首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypervelocity microparticle impact experiments were performed with a 2 MV Van De Graaff dust accelerator. From measurements of the light intensity I and the total light energy E, the relations I=c1mv4.1 and E=c2mv3.2 were obtained, where m is the projectile mass, ν the projectile velocity and c1,c2 are constants, depending on projectile and target material. Using the measured values of the spectral distribution of the light emitted during impact, the temperature of the radiating material was estimated to be between 2500 and 5000 K depending on the projectile velocity. From an analysis of these measurements the angular distribution of secondary particle velocities as well as the relative mass distribution of these particles was determined. Approximately 90% of the detected ejecta mass (ν?1 km/sec) is found between 50° and 70° ejection angle. For ejection angles smaller than 20°, ejecta velocities of up to 30 km/sec were detected when the primary particle velocity was 4.8 km/sec. Using the dependence of the light intensity on pressure in the target chamber, an estimate of the total amount of material vaporized during impact could be derived. It was concluded that at 7.4 km/sec particle impact velocity at least 1.6% of the displaced projectile and crater material was vaporized.  相似文献   

2.
The contributions of lunar microcrater studies to understand the overall micrometeoroid environment are summarized and compared to satellite data.In comparison with small-scale laboratory studies, most lunar crater morphologies are compatible only with impact velocities > 3·5 km/sec and projectile densities between 1–8 g/cm3; a mean value is most likely 2–4 g/cm3. The particles arenon-porous and fairly equi-dimensional; needles, platelets, rods, whiskers and other highly asymmetric particle shapes can be excluded. Data on projectile chemistry is sparse and non-diagnostic at present.The crater diameters are converted into projectile masses via small scale laboratory impact experiments. Accordingly, the observed span of crater pit diameters (0·1 μm–1 cm) corresponds to a particle mass range of ≈ 10?15–10?3 g. This large, dynamic detection range is a unique feature of the lunar rock detector. Absolute crater densities on different rocks vary from “production” to “equilibrium” conditions. After normalization of such densities, relative microcrater size frequencies are obtained to deduce a mass frequency distribution for particles 10?15–10?3 g. There is evidence that this distribution is bimodal. A radiation pressure cutoff at 10?12 g particle mass does not exist. The micrometeoroid flux obtained from lunar rocks is compatible with satellite data. There is indication that the micrometeoroid flux may have been lower in the past. Some speculative astronomical consequences concerning the origin of micrometeoroids are discussed.  相似文献   

3.
We have studied the characteristics of coronal mass ejections (CMEs) associated with Deca-Hectometric (DH) type II radio bursts (1–14 MHz) in the interplanetary medium during the year 1997–2005. The DH CMEs are divided into two parts: (i) DH CMEs (All) and (ii) DH CMEs (Limb). We found that 65% (177/273) of all events have the speed >900 km?s?1 and the remaining 35% (96/273) events have the speed below 900 km?s?1. The average speed of all and limb DH CMEs are 1230 and 1288 km?s?1, respectively, which is nearly three times the average speed of general population of CMEs (473 km?s?1). The average widths of all and limb DH CMEs are 105° and 106°, respectively, which is twice the average width (52°) of the general population of CMEs. We found a better correlation between the speed and width of limb DH CMEs (R=?0.61) than all DH CMEs (R=?0.53). Only 28% (177/637) of fast >900 km?s?1 general population of CMEs are reported with DH type II bursts counterpart. The above results gives that the relation between the CME properties is better for limb events.  相似文献   

4.
Abstract– We present initial results from hydrocode modeling of impacts on Al‐1100 foils, undertaken to aid the interstellar preliminary examination (ISPE) phase for the NASA Stardust mission interstellar dust collector tray. We used Ansys’ AUTODYN to model impacts of micrometer‐scale, and smaller projectiles onto Stardust foil (100 μm thick Al‐1100) at velocities up to 300 km s?1. It is thought that impacts onto the interstellar dust collector foils may have been made by a combination of interstellar dust particles (ISP), interplanetary dust particles (IDP) on comet, and asteroid derived orbits, β micrometeoroids, nanometer dust in the solar wind, and spacecraft derived secondary ejecta. The characteristic velocity of the potential impactors thus ranges from <<1 to a few km s?1 (secondary ejecta), approximately 4–25 km s?1 for ISP and IDP, up to hundreds of km s?1 for the nanoscale dust reported by Meyer‐Vernet et al. (2009) . There are currently no extensive experimental calibrations for the higher velocity conditions, and the main focus of this work was therefore to use hydrocode models to investigate the morphometry of impact craters, as a means to determine an approximate impactor speed, and thus origin. The model was validated against existing experimental data for impact speeds up to approximately 30 km s?1 for particles ranging in density from 2.4 kg m?3 (glass) to 7.8 kg m?3 (iron). Interpolation equations are given to predict the crater depth and diameter for a solid impactor with any diameter between 100 nm and 4 μm and density between 2.4 and 7.8 kg m?3.  相似文献   

