首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomass and respiration (oxygen consumption) of bacteria, microfauna, and meiofauna were measured in coarse sand sediment from Brown's Bank (172 m) off Nova Scotia, Canada. Community biomass, excluding macrofauna, had a median value of 35 mg C m−2, dominated by bacteria (51%), microfauna (25%), and a minor meiofauna component (2·5%). Protozoan microfauna were mostly microflagellates (colourless cryptomonads). The experimental design allowed partitioning of benthic metabolism without using subtraction from whole community rates. Addition-removal experiments with fauna separated into size categories were used to construct a respiration-biomass regression for all taxa. Respiration rates for faunal groups were then calculated from their biomass in the natural sediment. Total microbial and meiofaunal community respiration had a median rate of 0·55 ml O2 m−2 h−1 which was partitioned into median proportions of bacteria (50%) microflagellates (27%), and metazoan meiofauna (4%). Correlations among faunal biomass values from incubated vials of sediment suggested that bacteria were important prey for protozoans. With added biomass of meiofauna, protozoans also became a potentially important source of prey. The results demonstrated the significance of microflagellate protozoans in these sediments and their metabolic and trophic importance relative to meiofauna and even bacteria.  相似文献   

2.
Meiofauna associated with bryophyte and gravel habitats in two small alpine streams was investigated to determine its potential importance to stream communities. These invertebrates are traditionally neglected in stream surveys and their ecological roles poorly understood. Twenty‐one operational taxonomic units (OTUs) were found during the study, of which at least six were undescribed (two Copepoda and four Acarina). Meiofaunal densities were higher at the unshaded site than the shaded site, and higher within bryophyte than gravel habitats. Stepwise multiple regression analyses illustrated the importance of bryophytes to members of the meiofauna in each stream, and different meiofaunal communities were found associated with aquatic bryophytes and gravels. The high densities of Chironomidae, Nematoda, Copepoda, Tardigrada, and Rotifera associated with bryophytes may reflect the food value of the high periphyton biomass associated with these plants, and the shelter they offer from fast water currents. Although hyporheic meiofaunal taxa are known to move into interstices of mineral substratum for shelter, meiofauna associated with bryophytes dwell among stems and in leaf axils where they also find shelter. Because bryophyte‐dwelling meiofauna occur in very high densities, they probably play an important, if as yet unknown, role in energy transfer in streams.  相似文献   

3.
Quantitative information on the abundance and biomass of metazoan meiofauna was obtained from samples collected at 15 deep-sea stations in the Eastern Mediterranean Sea (533–2400m). Meiofaunal abundance was compared to bacterial biomass and other environmental factors such as the total sedimentary organic matter content, the concentrations of the main biochemical classes of organic compounds (i.e. proteins, carbohydrates and lipids) and to ATP. To estimate the sedimentation potential of primary organic matter, sediment bound chloroplastic pigment equivalents (CPE) were assayed. Meiofaunal density was very low ranging from 4 ind.10cm−2 (Station A4, 1658m depth) to 290 ind.10cm−2 (Station A12, 636m depth). Nematodes were the numerically dominant taxon (68% of total meiofauna) and were usually confined to the top 6cm of the sediments. Total meiofaunal biomass ranged from 2.78μgC 10cm−2 (Station A4) to 598.34μgC 10cm−2 (Station 15A). There was a significant decrease in the density of metazoan meiofauna with water depth. Bacterial biomass largely dominated the total biomass (as the sum of bacterial and meiofaunal biomass) with an average of 73.2% and accounted for 35.8% of the living biomass (as ATP carbon) whereas meiofaunal biomass accounted only for 6.56%. Bacterial biomass was significantly related to the DNA concentrations of the sediment. A significant correlation between ATP concentration and CPE content was also found. No correlations were found between meiofauna, ATP and CPE, or between meiofauna and bacterial parameters. The significant relationship between meiofaunal density and the ratio of labile organic matter/total organic matter indicates that deep-sea meiofauna inhabiting an extremely oligotrophic environment (such as the Eastern Mediterranean) may be more nutritionally dependent upon the quality than on the quantity of sedimentary organic matter.  相似文献   

