首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use statistical correlation of palaeomagnetic secular variation (PSV) curves from a varved Holocene lake sediment sequence in west central Sweden (Lake Kälksjön) against those of a Fennoscandian master stack (FENNOSTACK) to correct for an apparent error in the varve chronology. Additional correlation between a lead pollution-derived chronology for the last 2000 years corroborates the PSV results. Use of the FENNOSTACK palaeomagnetic master curve reveals no significant difference in duration between large-scale features from ~2500 to ~8000 cal. yrs BP. Statistical correlation, however, implies that 270 years are missing from the younger part (<1000 cal. yrs BP) of the varve chronology, and that there is an overestimation by approximately 230 years in the number of varves counted in the early Holocene (>8000 cal. yrs BP). A similar comparison between the PSV-determined ages and calibrated bulk radiocarbon ages suggests that the sediments of mid-Holocene age contain substantial amounts of old carbon, probably of soil origin, which causes bulk sediment-calibrated mean 14C ages to be up to 850 years older than the corrected varve chronology, which extends to 9193 ± 186 cal. yrs BP. This study highlights both the use of statistical correlation as a technique for detecting errors between chronologies, and the importance of validating incremental chronologies with more than one independent method.  相似文献   

2.
The Betic Cordillera and the Moroccan Rif together form one of the smallest and tightest orogenic arcs on Earth and almost completely close the Mediterranean to the west. For the explanation of the geodynamic evolution of the mountain belt, palaeomagnetic data that generally found clockwise block rotations in the Iberian and anticlockwise rotations in the Moroccan part of the mountain belt, have played a key role in recent works. This palaeomagnetic study has found new constraints on the rotations and timing of the peridotitic bodies outcropping in the key position at the westernmost margin of the mountain belt, in Ceuta and Beni Bousera (Rif, northern Africa).Detailed thermal demagnetization of 115 individually oriented samples from 14 sites was combined with rock magnetic and scanning electron microscopic experiments to analyze the magnetic mineralogy responsible for the remanences and the mechanisms and relative times of their acquisition. In Ceuta, up to three magnetic components, and in Beni Bousera, up to two magnetic components have been found, that are all to be interpreted as chemical remanent magnetizations (CRM). The data suggests the following succession of geodynamic events affecting the peridotites until recent times: (1) after their exhumation and subsequent cooling about 20 Ma ago, they recorded a characteristic remanent magnetization of both normal and reversed polarities, carried by (pseudo-)single-domain magnetite grains; (2) after their dismembering, the Ceuta peridotites were tilted southward by 22–34° about a horizontal or tilted axis (up to plunge 50°) with an azimuth of 72–145° and the Beni Bousera peridotites were rotated anticlockwise by 72.3 ± 12.1° about a vertical axis and (3) both recorded another magnetic signal of normal polarity only, carried by multi-domain magnetite grains; and finally (4) the Ceuta peridotites rotated anticlockwise by 19.7 ± 5.9° about a vertical axis.This study provides the first palaeomagnetic data for the Ceuta peridotites that, with their tilt and recent small net rotation, had a distinct geodynamic evolution from the large net rotations about vertical axes in Beni Bousera and Ronda (Betic Cordillera). Moreover, earlier palaemagnetic data for Beni Bousera is improved, as mixed polarities have been found in the older of the remanences for the first time, and its interpretation as a CRM changes the rotation timing that was proposed previously. The sequence of events exposed in this work are important constraints that need to be incorporated in any geodynamic model of the evolution of the Betic–Rifean mountain belt.  相似文献   

3.
Grain sizes in the range (10−4 to 10−1 mm) are common in some rocks. Because thermal and/or chemical remanent magnetization of hematite in this range approaches intensities of single domain (SD) magnetite, careful exploration of this transition, may serve to develop new applications in rock magnetism that relate to magnetic anomaly source identification, and various paleomagnetic and grain size-dependent investigations.Grain size-dependent magnetic behavior of hematite reveals a SD–multidomain (MD) transition at 0.1 mm. This transition is recognized by variation in magnetic coercivity and susceptibility and is related to an anomaly in remanence recovery when cycling through the Morin transition. The coercivity decrease with increasing grain size occurs much more gradually above 0.1 mm than below this value. Magnetic susceptibility of the grains smaller than 0.1 mm has negligible dependence on the amplitude of the applied alternating magnetic field. For the larger grains a new amplitude-dependent susceptibility component is observed. The grain size of 0.1 mm is also associated with loss of most of the remanence when cycling through the Morin transition. This behavior is ascribed to a transition from the metastable SD to the MD magnetic state. The increase in magnetized volume causes the demagnetizing energy to destabilize the SD state, resulting in a transition where the demagnetizing energy is reduced by nucleation of the domain wall for grains larger than 0.1 mm. The 0.1 mm transition has no significant effect on shape of the temperature-dependent coercivity and saturation magnetization.  相似文献   