5.
We have investigated the characteristics of magnetic cloud (MC) and ejecta (EJ) associated coronal mass ejections (CMEs) based on the assumption that all CMEs have a flux rope structure. For this, we used 54 CMEs and their interplanetary counterparts (interplanetary CMEs: ICMEs) that constitute the list of events used by the NASA/LWS Coordinated Data Analysis Workshop (CDAW) on CME flux ropes. We considered the location, angular width, and speed as well as the direction parameter, D. The direction parameter quantifies the degree of asymmetry of the CME shape in coronagraph images, and shows how closely the CME propagation is directed to Earth. For the 54 CDAW events, we found the following properties of the CMEs: i) the average value of D for the 23 MCs (0.62) is larger than that for the 31 EJs (0.49), which indicates that the MC-associated CMEs propagate more directly toward the Earth than the EJ-associated CMEs; ii) comparison between the direction parameter and the source location shows that the majority of the MC-associated CMEs are ejected along the radial direction, while many of the EJ-associated CMEs are ejected non-radially; iii) the mean speed of MC-associated CMEs (946 km?s?1) is faster than that of EJ-associated CMEs (771 km?s?1). For seven very fast CMEs (≥?1500 km?s?1), all CMEs with large D (≥?0.4) are associated with MCs and the CMEs with small D are associated with EJs. From the statistical analysis of CME parameters, we found the superiority of the direction parameter. Based on these results, we suggest that the CME trajectory essentially determines the observed ICME structure.  相似文献   

6.
During its passage through the geomagnetic tail, the Moon encounters the plasma sheet. Properties of plasma sheet electrons and protons, first detected at lunar distances by Explorer 35, are described. The electrons have a rapidly fluctuating non-Maxwellian energy distribution with a mean energy of several hundred electron volts and density ç 0.2 cm?3. The protons, of energy ç 1 keV, were usually detected above the instrument background when flowing towards the Earth at ç 200 km s?1. Implications for migration of grains on the lunar surface are also pointed out and it is suggested that strong terrestrial polar winds in the early history of the Earth-Moon system may have caused some erosion of the Earth-facing side of the Moon, and that gravitational shielding of interplanetary rock flux by the Earth may also be an explanation of the relative smoothness of the front side.  相似文献   

7.
Abstract— We describe the results of a variety of model calculations for predictions of observable results of the LCROSS mission to be launched in 2009. Several models covering different aspects of the event are described along with their results. Our aim is to bracket the range of expected results and produce a useful guide for mission planning. In this paper, we focus on several different questions, which are modeled by different methods. The questions include the size of impact crater, the mass, velocity, and visibility of impact ejecta, and the mass and temperature of the initial vapor plume. The mass and velocity profiles of the ejecta are of primary interest, as the ejecta will be the main target of the S‐S/C observations. In particular, we focus on such quantities as the amount of mass that reaches various heights. A height of 2 km above the target is of special interest, as we expect that the EDUS impact will take place on the floor of a moderate‐sized crater ?30 km in diameter, with a rim height of 1–2 km. The impact ejecta must rise above the crater rim at the target site in order to scatter sunlight and become visible to the detectors aboard the S‐S/C. We start with a brief discussion of crater scaling relationships as applied to the impact of the EDUS second stage and resulting estimated crater diameter and ejecta mass. Next we describe results from the RAGE hydrocode as applied to modeling the short time scale (t 0.1 s) thermal plume that is expected to occur immediately after the impact. We present results from several large‐scale smooth‐particle hydrodynamics (SPH) calculations, along with results from a ZEUS‐MP hydrocode model of the crater formation and ejecta mass‐velocity distribution. We finish with two semi‐analytic models, the first being a Monte Carlo model of the distribution of expected ejecta, based on scaling models using a plausible range of crater and ejecta parameters, and the second being a simple model of observational predictions for the shepherding spacecraft (S‐S/C) that will follow the impact for several minutes until its own impact into the lunar surface. For the initial thermal plume, we predict an initial expansion velocity of ?7 km s?1, and a maximum temperature of ?1200 K. Scaling relations for crater formation and the SPH calculation predict a crater with a diameter of ?15 m, a total ejecta mass of ?106kg, with ?104kg reaching an altitude of 2 km above the target. Both the SPH and ZEUS‐MP calculations predict a maximum ejecta velocity of ?1 km s?1. The semi‐analytic Monte Carlo calculations produce more conservative estimates (by a factor of ?5) for ejecta at 2 km, but with a large dispersion in possible results.  相似文献   