4.
Significant spatial heterogeneity in the abundance and composition of meiofaunal and nematode assemblages was described inside the Genoa-Voltri harbour (Genoa, Italy) in relation to variation in the main environmental variables. In harbour sediments characterized by low Eh values and high organic matter concentrations, total meiofauna abundance was lower (948 ± 919 ind 10 cm−2), nematode individual biomass was higher (0.17 ± 0.07 μg C), kinorhynchs and tanaids were completely absent, and the nematode assemblage was dominated by the genera Terschellingia, Sabatieria (pulchra group) and Paracomesoma. In contrast, in sediment characterized by lower levels of organic pollution, meiofaunal abundance was higher (1085 ± 737 ind 10 cm−2), nematode individual biomass was lower (0.11 ± 0.04 μg C), kinorhynchs and tanaids were present and the nematodes were dominated by the genera Desmodora, Daptonema, Anticoma and Halalaimus.Environmental disturbance as assessed by the analysis of meiofaunal and nematode assemblages and sediment environmental variables changed significantly over a scale hundreds of meters, but did not follow a gradient from the inner to the outer harbour. Analysis of nematode assemblages is proposed as a useful tool for the identification of environmental risk areas which may assist in the development of good planning, monitoring programmes and better management of harbour ecosystems.  相似文献   

5.
The ecological aspect of meiofaunal communities in Can Gio mangrove forest, Ho Chi Minh city, Vietnam has not been investigated before. The composition, distribution, density and biodiversity of meiofaunal communities were studied along an intertidal transect at the Khe Nhan mudflat. Each time, three replicate samples were collected in four stations along a transect following the water line from low tide level up to the mangrove forest edge. In total, 18 meiofaunal taxa were found with the dominant taxa belonging to Nematoda, Copepoda, Sarcomastigophora and Polychaeta. The densities of meiofauna ranged from 1156 inds/10 cm2 to 2082 inds/10 cm2. The increase in densities from the mangrove forest edge towards the low water line was significant. Along the mudflat transect, the biodiversity (expressed by different indices) was relatively high at different taxonomic levels but did not vary significantly along the mudflat except for taxa richness. Eighty nematode genera belonging to 24 families with Comesomatidae having the highest abundance 33.8 % were found.Theristus andNeochromadora decreased in densities from the lower water line towards the mangrove forest edge, whileParacomesoma andHopperia are typical and more abundant at the middle of the mudflat.Halalaimus increased from high on the mudflat to the low water line.  相似文献   

6.
Meiofauna and macrofauna communities and several sediment characteristics were compared between a slope situated far from the coast (Goban Spur) and two transects across the Iberian Margin with steep slopes and close to the shore. The northern Galician transect (off La Coruña) was situated in an area subjected to wind-induced upwelling events. The western Galician transect was also subjected to upwelling, was additionally influenced by outflows of water rich in organic matter from the Rías Bajas. This transect also included the Galicia Bank. Macrofauna density decreased exponentially from the shelf edge (154 m) to the abyssal plain (4951 m) and different communities occurred on the shelf, the upper- and lower slope and on the abyssal plain. Apart from two extremely low-density stations on the Iberian Margin, there were no significant differences in the meiofauna between the Goban Spur and the Iberian Margin. Along the La Coruña-transect a station where meiofaunal densities were low occurred at a depth of 1522 m, where the sediment was characterised by having a high median-grain size, ripple structures, a low Corg and total N content. There were relatively high numbers of macrofaunal filter-feeders but low numbers of crustaceans, indicating a high current velocity regime. On top of the Galicia Bank (˜770 m) the sediment consisted mainly of shells of pelagic foraminifers, and had low contents of Corg and N. The macrofauna was dominated by filter-feeding and carnivorous taxa. At both these stations meiofauna densities were low. Meiofauna densities and community structure differed between the Goban Spur and the Iberian Margin. Meiofauna densities on the Galician shelf were more than double those on the Goban Spur shelf. The two deep stations on the La Coruña transect and the deepest station on the Galicia Bank transect all contained meiofaunal densities that were higher than found at similar depths off the Goban Spur. The meiofaunal densities were inversely correlated with %CaCO3 content and, excluding the shelf stations, were positively correlated with both %Corg and total N at the Iberian Margin. Neither upwelling nor the enriched outflows from the rias affected the macrofauna, but meiofaunal densities were greatly enhanced.  相似文献   

