首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 822 毫秒
1.
利用2000—2009年美国国家航空航天局(NASA)在中国近海海域(0°~45°N,105°~135°E)的QuikSCAT卫星遥感风场资料与近海测风塔(位于上海近海)、海上石油平台(位于东海和渤海)、岛屿站(南海珊瑚岛和西沙海边观测塔)的实测风场资料进行对比分析,检验了QuikSCAT卫星遥感风场资料在中国近海海域的可靠性。研究结果如下:各站点实测风速与站点位置以及站点附近的QuikSCAT卫星遥感风场资料相关系数均在0.7以上;QuikSCAT卫星遥感风场资料与海上石油平台的风速均方根误差较小(约1.5 m/s);其年均值均大于实测值,差值范围是0.1~1.3 m/s;其Weibull形状参数K与海上石油平台以及近海测风塔的K值较为接近,表明QuikSCAT卫星遥感风场资料各风速段的频次分布形态与观测站的实测值基本吻合,QuikSCAT卫星遥感风场资料能基本合理地反映出中国近海风速的分布状况。利用QuikSCAT卫星遥感风场资料分析了中国近海及其邻近水域风速的空间分布特征:(1)台湾海峡是中国近海风速最大的区域,从台湾海峡向东北至日本海,往西南至南海北部115°E附近和巴林塘海峡为风速的次大值区;(2)28°N到长江入海口的东海海域年均风速为7.0~7.5 m/s,在黄海和渤海为5.5~7.0 m/s,在南海北部自东向西由8.5 m/s递减为6.0 m/s,北部湾最大风速区位于东方附近海域。  相似文献   

2.
Wind-velocity data obtained from in situ measurements at the Golitsyno-4 marine stationary platform have been compared with QuikSCAT scatterometer data; NCEP, MERRA, and ERA-Interim global reanalyses and MM5 regional atmospheric reanalysis. In order to adjust wind velocity measured at a height of 37 m above the sea surface to a standard height of 10 m with stratification taken into account, the Monin–Obukhov theory and regional atmospheric reanalysis data are used. Data obtained with the QuikSCAT scatterometer most adequately describe the real variability of wind over the Black Sea. Errors in reanalysis data are not high either: the regression coefficient varies from 0.98 to 1.06, the rms deviation of the velocity amplitude varies from 1.90 to 2.24 m/s, and the rms deviation of the direction angle varies from 26° to 36°. Errors in determining the velocity and direction of wind depend on its amplitude: under weak winds (<3 m/s), the velocity of wind is overestimated and errors significantly increase in determining its direction; under strong winds (>12 m/s), its velocity is underestimated. The influence of these errors on both spatial and temporal estimates of the characteristics of wind over the Black Sea is briefly considered.  相似文献   

3.
The Yellow Sea Cold Water Mass(YSCWM) is one of the important water mass in the Yellow Sea(YS).It is distributed in the lower layer in the Yellow Sea central trough with the temperature less than 10 C and the salinity lower than 33.0.To understand the variability of the YSCWM,the hydrographic data obtained in April and August during 2009–2011 are analyzed in the southeastern Yellow Sea.In August 2011,relatively warm and saline water compared with that in 2009 and 2010 was detected in the lower layer in the Yellow Sea central area.Although the typhoon passed before the cruise,the salinity in the Yellow Sea central trough is much higher than the previous season.It means that the saline event cannot be explained by the typhoon but only by the intrusion of saline water during the previous winter.In April 2011,actually,warm and saline water(T >10 C,S >34) was observed in the deepest water depth of the southeastern area of the Yellow Sea.The wind data show that the northerly wind in 2011 winter is stronger than in 2009 and 2010 winter season.The strong northerly wind can trigger the intrusion of warm and saline Yellow Sea Warm Current.Therefore,it is proposed that the strong northerly wind in winter season leads to the intrusion of the Yellow Sea Warm Current into the Yellow Sea central trough and influenced a variability of the YSCWM in summer.  相似文献   

4.
北黄海QuikSCAT 卫星风速与浮标风速的对比分析   总被引:1,自引:0,他引:1  
对北黄海QuikSCAT散射计矢量风资料与黄海实测浮标站风速资料进行对比分析,结果表明:北黄海QuikSCAT卫星风速和浮标观测风速的大小基本吻合,二者平均偏差是0.26 m/s,相关系数是0.74;风向偏差较大,平均偏差是117.52°。根据卫星风速和浮标风速的对比分析结果,提出了修正方案。修正后的QuikSCAT风向与实测浮标站风向的平均偏差显著提高到20.44°。该修正方案实施简单,修正效果显著,为更准确地使用卫星资料提供了保证。  相似文献   

