orbits. Several of our models show strong lopsided gas kinematics, especially those in which the disc spins around its axis in a retrograde sense compared with its motion around the halo centre. We are able to reproduce the H  i velocity map of the kinematically lopsided galaxy NGC 4395.
The lopsidedness in our models is most pronounced in the models where the halo provides a relatively large fraction of the total mass at small radii. This may explain why the gas shows lopsidedness more frequently in late-type galaxies, which are dominated by dark matter. Surfaces of section show large regions of irregular orbits in the models where the halo density is low. This may indicate that these models are unstable.  相似文献   

15.
We re-examine the Fall & Efstathiou scenario for galaxy formation, including the dark halo gravitational reaction to the formation of the baryon disc, as well as continuous variations in the intrinsic halo density profile. The recently published rotation curves of low surface brightness (LSB) and dwarf galaxies together with previously known scaling relations provide sufficient information on the present-day structure of late-type disc galaxies to invert the problem. By requiring that the models reproduce all the observational restrictions we can fully constrain the initial conditions of galaxy formation, with a minimum of assumptions, in particular without the need to specify a cold dark matter (CDM) halo profile. This allows one to solve for all the initial conditions, in terms of the halo density profile, the baryon fraction and the total angular momentum. We find that a unique initial halo shape is sufficient to accurately reproduce the rotation curves of both LSB and normal late-type spiral galaxies. This unique halo profile differs substantially from that found in standard CDM models. A galactic baryon fraction of 0.065 is found. The initial value of the dimensionless angular momentum is seen to be the principal discriminator between the galaxy classes we examine. The present-day scalings between structural parameters are seen to originate in the initial conditions.  相似文献   

16.
Recent work by several groups has established the properties of the dwarf satellites to M31. We reexamine the reported kinematics of this group employing a fresh technique we have developed previously. By calculating the distribution of a χ statistic (which we define in the paper) for the M31 system, we conclude that the total mass (disc plus halo) of the primary is unlikely to be as great as that of our own Milky Way. In fact the χ distribution for M31 indicates that, like NGC 3992, it does not have a massive halo. In contrast, the analysis of the satellites of NGC 1961 and NGC 5084 provides strong evidence for massive haloes surrounding both spiral galaxies.  相似文献   

17.
We present a general recipe for constructing N -body realizations of galaxies comprising near spherical and disc components. First, an exact spherical distribution function for the spheroids (halo and bulge) is determined, such that it is in equilibrium with the gravitational monopole of the disc components. Second, an N -body realization of this model is adapted to the full disc potential by growing the latter adiabatically from its monopole. Finally, the disc is sampled with particles drawn from an appropriate distribution function, avoiding local-Maxwellian approximations. We performed test simulations and find that the halo and bulge radial density profile very closely match their target model, while they become slightly oblate due to the added disc gravity. Our findings suggest that vertical thickening of the initially thin disc is caused predominantly by spiral and bar instabilities, which also result in a radial re-distribution of matter, rather than scattering off interloping massive halo particles.  相似文献   

18.
A dynamical model for the extraplanar gas in spiral galaxies   总被引:1,自引:0,他引:1  
Recent H  i observations reveal that the discs of spiral galaxies are surrounded by extended gaseous haloes. This extraplanar gas reaches large distances (several kiloparsecs) from the disc and shows peculiar kinematics (low rotation and inflow). We have modelled the extraplanar gas as a continuous flow of material from the disc of a spiral galaxy into its halo region. The output of our models is pseudo data cubes that can be directly compared to the H  i data. We have applied these models to two spiral galaxies (NGC 891 and NGC 2403) known to have a substantial amount of extraplanar gas. Our models are able to reproduce accurately the vertical distribution of extraplanar gas for an energy input corresponding to a small fraction (<4 per cent) of the energy released by supernovae. However, they fail in two important aspects: (1) they do not reproduce the right gradient in rotation velocity; (2) they predict a general outflow of the extraplanar gas, contrary to what is observed. We show that neither of these difficulties can be removed if clouds are ionized and invisible at 21 cm as they leave the disc but become visible at some point on their orbits. We speculate that these failures indicate the need for accreted material from the intergalactic medium that could provide the low angular momentum and inflow required.  相似文献   

19.
We investigate the manner in which lenticular galaxies are formed by studying their stellar kinematics: an S0 formed from a fading spiral galaxy should display similar cold outer disc kinematics to its progenitor, while an S0 formed in a minor merger should be more dominated by random motions. In a pilot study, an attempt to distinguish between these scenarios, we have measured the planetary nebula (PN) kinematics of the nearby S0 system NGC 1023. Using the Planetary Nebula Spectrograph, we have detected and measured the line-of-sight velocities of 204 candidate planetary nebulae (PNe) in the field of this galaxy. Out to intermediate radii, the system displays the kinematics of a normal rotationally supported disc system. After correction of its rotational velocities for asymmetric drift, the galaxy lies just below the spiral galaxy Tully–Fisher relation, as one would expect for a fading system. However, at larger radii the kinematics undergo a gradual but major transition to random motion with little rotation. This transition does not seem to reflect a change in the viewing geometry or the presence of a distinct halo component, since the number counts of PNe follow the same simple exponential decline as the stellar continuum with the same projected disc ellipticity out to large radii. The galaxy's small companion, NGC 1023A, does not seem to be large enough to have caused the observed modification either. This combination of properties would seem to indicate a complex evolutionary history in either the transition to form an S0 or in the past life of the spiral galaxy from which the S0 formed. More data sets of this type from both spirals and S0s are needed in order to definitively determine the relationship between these types of system.  相似文献   

20.
We describe gravitationalN-body simulations to investigate whether various non-Newtonian interactions between the stars of a system could explain the flat rotational curves which are characteristic of actual isolated spiral galaxies. It is shown that replacing the standard Newtonian interaction by the models of Sanders (1984), Kuhn and Kruglyak (1987) and Milgrom (1983), no massive halo (or dark matter) is required to produce the flat rotational curves of the systems under consideration. All models also generate the exponential surface mass density distribution which is in agreement with that observed in disk-shaped galaxies. In relation to the spiral structure of galaxies, we present the evidence that the non-Newtonian interactions can reproduce the multiple armed patterns in stellar disks without dark matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号