7.
根据2006年7月13日至8月30日在长江口及邻近陆架海区采集的小型底栖动物样品,对小型底栖动物类群组成,丰度、生物量的水平分布和垂直分布以及调查海区的环境因子进行了研究。结果表明:研究海域小型底栖动物有线虫、桡足类、多毛类、寡毛类、介形类、螨类、双壳类、腹毛类、动吻类、端足类和等足类等11个类群及无节幼体等。平均丰度为453.22±355.34 ind/10 cm2,最优势类群为线虫,占小型底栖动物总丰度的81.37%,次优势类群分别为底栖桡足类和多毛类,分别占小型底栖动物总丰度的10.13%和2.96%。平均生物量为622.65±505.07 μg/10 cm2,生物量占比最高的类群为多毛类,占总生物量的30.21%,其次分别为线虫和寡毛类,分别占小型底栖动物总生物量的23.69%和19.44%。水平分布上,从河口冲淡水区到东海陆架深水区,小型底栖生物丰度呈现由低到高的变化趋势,杭州湾小型底栖动物丰度为240.96±223.47 ind/10 cm2,长江口近岸区为442.91±304.16 ind/10 cm2,东海陆架深水区为865.42±553.88 ind/10 cm2。垂直分布上,小型底栖动物主要分布在0~2 cm层,丰度为290.28±250.03 ind/10 cm2;其次是2~5 cm层,丰度为132.81±128.74 ind/10 cm2;5~10 cm层分布最少,丰度为30.14±31.91 ind/10 cm2。其中线虫、多毛类、寡毛类与桡足类等主要类群的垂直分布与总分布趋势相同。与环境因子进行相关分析表明,调查海区小型底栖动物的丰度主要与水深、盐度和溶解氧显著相关,对小型底栖动物分布影响最大的环境因子组合为溶解氧和盐度。  相似文献   

8.
Previous studies at the Isla Vista oil seep have suggested that meiofauna, particularly nematodes, might be an important factor in explaining macrofaunal enrichment by making bacterial biomass available to the benthic food web. To explore this possibility, we analyzed meiofaunal abundance and microalgal pigments inside and just outside of bacterial mats at this natural oil seep.The bacterial mats occur where crude oil and natural gas are actively seeping out of the sediment; cores from within the mats contained a great deal of crude oil (up to 50 %). Meiofaunal abundances were the same in and out of the bacterial mats (averaging 1·-9 × 106 individuals m-2). However, dramatic changes in community structure were noticed. Harpacticoids made up 19 % of the fauna outside the mats but only 1 % inside. Pigment concentrations were also the same in both sites with phaeophytin dominating chlorophyll (120 compared to 29.8 mg m-2). The variance of both microalgal pigments and meiofauna was much greater inside than outside, suggesting that the bacterial mats are a more heterogeneous environment.Although the effect of crude oil toxicity is not clear, the high abundances of microbial and meiofaunal biomass support the hypothesis of benthic enrichment via microbes and meiofauna.  相似文献   