5.
黄海春季海雾的年际变化研究   总被引:15,自引:0,他引:15  
利用黄海沿岸有代表性测站的常规观测资料和NCEP/NCAR资料,对黄海春季海雾年际变化进行了分析发现,雾多年份冬季环流减弱、低层流场向黄海为偏南向流入、中低层水汽充足、层结稳定;有雾时气温水温差在0.5—2.2℃范围内,地面风向以S-ESE为主。分析结果表明,在春季黄海雾形成过程中,高空环流提供了暖湿空气的输送条件,低层流场及地面风场的分布有利于来自西太平洋低纬地区的水汽向黄海海区输送;中低层水汽充沛,昙结稳定,水气温差在一定范围内有利于海雾的形成和维持。  相似文献   

6.
The paper considers zonal mean (65° S–65° N, with a step of 5°) monthly mean NCEP/DOE reanalysis data on zonal wind and temperature at levels of 20 to 100 mb and the TOMS data of version 8 on total ozone (TO) for the period 1979–2005. The results of calculating linear-trend coefficients, correlation coefficients, and characteristic decay times and the data of spectral analysis are presented. In recent decades, the decrease in TO and the cooling of the lower stratosphere were accompanied by a weakening of the westerly wind. For deseasonalized series, the significance of their linear trends are evaluated with the use of the Monte Carlo method and it is shown that TO trends are significant at a level of 0.99 in extratropical latitudinal zones and that temperature trends are significant everywhere except in a narrow equatorial zone and in latitudes south of 50° S, whereas wind trends are significant only at a 50-mb level in the latitudinal belt 30°–50° in both hemispheres. According to the results of spectral analysis, for the majority of latitudinal zones, a triplet in the range of quasibiennial oscillations and oscillations with periods of about 4–6 and 9–13 years manifest themselves most persistently in the series of temperature, wind, and TO. Maximum correlation coefficients of the series of TO, wind, and temperature are observed over the equator, and, depending on altitude and latitude, TO variations may lag or lead temperature and wind variations in phase. Latitudinal distributions of characteristic decay times show an increase in this parameter in tropical and equatorial zones and its opposite behavior with altitude for temperature and wind fields.  相似文献   

7.
国际海上救援效率比较研究 ——以东海特定水域为例   总被引:1,自引:0,他引:1  
林婉妮  王诺 《海洋通报》2019,38(4):438-446
为研究东海海域海上救援效率和国际协作的协调性,以国际救援为视角,基于ArcGIS构建了海事救援效率评价模型。根据巡逻船舶密度数据确定了救援船舶的概率分布,得出了救援船舶与遇险船舶的可能距离,同时考虑了风浪影响下遇险船舶的漂移以及巡逻船舶失速的情况,分别计算了常风向和次常风向下中国、日本和韩国在东海特定水域的海上救援效率。结果表明:以各国现有的巡逻船舶配备对研究区内漂移的遇险船舶展开救援时,常风向下先后抵达的顺序为韩国、日本和中国,驰援时间分别为5.14、8.18和9.67 h;次常风向下抵达的顺序为韩国、日本和中国,驰援时间分别为5.45、8.25和10.08 h;为提高我国的救援效率,需要在东海海域部署9~10艘巡逻船舶开展常态化巡逻。本文研究可为我国有关部门科学制定和完善海上救援方案,调整海上救援力量配备,进一步加强国际间的协调与合作提供参考。  相似文献   

8.
Data sets of surface wind and wind-stress fields in the North Pacific from September 1996 to June 1997 have been constructed using NASA Scatterometer (NSCAT) data on-board ADEOS to investigate their variability and implications for the wind-driven oceanic circulation. Using a weighting function decreasing with the distance between each grid and data points, and of Gaussian type for time, daily, 10-day and monthly averages are calculated for each 1°×1° grid. Products are validated by comparison with those calculated from in-situ measurement data at oceanic buoys around Japan (JMA) and in the equatorial area (TAO). The RMS differences for wind direction and speed never exceed 20° and 2 ms−1, respectively, for the TAO buyos. This does not hold for data taken by JMA buoys, suggesting that the reliability in the mid-latitudes is not good for time averages shorter than several days. Zonal integration of the Sverdrup transport in a zone of 28°–30°N calculated from the monthly-mean products ranges between 25 and 60×106 m3s−1 (Sv) around its mean of 38 Sv. These are not so different from the Kuroshio transport values calculated from oceanic measurements.  相似文献   