8.
Abstract– A Devonian siltstone from Orkney, Scotland, shows survival of biomarkers in high‐velocity impact experiments. The biomarkers were detected in ejecta fragments from experiments involving normal incidence of steel projectiles at 5–6 km s?1, and in projectile fragments from impact experiments into sand and water at 2–5 km s?1. The associated peak shock pressures were calculated to be in the range of 110–147 GPa for impacts of the steel projectiles into the siltstone target, and hydrocode simulations are used to show the variation of peak pressure with depth in the target and throughout the finite volume projectiles. Thermally sensitive biomarker ratios, including ratios of hopanoids and steranes, and the methylphenanthrene ratio, showed an increase in thermal maturity in the ejecta, and especially the projectile, fragments. Measurement of absolute concentrations of selected biomarkers indicates that changes in biomarker ratios reflect synthesis of new material rather than selective destruction. Their presence in ejecta and projectile fragments suggests that fossil biomarkers may survive hypervelocity impacts, and that experiments using biomarker‐rich rock have high potential for testing survival of organic matter in a range of impact scenarios.  相似文献   

9.
New lunar soils, freshly deposited as impact ejecta, evolve into more mature soils by a complex set of processes involving both near-surface effects and mixing. Poor vertical mixing statistics and interregional exchange by impact ejection complicate the interpretation of soil maturization. Impact ejecta systematics are developed for the smaller cratering events which, with cumulative crater populations observed in young mare regions and on Copernicus ejecta fields, yield rates and a range distribution for the horizontal transport of material by impact processes. The deposition rate for material originating more than 1 m away is found to be about 8 mm m.y.?1 Material from 10 km away accumulates at a rate of about 0.08 mm m.y.?1, providing a steady influx of foreign material. From the degradation of boulder tracks, a rate of 5±3 cm m.y.?1 is computed for the filling of shallow lunar depressions on slopes. Mass wastage and downslope movement of bedrock outcroppings on Hadley Rille seems to be proceeding at a rate of about 8 mm m.y.?1 The Camelot profile is suggestive of a secondary impact feature.  相似文献   

10.
T. Iju  M. Tokumaru  K. Fujiki 《Solar physics》2014,289(6):2157-2175
We report kinematic properties of slow interplanetary coronal mass ejections (ICMEs) identified by SOHO/LASCO, interplanetary scintillation, and in situ observations and propose a modified equation for the ICME motion. We identified seven ICMEs between 2010 and 2011 and compared them with 39 events reported in our previous work. We examined 15 fast (V SOHO?V bg>500 km?s?1), 25 moderate (0 km?s?1V SOHO?V bg≤500 km?s?1), and 6 slow (V SOHO?V bg<0 km?s?1) ICMEs, where V SOHO and V bg are the initial speed of ICMEs and the speed of the background solar wind. For slow ICMEs, we found the following results: i) They accelerate toward the speed of the background solar wind during their propagation and reach their final speed by 0.34±0.03 AU. ii) The acceleration ends when they reach 479±126 km?s?1; this is close to the typical speed of the solar wind during the period of this study. iii) When γ 1 and γ 2 are assumed to be constants, a quadratic equation for the acceleration a=?γ 2(V?V bg)|V?V bg| is more appropriate than a linear one a=?γ 1(V?V bg), where V is the propagation speed of ICMEs, while the latter gives a smaller χ 2 value than the former. For the motion of the fast and moderate ICMEs, we found a modified drag equation a=?2.07×10?12(V?V bg)|V?V bg|?4.84×10?6(V?V bg). From the viewpoint of fluid dynamics, we interpret this equation as indicating that ICMEs with 0 km?s?1V?V bg≤2300 km?s?1 are controlled mainly by the hydrodynamic Stokes drag force, while the aerodynamic drag force is a predominant factor for the propagation of ICME with V?V bg>2300 km?s?1.  相似文献   