9.
The across shore variability and trophodynamics of meiofauna were studied in a microtidal beach of the Thyrrenian Sea (NW Mediterranean). Two sites were sampled at Collelungo beach (Maremma Park, Italy) subjected to different regimes of sediment erosion and deposition. At each site, four levels were sampled in November 2002 and May 2003 along a transect from the supralittoral zone to the surf zone. Sediment cores were taken down to a depth of 10 cm and meiofaunal abundance and community structure were analyzed and related to the principal trophic resources (quantity and quality of organic matter, chlorophyll a, bacteria density and biomass).Meiofaunal abundance ranged between 14 ind. 10 cm−2 and 716 ind. 10 cm−2 in the top 0–10 cm of sediment. Abundance was lower in the surface (0–2 cm) than in the deeper (5–10 cm) sediment layers but no significant differences were found between the two sites.Multivariate BIOENV analysis showed that dryness, grain size (related to physical processes) and bacterial biomass, were the main variables explaining meiofauna distribution in these beaches. Meiofaunal densities and number of taxa were always higher at the swash level, while lower abundances were observed at the dry sampling level (+5 m). This across shore trend was also observed for the quality of the organic matter (PRT/CHO) and bacterial densities. Nematode assemblage structure at the swash sampling level showed a dominance of non-selective deposit feeders (1B), with Xyalidae as the dominant family (56%), followed by Thoracostomopsidae (14%) and Selachnematidae (12%).According to the findings, physical and biological variables at the swash level create optimal living conditions for the meiobenthos, making the swash a key area within the beach ecosystem, with potential implications within basic and applied ecological studies.  相似文献   

10.
The depth-distribution profiles of meiofauna in four transects in the Mngazana River, Transkei were studied during summer 1980. Highest densities [±1000(100 cm3)−1] were encountered within the top 10 cm of the sediment. Nematodes dominated (80%) and the remainder was made up of ciliates, oligochaetes, gastrotrichs, and low numbers of polychaetes, copepods, kinorhynchs and various crustacean larvae. Among chemical parameters Eh correlated most consistantly with distribution, particularly at the lower tidal levels. Temperature and pH appeared to be of lesser importance. The maximum estimated depth of penetration was on average 72 cm at the HW levels; 32 at MW and 23 at LW. The mean dry biomass was estimated at 1073 mg m−2; 941 mg m−2 and 196 mg m−2 at these tidal levels respectively. The importance of preliminary studies designed to estimate the depth distribution of meiofauna is discussed.  相似文献   

11.
Samples were taken bi-weekly for one year at a sand site and a mud site in the North Inlet Estuary, Georgetown, South Carolina, for meiofauna, their suspected microbial food (bacteria and diatoms), and associated physical factors. Linear regression techniques were used to correlate food abundance and physical factors with the density of meiofaunal taxa. At both sites diatoms positively correlated with meiofauna taxa, but bacteria did not. Physical factors were not correlated with meiofaunal or microbial abundances at the sand site. Whereas, at the mud site meiofauna and diatom abundances were positively correlated with the depth of the redox layer and inversely correlated with temperature. Peaks of meiofaunal abundance did not follow peaks of food abundance. Analysis of copepods at the species level indicated that taxa response was due to the response of the dominant species. Even though some correlations existed, this study suggests that copepod species and meiofauna at the gross taxonomic level do not respond to changes in potential food abundance. Physical factors apparently influence both meiofauna and diatoms in the same fashion. However, bacterial abundance was not positively correlated with any of the factors studied.  相似文献   