9.
The air exchange between the Arctic and midlatitude regions is one of the processes forming the climate of the whole Northern Hemisphere. Analysis of the wind regime in the vicinity of the Arctic border (70° N) at the boundary between the 20th and 21st (1997–2004) centuries showed significant changes in the conditions of a meridional air transport between the Arctic and midlatitude regions as compared to the previous years (1960–1990). In this study, the wind fluxes of mass and heat (internal) and kinetic energies are estimated without consideration for turbulent and convective processes. The importance of spatial, seasonal, and interannual variations in wind velocity and air temperature in the formation of these fluxes is analyzed. It is shown that, during the period 1997–2004, an advective transport of energy from the northern latitudes occurred in the lower 6-km tropospheric layer at 70° N latitude over almost a whole year. Only in spring (April) did the wind fluxes bring heat energy from the south. The total amount of both heat and kinetic energies transported from the Arctic region in this way during a year is comparable to the mean amount of these energies contained in the whole atmosphere over the area bounded by 70° N latitude. The current spatial and temporal distributions of wind velocity and meridional mass and energy fluxes, which are presented in this study, may serve as additional information for interpreting data obtained from different on-site measurements in Arctic regions.  相似文献   

10.
为提高降雨条件下星载全极化微波辐射计海面风场精度,通过匹配WindSat海面风场和降雨率数据以及美国国家浮标中心浮标观测数据,得到18 996组匹配样本,深入分析了降雨对海面风场反演精度的严重影响,构建了风场校正模型。试验结果表明,降雨导致海面风速被严重高估,风向误差随着降雨率的增大而增大。校正后的风速精度在低风速段提升明显。无论降雨率多大,校正后风速精度均比校正前高。风速均方根误差由原来的2.9 m/s降低到了2.1 m/s,风向均方根误差由原来的26.9°降低到了26.3°。  相似文献   

11.
Under strong surface wind forcing during winter, direct current observations in the northern Sea of Japan show the existence of strong near-inertial currents in the deep water that is characterized by the extremely homogeneous vertical structures of temperature and salinity. However, the mechanism generating internal waves in the deep water of the northern Sea of Japan has not been well understood. In this study, to clarify the dynamical link between the surface wind forcing and near-inertial currents in the deep water of the northern Sea of Japan, we drive a general circulation model taking into account realistic wind stress, ocean bottom and land topography. In the northern Sea of Japan, the numerical results show that vertically coherent horizontal currents with a speed of ~ 0.05 m s?1 are excited throughout the homogeneous deep water. A two-layer model successfully reproduces the pattern of the horizontal current velocities shown by the general circulation model, indicating that internal waves emanate westward from the northwestern coast of Japan through coastal adjustment to the strong wind forcing event and, while propagating into the ocean interior, they excite evanescent near-inertial response throughout the lower layer below the interface.  相似文献   

12.
During the summer of 2008, the third CHINARE Arctic Expedition was carried out on board of Xuelong Icebreaker in the central Chukchi Sea. A submersible mooring system was deployed and recovered at Station CN-01 (71°40.024′N, 167°58.910′W) with 33 days of the current profile records, and continuous observation of temperature and salinity data were collected. This mooring station locates in the blank of similar observation area and it is the first time for our Chinese to finish this kind of long-termmooring work in this area. Thismooring systemfinished integrated hydrological observationswith long-termcontinuous record of the whole profile velocity for the first time. Based on time series analysis of temperature, salinity, velocity and flow direction, we get the following main results. (1) During the observation period, the mean surface current velocity is 70.2 cm/s eastward, and velocity reaches itsmaximumin average at 3mlevelwithmagnitude 90.0 cm/s, direction 206°. (2) In 9-30mlayers, the semidiurnal period variationis themost obvious, the flow direction is quite stable, and the flow is synchronous and consistent vertically. (3) Besides the semidiurnal period variation, the main variation in the upper layer is in 11-d period, with variations in period 5.5, 5.5, and 3.7 d, which reflect the influences of sea surface wind change and maintenance. (4) Near the bottom, the temperature change is correlated and synchronizedwith the conductivity.  相似文献   