11.
Abstract– Within the frame of the MEMIN research unit (Multidisciplinary Experimental and Numerical Impact Research Network), impact experiments on sandstone targets were carried out to systematically study the influence of projectile mass, velocity, and target water saturation on the cratering and ejection processes. The projectiles were accelerated with two‐stage light‐gas guns (Ernst‐Mach‐Institute) onto fine‐grained targets (Seeberger sandstone) with about 23% porosity. Collection of the ejecta on custom‐designed catchers allowed determination of particle shape, size distribution, ejection angle, and microstructures. Mapping of the ejecta imprints on the catcher surface enabled linking of the different patterns to ejection stages observed on high‐speed videos. The increase in projectile mass from 0.067 to 7.1 g correlates with an increase in the total ejected mass; ejecta angles, however, are similar in range for all experiments. The increase in projectile velocity from 2.5 to 5.1 km s?1 correlates with a total ejecta mass increase as well as in an increase in comminution efficiency, and a widening of the ejecta cone. A higher degree of water saturation of the target yields an increase in total ejecta mass up to 400% with respect to dry targets, higher ejecta velocity, and a steeper cone. These data, in turn, suggest that the reduced impedance contrast between the quartz grains of the target and the pores plays a primary role in the ejecta mass increase, while vaporization of water determines the ejecta behavior concerning ejecta velocity and particle distribution.  相似文献   

12.
We have redetermined the kinematic parameters of the Gould Belt using currently available data on the motion of nearby young (log t < 7.91) open clusters, OB associations, and moving stellar groups. Our modeling shows that the residual velocities reach their maximum values of ?4 km s?1 for rotation (in the direction of Galactic rotation) and +4 km s?1 for expansion at a distance from the kinematic center of ≈300 pc. We have taken the following parameters of the Gould Belt center: R 0 = 150 pc and l 0 = 128°. The whole structure is shown to move relative to the local standard of rest at a velocity of 10.7 ± 0.7 km s?1 in the direction l = 274° ± 4° and b = ?1° ± 3°. Using the derived rotation velocity, we have estimated the virial mass of the Gould Belt to be 1.5 × 106 M .  相似文献   

13.
A study of lunar impact crater size-distributions   总被引:3,自引:0,他引:3  
Discrepancies in published crater frequency data prompted this study of lunar crater distributions. Effects modifying production size distributions of impact craters such as surface lava flows, blanketing by ejecta, superposition, infilling, and abrasion of craters, mass wasting, and the contribution of secondary and volcanic craters are discussed. The resulting criteria have been applied in the determination of the size distributions of unmodified impact crater populations in selected lunar regions of different ages. The measured cumulative crater frequencies are used to obtain a general calibration size distribution curve by a normalization procedure. It is found that the lunar impact crater size distribution is largely constant in the size range 0.3 km ?D ? 20 km for regions with formation ages between ≈ 3 × 109 yr and ? 4 × 109 yr. A polynomial of 4th degree, valid in the size range 0.8 km ?D ? 20 km, and a polynomial of 7th degree, valid in the size range 0.3 km ?D ? ? 20 km, have been approximated to the logarithm of the cumulative crater frequencyN as a function of the logarithm of crater diameterD. The resulting relationship can be expressed asND α(D) where α is a function depending onD. This relationship allows the comparison of crater frequencies in different size ranges. Exponential relationships with constant α, commonly used in the literature, are shown to inadequately approximate the lunar impact crater size distribution. Deviations of measured size distributions from the calibration distribution are strongly suggestive of the existence of processes having modified the primary impact crater population.  相似文献   

14.
In an updating of energy characteristics of lightnings on Venus obtained from Venera-9 and -10 optical observations, the flash energy is given as 8 × 108 J and the mean energy release of lightnings is 1 erg cm?2 s which is 25 times as high as that on the Earth. Lightnings were observed in the cloud layer. The stroke rate in the near-surface atmosphere is less than 5 s?1 over the entire planet if the light energy of the stroke exceeds 4 × 105 J and less than 15 s?1 for (1–4) × 105 J.The average NO production due to lightnings equals 5 × 108 cm?2 s?1, the atomic nitrogen production is equal to 7 × 109 cm?2s?1,the N flux toward the nightside is 3.2 × 109 cm?2s?1, the number densities [N] = 3 × 107cm?3 and [NO] = 1.8 × 106cm?3 at 135 km. Almost all NO molecules in the upper atmosphere vanish interacting with N and the resulting NO flux at 90-80 km equals 5 × 105cm?2s?1, which is negligibly small as compared with lightning production. If the predissociation at 80–90 km is regarded as the single sink of NO, its mixing ratio, fNO, is 4 × 10?8, for the case of a surface sink fNO = 0.8 × 10?9 at 50 km. Excess amounts, fNO ? 4 × 10?8, may exist in the thunderstorm region.  相似文献   