12.
Trends among major metazoan meiofaunal taxa were investigated based on 56 deployments of a multicorer at 10 time points over a period of 11 years (1989–1999) at the Porcupine Abyssal Plain Sustained Observatory site (PAP-SO: 48°50′N 16°30′W, 4850 m depth). This area is characterised by a strong seasonality in the deposition of organic matter to the seafloor and by the massive increase in the density of holothurian species since 1996, the so-called ‘Amperima event’. Total meiofaunal densities ranged from 346 to 1074 ind.×10 cm−2 and showed a significant increase with time when time was represented by cruises, years and the ‘Amperima period’ (1996–1999) vs. the pre-Amperima period (1989–1994). This pattern was driven mainly by the nematodes, which were the dominant taxon (∼90% of total abundance). The third most abundant group, the polychaetes, also increased significantly in abundance over the time series, while the ostracods showed a significant decrease. Most other taxa, including the second-ranked group, the copepods (harpacticoids and nauplii), did not exhibit significant temporal changes in abundance. Ordination of taxon composition showed a shift from the pre-Amperima to the Amperima periods, a trend supported by the significant correlation between the x-ordinate and time. The majority (52–75%) of meiofaunal animals inhabited the top 2 cm of the 5 cm sediment cores analysed. There were significant increases in the proportion of total meiofauna, nematodes and copepods (but not polychaetes) inhabiting the 0–1 cm layer over time (represented by cruises) and between the pre-Amperima and Amperima periods in the case of copepods and polychaetes. During the intensively sampled period (1996–1997), there were indications of seasonal changes in the vertical distribution patterns of total meiofauna and nematodes within the sediment. We discuss the potential link between temporal variations in organic matter flux to the seafloor and meiofaunal populations, considering both qualitative and quantitative changes in fluxes and how they may be linked to climate variations.  相似文献   

13.
An experiment was performed to determine the effect of injected CO2 on the deep-sea (3200 m) meiofaunal community in the Monterey Canyon. Approximately 20 L of liquid CO2 was added to each of three cylindrical corrals (PVC rings pushed into the seabed) that were arranged in a triangular array 10 m on a side. After a 30-day period, sediment cores were collected within an area exposed to the dissolution plume emanating from the CO2 pools and from a reference site approximately 40 m away; cores were also collected from within two of the CO2 corrals. Sediment cores were sectioned into 0–5, 5–10, and 10–20 mm layers. Abundances of major groups (harpacticoid copepods, nematodes, nauplii, kinorhynchs, polychaetes, and total meiofauna) were determined for each layer. CO2 exposure did not significantly influence the abundances or vertical distributions of any of the major taxa. However, other evidence suggests that abundance alone did not accurately reflect the effect of CO2 on meiofauna. We argue that slow decomposition rates of meiofaunal carcasses can mask adverse effects of CO2 and that longer experiments and/or careful examination of meiofaunal condition are needed to accurately evaluate CO2 effects on deep-sea meiofaunal communities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
A quantitative study of metazoan meiofauna was carried out on bathyal sediments (305, 562, 830 and 1210 m) along a transect within and beneath the oxygen minimum zone (OMZ) in the southeastern Pacific off Callao, Peru (12°S). Meiobenthos densities ranged from 1517 (upper slope, middle of OMZ) to 440–548 ind. 10 cm−2 (lower slope stations, beneath the OMZ). Nematodes were the numerically dominant meiofaunal taxon at every station, followed by copepods and nauplii. Increasing bottom-water oxygen concentration and decreasing organic matter availability downslope were correlated with observed changes in meiofaunal abundance. The 300-m site, located in the middle of the OMZ, differed significantly in meiofaunal abundance, dominance, and in vertical distribution pattern from the deeper sites. At 305 m, nematodes amounted to over 99% of total meiofauna; about 70% of nematodes were found in the 2–5 cm interval. At the deeper sites, about 50% were restricted to the top 1 cm. The importance of copepods and nauplii increased consistently with depth, reaching ∼12% of the total meiofauna at the deepest site. The observation of high nematode abundances at oxygen concentrations <0.02 ml l−1 supports the hypothesis that densities are enhanced by an indirect positive effect of low oxygen involving (a) reduction of predators and competitors and (b) preservation of organic matter leading to high food availability and quality. Food input and quality, represented here by chloroplastic pigment equivalents (CPE) and sedimentary labile organic compounds (protein, carbohydrates and lipids), were strongly, positively correlated with nematode abundance. By way of contrast, oxygen exhibited a strong negative correlation, overriding food availability, with abundance of other meiofauna such as copepods and nauplii. These taxa were absent at the 300-m site. The high correlation of labile organic matter (C-LOM, sum of carbon contents in lipids, proteins and carbohydrates) with CPE (Pearson's r=0.99, p<0.01) suggests that most of the sedimentary organic material sampled was of phytodetrital origin. The fraction of sediment organic carbon potentially available to benthic heterotrophs, measured as C-LOM/Total organic carbon, was on average 17% at all stations. Thus, a residual, refractory fraction, constitutes the major portion of organic matter at the studied bathyal sites.  相似文献   