13.
南海东北部夏季逆风流数值模拟   总被引:5,自引:1,他引:5  
以1939-1978年7月平均风场代表夏季风,数值求解南海流场对风应力输入的响应。结果表明,即使盛夏仍有黑潮水经巴土海峡流入南海;风应力与陆坡地形相互作用的影响。在116E以西陆坡上占优势,形成辐射上升,生成低水位带及冷水带,其北侧生成夏了逆风流;116E以东陆坡上,黑潮水占优势,具有向北分量流速的黑潮水在那里辐聚下沉形成高水位带及暖水带,其北侧生成东北向顺风流。  相似文献   

14.
Sukhanova  I. N.  Flint  M. V. 《Oceanology》2022,62(4):510-516
Oceanology - The material was obtained on July 18–24, 2016 in the area comprising the Ob River estuary and the adjacent shelf of the Kara Sea (71°28.3′–74°38.8′...  相似文献   

15.
The annual distribution and dispersal of early‐stage phyllosoma of the Japanese spiny lobster Panulirus japonicus were examined in the East China Sea and the Sea of Japan off western Japan. Early‐stage larvae were sampled mainly in summer and relatively near the coast off western Kyusyu Island. Few larvae were found in the other three seasons in the East China Sea and the Sea of Japan. This finding suggests that P. japonicus larvae are retained in coastal areas for a few months after hatching until stage V and are transported offshore until autumn, before they grow to stage VI. Examination of archival drifter data off western Kyusyu Island during the spawning season of P. japonicus supported the relatively rapid dispersal of the larvae from the East China Sea near Japan to the Pacific Ocean or the Sea of Japan. Larval transport from the East China Sea to the Pacific Ocean, which is considered to be a main distribution area of middle‐ and late‐stage larvae, would occur in the south at approximately 32–33°N in the East China Sea near western Kyusyu Island.  相似文献   

16.
In the southern Arabian Sea (between the Equator and 10°N), the shoaling of isotherms at subsurface levels (20 °C isotherm depth is located at ∼90 m) leads to cooling at 100 m by 2–3 °C relative to surrounding waters during the winter monsoon. The annual and interannual variations of this upwelling zone, which we call the Arabian Sea dome (ASD), are studied using results from an eddy-permitting ocean general circulation model in conjunction with hydrography and TOPEX/ERS altimeter data. The ASD first appears in the southeastern Arabian Sea during September–October, maturing during November–December to extend across the entire southern Arabian Sea (along ∼5°N). It begins to weaken in January and dissipates by March in the southwestern Arabian Sea. From the analysis of heat-budget balance terms and a pair of model control experiments, it is shown that the local Ekman upwelling induced by the positive wind-stress curl of the winter monsoon generates the ASD in the southeastern Arabian Sea. The ASD decays due to the weakening of the cyclonic curl of the wind and the westward penetration of warm water from the east (Southern Arabian Sea High). The interannual variation of the ASD is governed by variations in the Ekman upwelling induced by the cyclonic wind-stress curl. Associated with the unusual winds during 1994–1995 and 1997–1998 Indian Ocean dipole (IOD) periods, the ASD failed to develop. In the absence of the ASD during the IOD events, the 20 °C isotherm depth was 20–30 m deeper than normal in the southern Arabian Sea resulting in a temperature increase at 97 m of 4–5 °C. An implication is that the SST evolution in the southern Arabian Sea during the winter monsoon is primarily controlled by advective cooling: the shoaling of isotherms associated with the ASD leads to SST cooling.  相似文献   