4.
This study characterized the magnetic property and levels of heavy metals of the topsoils near a cement plant. The concentrations of five selected heavy metals (Pb, Cu, Zn and Cd) were measured on 32 topsoil samples (0–20 cm) collected near a cement plant via inductively coupled plasma/mass spectroscopy (ICP-MS). The orders of enrichment factors (EF), on average, were Cd (7.3) > Cu (3) > Zn (2.9) > Pb (2.1), respectively. A self-organizing map (SOM) was applied to the concentrations of heavy metals for “correlation hunting”. Mineral magnetic concentration parameters, such as the specific magnetic susceptibility (χ), susceptibility of anhysteretic remanent magnetization (χARM), saturation isothermal remanent magnetization (SIRM), together with interparametric ratios (such as IRM 100mT/SIRM, SIRM/χ, χARM/SIRM) show that ferrimagnetic, superparamagnetic (SP) and multi-domain (MD) minerals dominated the soils. The results of correlation analysis indicate that copper showed a significant correlation with χ, χARM and SIRM but such a relationship with χ, χARM and SIRM was only weakly identified for Zn, Cd and Pb.  相似文献   

5.
The Late Jurassic Kimmeridge Clay Formation (KCF) is an economically important, organic-rich source rock of Kimmeridgian–Early Tithonian age. The main rock types of the KCF in Dorset, UK, include grey to black laminated shale, marl, coccolithic limestone, and dolostone, which occur with an obvious cyclicity at astronomical timescales. In this study, we examine two high-resolution borehole records (Swanworth Quarry 1 and Metherhills 1) obtained as part of a Rapid Global Geological Events (RGGE) sediment drilling project. Datasets examined were total organic carbon (TOC), and borehole wall microconductivity by Formation Microscanner (FMS). Our intent is to assess the rhythmicity of the KCF with respect to the astronomical timescale, and to discuss the results with respect to other key Late Jurassic geological processes. Power spectra of the untuned data reveal a hierarchy of cycles throughout the KCF with ~ 167 m, ~ 40 m, 9.1 m, 3.8 m and 1.6 m wavelengths. Tuning the ~ 40 m cycles to the 405-kyr eccentricity cycle shows the presence of all the astronomical parameters: eccentricity, obliquity, and precession index. In particular, ~ 100-kyr and 405-kyr eccentricity cycles are strongly expressed in both records. The 405-kyr eccentricity cycle corresponds to relative sea-level changes inferred from sequence stratigraphy. Intervals with elevated TOC are associated with strong obliquity forcing. The 405-kyr-tuned duration of the lower KCF (Kimmeridgian Stage) is 3.47 Myr, and the upper KCF (early part of the Tithonian Stage, elegans to fittoni ammonite zones) is 3.32 Myr. Two other chronologies test the consistency of this age model by tuning ~ 8–10 m cycles to 100-kyr (short eccentricity), and ~ 3–5 m cycles to 36-kyr (Jurassic obliquity). The ‘obliquity-tuned’ chronology resolves an accumulation history for the KCF with a variation that strongly resembles that of Earth's orbital eccentricity predicted for 147.2 Ma to 153.8 Ma. There is evidence for significant non-deposition (up to 1 million years) in the lowermost KCF (bayleimutabilis zones), which would indicate a Kimmeridgian/Oxfordian boundary age of 154.8 Ma. This absolute calibration allows assignment of precise numerical ages to zonal boundaries, sequence surfaces, and polarity chrons of the lower M-sequence.  相似文献   