15.
Two major size classes of the sediment community, meiofauna and macrofauna, and four classes of lipid compounds, fatty acids, alkanes, alcohols and sterols, were investigated using multicorer and USNEL boxcorer samples, collected during six cruises over a two year period (September 1996 to September–October 1998), at the Porcupine Abyssal Plain ( 48° 50′N 16° 30′W, 4850 m depth) within the framework of the MAST 3 BENGAL project. This site was known to be subject to seasonality in the input of organic matter to the seafloor. Results are given for each faunal size class in terms of taxonomic structure at the level of phylum, class or order, depending on the taxon, and for the dominant faunal components in terms of density and vertical distribution. For each lipid compound class, results are given in concentration and vertical distribution. The taxonomic structure of each size class did not change within the study period. Total meiofaunal and macrofaunal densities were particularly high, probably reflecting the high quantity and quality of organic matter inputs to the site. The dominant components of the two size classes presented different temporal patterns in their responses to changes in their environment. Populations of meiofaunal species, a foraminiferan and an opheliid polychaete, which inhabit the surface or sub-surface of sediment and feed on phytodetritus, responded with a rapid increase in abundance to a pulse of organic input in summer 1996. The macrofaunal polychaetes showed a lagged response to the same event by slowly increasing in density. Other components of the sediment community, that can live deeper in the sediment, moved down the sediment column, in response to 1) the impoverishment and bioturbation of the surface layer, and 2) the downward mixing of organic matter in the sediment by larger organisms. In this study, different temporal patterns were demonstrated for the first time in different size classes of the sediment community, and in the biological and environmental parameters that were studied simultaneously.  相似文献   

16.
Meiobenthos were sampled from 17 stations in the abyssal deep-sea system of the central Pacific centered around 14°N, 130°W at depths 4960–5154m, during the Nixo 47 R/V Jean Charcot cruise. Meiofaunal density range from 45–89 ind. 10cm2. Predominant taxa are nematodes (84–100%) and copepods (0–10%). Rotifera, Polychaeta, and Acarina also occur. Nematodes are uniformly distributed spatially with 45 species or so; Monhysteridae is the dominant taxon, and Syringolaimus sp. (Ironidae) co-occurs faithfully. Low biomass (0.4–70.6μg 10cm2) are attributed to supposed dwarfism of metazoan meiofauna and very high proportion (60–80%) of juveniles and pre-adult forms. The majority of protozoans and metazoans are detritus- or deposit-feeders; in addition symbiotic associations, coprophagy and gardening activities are frequent. In such an oligotrophic environment, low food supply may limit meiofaunal abundance, biomass and maturation, and to a lesser extent species richness.  相似文献   