17.
Based on the satellite altimetry dataset of sea level anomalies, the climatic hydrological database World Ocean Atlas-2009, ocean reanalysis ECMWF ORA-S3, and wind velocity components from NCEP/NCAR reanalysis, the interannual variability of Antarctic Circumpolar Current (ACC) transport in the ocean upper layer is investigated for the period 1959–2008, and estimations of correlative connections between ACC transport and wind velocity components are performed. It has been revealed that the maximum (by absolute value) linear trends of ACC transport over the last 50 years are observed in the date-line region, in the Western and Eastern Atlantic and the western part of the Indian Ocean. The greatest increase in wind velocity for this period for the zonal component is observed in Drake Passage, at Greenwich meridian, in the Indian Ocean near 90° E, and in the date-line region; for the meridional component, it is in the Western and Eastern Pacific, in Drake Passage, and to the south of Africa. It has been shown that the basic energy-carrying frequencies of interannual variability of ACC transport and wind velocity components, as well as their correlative connections, correspond to the periods of basic large-scale modes of atmospheric circulation: multidecadal and interdecadal oscillations, Antarctic Circumpolar Wave, Southern Annual Mode, and Southern Oscillation. A significant influence of the wind field on the interannual variability of ACC transport is observed in the Western Pacific (140° E–160° W) and Eastern Pacific; Drake Passage and Western Atlantic (90°–30° W); in the Eastern Atlantic and Western Indian Ocean (10°–70° E). It has been shown in the Pacific Ocean that the ACC transport responds to changes of the meridional wind more promptly than to changes of the zonal wind.  相似文献   

18.
The spatial and seasonal variability of primary production in the Japan Sea from 1998 to 2002 was estimated using a satellite primary production model. A size-fractionated primary production model was validated by in situ primary production data measured in the Japan Sea. Estimated primary production and in situ primary production showed a good positive correlation. Estimated primary production showed spatial variability. Annual primary production levels were 170, 161, 191 and 222 gC m−2year−1 at the Russian coast, in the middle of the Japan Basin, the southeastern area and the southwestern area, respectively. It was higher to the south around 40°N than to the north, and higher in the western area than in the eastern one. Peaks of primary production appeared twice, in spring and fall, in the southern area, while a single peak appeared in the northern area. Primary production along the Russian coast was higher than in other areas during summer. The spring bloom contributed 42% to the annual primary production in these four areas. Furthermore, estimated primary production showed an interannual variability that was largest in spring. Primary production in fall also showed interannual variability, especially in the middle of the Japan Basin and the southwestern area. This corresponded mainly to the size of the phytoplankton bloom in each year. Winter convection by wind and the depth of nutrient-rich, cold subsurface water underlying the Tsushima Current may contribute to the nutrient supply to upper layer and interannual variations of primary production in spring.  相似文献   

19.
Teleconnection between El Nino/La Nina-Southern Oscillation (ENSO) phenomenon and anomalous Antarctic sea-ice variation has been studied extensively.In this study,impacts of sea surface temperature in the Indian Ocean on Antarctic sea-ice change were investigated during Janaury 1979 and October 2009.Based on previous research results,sea areas in the western Indian Ocean (WIO;50°–70°E,10 °–20 °S) are selected for the resreach.All variables showed 1-10 year interannual timescales by Fast Founer Tranaform (FFT) transformation.Results show that i) strong WIO signals emerged in the anomalous changes of Antarctic sea-ice concentration;ii) significant positive correlations occurred around the Antarctic Peninsula,Ross Sea and its northwest peripheral sea region iii) negative correlation occurred in the Indian Ocean section of the Southern Ocean,Amundsen Seas,and the sea area over northern Ross Sea;and iv) the atmospheric anomalies associated with the WIO including wind,meridional heat flux,and surface air temperature over southern high latitudes were the possible factors for the teleconnection.  相似文献   

20.
A numerical technique is presented for simulating the hydrophysical fields of the Black Sea on a variable-step grid with refinement in the area of IO RAS polygon. Model primitive equations are written in spherical coordinates with an arbitrary arrangement of poles. In order to increase the horizontal resolution of the coastal zone in the area of the IO RAS polygon in the northeastern part of the sea near Gelendzhik, one of the poles is placed at a land point (38.35° E, 44.75° N). The model horizontal resolution varies from 150 m in the area of the IO RAS polygon to 4.6 km in the southwestern part of the Black Sea. The numerical technique makes it possible to simulate a large-scale structure of Black Sea circulation as well as the meso- and submesoscale dynamics of the coastal zone. In order to compute the atmospheric forcing, the results of the regional climate model WRF with a resolution of about 10 km in space and 1 h in time are used. In order to demonstrate the technique, Black Sea hydrophysical fields for 2011–2012 and a passive tracer transport representing self-cleaning of Gelendzhik Bay in July 2012 are simulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号