6.
Windsor–Essex County is a major cross-border truck and transportation route, with significant localized industrialization as well as rural and farming areas. Magnetic property measurements (in-field and laboratory susceptibility, frequency-dependent susceptibility, hysteresis properties, thermomagnetic and thermosusceptibility curves, anhysteretic and isothermal magnetizations) were made in order to determine the potential for using such variables to distinguish between natural and anthropogenic pollutants. In-field magnetic susceptibility measured on 324 soil sampling sites on a 0.5–2 km grid spacing through Windsor–Essex County ranged from 3.7 × 10 6 to 305.2 × 10 6 SI (average 36.2 ± 35.8 × 10 6 SI), and showed that high magnetic susceptibility values were obtained on soil sampling sites in and around the cities/towns of Windsor, Harrow, Olinda and Oakland and near the beaches of Point Pelee National Park (PPNP) and Deerbrook, whereas lower susceptibility values were observed in near the towns of Lakeshore and Essex. On this grid spacing, Highway 401 (the major truck route) did not show anomalous susceptibility values; however, closer (1–3 m) sampling on other roads did show anomalously high values, suggesting that the coarser grid spacing may have missed anomalies. Laboratory measurements indicated that the dominant magnetic mineral in the Windsor–Essex County soils is magnetite; however, the grain size is variable. Pseudo-single domain (PSD)–multidomain (MD) magnetite is generally found on beaches and in PPNP, whereas single domain (SD)–PSD magnetite has been found near the City of Windsor and other towns. While certain correlations exist between some anthropogenic activities and the measured magnetic susceptibility and magnetic property values, no overall correlation can be made. A variety of geologic and anthropogenic factors must be considered when interpreting the origin of the magnetic signal in a particular area.  相似文献   

7.
《Geofísica Internacional》2014,53(4):365-383
Climatic changes are reflected in variations of different parameters. Sequences of lake sediments are good sources of this information because they provide continuous and detailed records of palaeoclimatic changes. In order to determine the changes in climate in SE Pampas plain, in this paper we present a series of rock magnetic studies performed on a bottom core collected from Lake La Brava (Argentina).In order to establish lake level variations, we also measure total sulphur, organic and inorganic carbon (TS, TOC and TIC) content, alkaline elements, light and heavy metals and changes in vegetation communities. Five radiocarbon age determinations were made from samples of organic-rich clay and calibrated ages were calculated. The averaged sediment accumulation rate is 1.3 mm/yr and the sequence represents a temporal extent of about 4800 calibrated years before the present (cal. BP).The main aim was to reconstruct the hydrological balance of the lake, the changes in erosional strength and sediment supply within the catchment area since the Middle Holocene, and to explore the extent to which these may be linked to changes in climate and/or human activities. The results of this work and previous studies suggest periodic changes from cooler to warmer and humid conditions. Relationships between submerged and emergent plants are consistent with the behaviour of magnetic susceptibility. TOC changes suggest wet environment during magnetic enhancement. Floods and lower lake level events were identified in detail. Changes in sediment contribution and depositional processes for the last 50 cal. BP are caused by human impact, particularly by the use of natural resources.  相似文献   

8.
The present study demonstrates how the Paleo-Proterozoic Wangtu Gneissic Complex (WGC) of the Lesser Himalayan Crystalline sequence experienced superposed folding and doming prior to its exhumation, with the help of integrated field, microstructural, magnetic fabric anisotropy and geochronological studies. The WGC forms the basement of the Lesser Himalaya and is bounded by Vaikrita Thrust (VT) to the northeast and Munsiari Thrust (MT) to the southwest. The regional structure consists of upright large scale early folds (D1) trending NW–SE. The mesoscopic fabric is related to axial plane foliation of the D1 folds and, to a lesser extent, late D2 folds. The axis of maximum compression for D1 and D2 folds are mutually orthogonal. The D1 folds have formed simultaneously with the major Himalayan thrusts whereas the D2 folds have developed during a later deformation event. The magnetic lineation at the hangingwall of the VT is sub-horizontal indicating stretching along the strike of the thrust. In the interior parts of the WGC, the magnetic fabric is of two types: (i) magnetic lineation demarks the intersection of mesoscopic and magnetic foliation indicating superposed deformation and (ii) scattered distribution of magnetic lineations due to D2 folding on initially curved and non-cylindrical D1 surface. 40Ar–39Ar dating of biotite from one site from the core of WGC gives an age of 9.3 ± 0.3 (2σ) Ma. It is inferred that the doming of the WGC took place at ∼9 Ma and, instead of large scale thrusting, it is characterized by superposed folding and strike-parallel stretching along the VT zone. It is suggested that the effect of superposed folding and ductile deformation of the Himalayan basement rocks has to be taken into account before cross-section balancing or any estimation of crustal shortening is attempted.  相似文献   