17.
Suspended particle dynamics were investigated in the Ogeechee River Estuary during neap tide in July 1996. Samples were operationally separated into ‘ truly suspended ’ (settling velocity <0·006 cm s−1) and ‘ settleable ’ (settling velocity >0·006 cm s−1) fractions over the course of a tidal cycle to determine whether these two fractions were comprised of particles with differing biological and chemical characteristics. Total suspended sediment, organic carbon and nitrogen, chlorophyll a and phaeopigment concentrations were measured in each fraction, as well as rates of bacterial hydrolytic enzyme activity [β-1,4-glucosidase (βGase) and β-xylosidase (βXase)]. The majority of the suspended sediment (by weight) was in the truly suspended fraction; all measured parameters were largely associated with this fraction as well. When compared to the settleable material, the truly suspended material was significantly higher in % POC (5·7±0·6 vs. 3·9±1·8), % chlorophyll (0·07±0·02 vs. 0·03±0·01), % phaeopigment (0·030±0·006 vs. 0·018±0·012), and weight-specific maximal uptake rates (Vmaxper mg suspended sediment) of both enzymes (1·8±0·4 vs. 0·7± 0·2 nmol mg−1 h−1βGase and 1·1±0·3vs . 0·3±0·2 nmol mg−1 h−1βXase), providing clear evidence for a qualitative distinction between the two fractions. These results are interpreted to mean that the more organic-rich, biologically active material associated with the suspended fraction is likely to have a different fate in this Estuary, as ‘ truly suspended ’ sediments will be readily transported whereas ‘ settleable ’ sediments will settle and be resuspended with each tide. These types of qualitative differences should be incorporated into models of particle dynamics in estuaries.  相似文献   

18.
The hepatopancreae of the ribbed mussel, Geukensia demissa, and the wedge clam, Rangia cuneata, were examined for their ability to catalyze the reduction/oxidation cycling of the bipyridyl herbicide paraquat. In vitro studies indicated a dose-dependent increase in the rate of superoxide anion (O2) generation in microsomal fractions supplemented with NADPH; the highest concentration of paraquat employed (4 mm) elicited an 81 % increase in cytochrome c reduction in G. demissa and a 135% increase in R. cuneata. In both .species, cytochrome c reduction was inhibited by the addition of exogenous superoxide dismutase (SOD). For in vivo studies, a single application of paraquat (0·5, 1·0 or 2·0 mm) was added to aerated salt-water aquaria containing G. demissa. Biochemical analyses of antioxidant enzymes, reduced glutathione (GSH) and lipid peroxidation were performed in hepatopancreatic tissue after exposures of 6, 12, 24 and 36 h. Results support the hypotheses that these bivalves can activate redox cycling compounds and demonstrate in vivo responses typical of oxidative stress as observed in other organisms.  相似文献   

19.
Sediment samples were collected in the intertidal zone of the Dagu River Estuary, Jiaozhou Bay, China in April,July and October 2010 and February 2011 for examining seasonal dynamics of meiofaunal distribution and their relationship with environmental variables. A total of ten meiofaunal taxa were identified, including free-living marine nematodes, benthic copepods, polychaetes, oligochaetes, bivalves, ostracods, cnidarians, turbellarians,tardigrades and other animals. Free-living marine nematodes were the most dominant group in both abundance and biomass. The abundances of marine nematodes were higher in winter and spring than those in summer and autumn. Most of the meiofauna distributed in the 0–2 cm sediment layer. The abundance of meiofauna in hightidal zone was lower than those in low-tidal and mid-tidal zones. Results of correlation analysis showed that Chlorophyll a was the most important factor to influence the seasonal dynamics of the abundance, biomass of meiofauna and abundances of nematodes and copepods. CLUSTER analysis divided the meiofaunal assemblages into three groups and BIOENV results indicated that salinity, concentration of organic matter, sediment sorting coefficient and sediment median diameter were the main environmental factors influencing the meiofaunal assemblages.  相似文献   

20.
The macrofauna and meiofauna of three oiled and three control experimental ecosystems at the Marine Ecosystems Research Laboratory (MERL) were followed for 25 weeks of semi-continuous additions of an oil-water dispersion of No. 2 fuel oil. Water column hydrocarbon levels were maintained at about 190 ppb, and after 20 weeks 109 sm/g dry weight fuel oil hydrocarbons were recorded in the top 2 cm of sediment.This simulated chronic oil pollution resulted in a highly significant decline in the number of macrofaunal and meiofaunal individuals in the experimental tanks compared with the controls. The effect was apparent on the numbers of individual macrofaunal species and on all metazoan meiofaunal groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号