15.
T. Iju  M. Tokumaru  K. Fujiki 《Solar physics》2013,288(1):331-353
We report radial-speed evolution of interplanetary coronal mass ejections (ICMEs) detected by the Large Angle and Spectrometric Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO), interplanetary scintillation (IPS) at 327 MHz, and in-situ observations. We analyze solar-wind disturbance factor (g-value) data derived from IPS observations during 1997?–?2009 covering nearly the whole period of Solar Cycle 23. By comparing observations from SOHO/LASCO, IPS, and in situ, we identify 39 ICMEs that could be analyzed carefully. Here, we define two speeds [V SOHO and V bg], which are the initial speed of the ICME and the speed of the background solar wind, respectively. Examinations of these speeds yield the following results: i) Fast ICMEs (with V SOHO?V bg>500 km?s?1) rapidly decelerate, moderate ICMEs (with 0 km?s?1V SOHO?V bg≤500 km?s?1) show either gradually decelerating or uniform motion, and slow ICMEs (with V SOHO?V bg<0 km?s?1) accelerate. The radial speeds converge on the speed of the background solar wind during their outward propagation. We subsequently find; ii) both the acceleration and the deceleration are nearly complete by 0.79±0.04 AU, and those are ended when the ICMEs reach a 480±21 km?s?1. iii) For ICMEs with (V SOHO?V bg)≥0 km?s?1, i.e. fast and moderate ICMEs, a linear equation a=?γ 1(V?V bg) with γ 1=6.58±0.23×10?6 s?1 is more appropriate than a quadratic equation a=?γ 2(V?V bg)|V?V bg| to describe their kinematics, where γ 1 and γ 2 are coefficients, and a and V are the acceleration and speed of ICMEs, respectively, because the χ 2 for the linear equation satisfies the statistical significance level of 0.05, while the quadratic one does not. These results support the assumption that the radial motion of ICMEs is governed by a drag force due to interaction with the background solar wind. These findings also suggest that ICMEs propagating faster than the background solar wind are controlled mainly by the hydrodynamic Stokes drag.  相似文献   

16.
S. Yamamoto 《Icarus》2002,158(1):87-97
This paper reports the results of experiments on projectile impact into regolith targets at various impact angles. Copper projectiles of 240 mg are accelerated to 197 to 272 m s−1 using an electromagnetic gun. The ejecta are detected by thin Al foil targets as secondary targets, and the resulting holes on the foil are measured to derive the spatial distribution of the ejecta. The ejecta that penetrated the foil are concentrated toward the downrange azimuths of impacting projectiles in oblique impacts. In order to investigate the ejecta velocity distribution, the nondimensional volume of ejecta with velocities higher than a given value is calculated from the spatial distribution. In the case of the vertical impact of the projectile, most ejecta have velocities lower than 24% of the projectile speed (∼50 m s−1), and there are only several ejecta with velocities higher than 72 m s−1. This result confirms the existence of an upper limit to the ejection velocity in the ejecta velocity distribution (Hartmann cutoff velocity) (W. K. Hartmann, 1985, Icarus63, 69-98). On the other hand, it is found that, in the oblique impacts, there are a large number of ejecta with velocities higher than the Hartmann cutoff velocity. The relative quantity of ejecta above the Hartmann cutoff velocity increases as the projectile impact angle decreases. Taking these results with the results of S. Yamamoto and A. M. Nakamura (1997, Icarus128, 160-170) from impact experiments using an impact angle of 30°, it can be concluded that the ejecta from these regolith targets exhibit a bimodal velocity distribution. Below a few tens of m s−1, we see the expected velocity distribution of ejecta, but above this velocity we see a separate group of high-velocity ejecta.  相似文献   

17.
The problem of the origin of the enigmatic tektites is still unsolved. The two leading hypotheses - viz., ejecta from terrestrial impacts, and ejecta from lunar volcanoes or lunar impacts, each encounters serious difficulties. The former has ballistic and water content difficulties, while the latter has some compositional difficulties, especially in the trace elements, as determined from the returned samples. It is possible that the latter problem may be met through lunar volcanic ejecta from sites suggesting more differentiation than the majority of the Moon. That such features may exist is suggested from the identity of some granitic material in the returned rocks and soil samples implying fairly sizable source regions on the Moon. The rare terrestrial strewn tektite fields require restrictive ballistic trajectories from the Moon. Calculations reveal that ellipses of varying, decreasing sizes which depend on velocity of vertical ejection from which ejecta will intersect the earth at low-entrance angles occur on the nearside of the Moon. Reasonable velocities were chosen (2.55 to 3.0 km s?1) and these ellipses circumscribe areas with longitudes between 30 and 50° east and latitudes between 7° north and south of the Moon's equator. These areas were searched for evidence of volcanism. As tektites have compositions ranging from acidic (major tektites) to basic (micro-tektites) contents of silica (SiO2) both acidic and basic volcanic features were sought. Since tektites range in age from about 30 million to 700000 yr old, they imply recent volcanism. Lunar Transient Phenomena (LTP) and data from various Apollo missions indicate that mild internal activity may still be occurring on the Moon. LTP sites are logical sources to investigate, of which four occur within the above delimited regions. These and their surroundings were examined and a number of possible explosive volcanism sites were found. These sites are identified and discussed after a review of the manifestations found from the various kinds of terrestrial volcanism for which lunar counterparts were sought.  相似文献   

18.
The peculiarities of non-Hubble bulk motions of galaxies are studied by analyzing a sample of 1271 thin edge-on spirals with distances determined using a multiparametric Tully-Fisher relation that includes the amplitude of the galaxy rotation, the blue and red diameters, surface brightness, and morphological type. In the purely dipole approximation, the bulk motion of galaxies relative to the cosmic microwave background frame can be described by the velocity of 336±96 km s?1 in the direction l=321°, b=?1° within radius R max =10000 km s?1. An analysis of more complex velocity field models shows that the anisotropy of the Hubble expansion described by the quadrupole term is equal to ~5% on scale lengths R max=6000–10000 km s?1. The amplitude within the Local Supercluster (R max=3000 km s?1) is as high as ~20%. The inclusion of the octupole component reduces the dipole amplitude to 134±111 km s?1 on scale lengths of ~8000 km s?1. The most remarkable feature of the galaxy velocity field within R max=8000 km s?1 is the zone of minimum centered on l=80°, b=0° (the constellation of Cygnus) whose amplitude reaches 18% of the mean Hubble velocity.  相似文献   

19.
New Hugoniot and release adiabate data for 1.8 g cm?3 lunar fines (sample, 70051) in the ç2 to ç70 kbar range demonstrate that upon shock compression intrinsic crystal density (ç3.1 g cm?3) is achieved undershock stresses of 15 to 20 kbar. Release adiabate determinations indicate that measurable irreversible compaction occurs upon achieving shock pressures above ç4 kbar. For shocks in the ç7 to 15 kbar range, the inferred,post-shock, specific volumes observed decrease nearly linearly with increasing peak shock pressures. Upon shocking to ç15 kbar the post-shock density is approximately that of the intrinsic minerals. If the present data for sample 70051 are taken to be representative of the response to impact of unconsolidated regolith material on the Moon, it is inferred that the formation of appreciable quantities of soil breccia can be associated with the impact of meteoroids or ejecta at speeds of as low as ç1 km s?1.  相似文献   

20.
We study the solar sources of an intense geomagnetic storm of solar cycle 23 that occurred on 20 November 2003, based on ground- and space-based multiwavelength observations. The coronal mass ejections (CMEs) responsible for the above geomagnetic storm originated from the super-active region NOAA 10501. We investigate the H?? observations of the flare events made with a 15 cm solar tower telescope at ARIES, Nainital, India. The propagation characteristics of the CMEs have been derived from the three-dimensional images of the solar wind (i.e., density and speed) obtained from the interplanetary scintillation data, supplemented with other ground- and space-based measurements. The TRACE, SXI and H?? observations revealed two successive ejections (of speeds ???350 and ???100 km?s?1), originating from the same filament channel, which were associated with two high speed CMEs (???1223 and ???1660 km?s?1, respectively). These two ejections generated propagating fast shock waves (i.e., fast-drifting type II radio bursts) in the corona. The interaction of these CMEs along the Sun?CEarth line has led to the severity of the storm. According to our investigation, the interplanetary medium consisted of two merging magnetic clouds (MCs) that preserved their identity during their propagation. These magnetic clouds made the interplanetary magnetic field (IMF) southward for a long time, which reconnected with the geomagnetic field, resulting the super-storm (Dst peak=?472 nT) on the Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号