9.
This study was conducted to determine the vertical and horizontal distribution of selected metals and magnetic susceptibility (χlf) in an industrial site located in Isfahan province, central Iran. For this purpose, we used a grid sampling methodology and excavated 202 profiles. Soil samples were then collected from 0–30, 60–90, and 120–150 cm depths. The mass magnetic susceptibility (χ) of the soil samples was measured at both low and high frequencies (χlf and χhf) using the Bartington MS2 dual frequency sensor; and χfd was also calculated. Soil samples were also analyzed for iron (Fe), manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), nickel (Ni), chromium (Cr) and cobalt (Co) concentrations. The results showed that there were positive significant correlations among selected metals including Zn, Pb, Fe and Mn, which were mainly added through coal fly ash from an iron smelting factory at the studied site, while the concentration of Ni, Cr and Co was mainly controlled by the parent material of the soils. The trends in results at the site of study were similar in vertical and horizontal distribution for the industrial originated metals as judged by pollution load index (PLI) using χlf. The results of SEM/EDX also confirmed the presence of spheroid of magnetic particles in the surface soil samples taken in close proximity of the factory. Based on the results using the contamination factors (CF) determined for selected metals, the following order was observed: Pb > Zn > Mn > Fe > Cu > Ni  Co > Cr. The results also suggested that magnetic methods could be used to estimate the metal contamination from anthropogenic sources in industrial soils.  相似文献   

10.
With transmission electron microscopy (TEM) we observed nanometer-sized pores in four ultracataclastic and fractured core samples recovered from different depths of the main bore hole of the San Andreas Fault Observatory at Depth (SAFOD). Cutting of foils with a focused ion beam technique (FIB) allowed identifying porosity down to the nm scale. Between 40 and 50% of all pores could be identified as in-situ pores without any damage related to sample preparation. The total porosity estimated from TEM micrographs (1–5%) is comparable to the connected fault rock porosity (2.8–6.7%) estimated by pressure-induced injection of mercury. Permeability estimates for cataclastic fault rocks are 10? 21–10? 19 m2 and 10? 17 m2 for the fractured fault rock. Porosity and permeability are independent of sample depth. TEM images reveal that the porosity is intimately linked to fault rock composition and associated with deformation. The TEM-estimated porosity of the samples increases with increasing clay content. The highest porosity was estimated in the vicinity of an active fault trace. The largest pores with an equivalent radius > 200 nm occur around large quartz and feldspar grains or grain-fragments while the smallest pores (equivalent radius < 50 nm) are typically observed in the extremely fine-grained matrix (grain size < 1 μm). Based on pore morphology we distinguish different pore types varying with fault rock fabric and alteration. The pores were probably filled with formation water and/or hydrothermal fluids at elevated pore fluid pressure, preventing pore collapse. The pore geometry derived from TEM observations and BET (Brunauer, Emmett and Teller) gas adsorption/desorption hysteresis curves indicates pore blocking effects in the fine-grained matrix. Observations of isolated pores in TEM micrographs and high pore body to pore throat ratios inferred from mercury injection suggest elevated pore fluid pressure in the low permeability cataclasites, reducing shear strength of the fault.  相似文献   

11.
The objective of this study was to explore the slope position and land use change effects on the variability in magnetic susceptibility and 137Cs inventory as the soil redistribution indicators in a hilly semiarid calcareous area in Iran. The selected study area is located in a hilly region with pasture and cultivation land use of Fereydunshahr, Isfahan Province in west-central Iran. In the two mentioned dominant ecosystems, four slope positions including summit, shoulder, backslope and footslope were identified and in each land use and slope position, three cores were selected to collect 72 soil samples from three depths (0–10, 10–20, 20–30 cm) in an area of 15 × 15 cm. Additional 28 soil samples were collected from the reference site for soil loss and deposition calculations by using the Cs-137 measurement. The results of the study with the use of the Cs-137 technique showed that the average soil loss in the pasture land (46.4 t ha 1 yr 1) was significantly (p < 0.05) lower than the average soil loss in the cultivated land (80.4 t ha 1 yr 1). The highest soil loss in both land uses was obtained in the shoulder position, 60.1 and 84.4 t ha 1 yr 1, respectively, for the pasture and cultivated lands. Moreover, the highest rates of soil deposition was observed in a footslope position in both land uses and they were 34 and 32.4 t ha 1 yr 1 for the pasture and cultivated lands, respectively. Magnetic susceptibility was significantly (p < 0.05) greater in pasture (χlf = 41.51 × 10 8 m3/kg) than in the cultivated land (χlf = 34.90 × 10 8 m3/kg). The pasture land with a lower soil loss rate, indicated significantly higher magnetic susceptibility in all landform positions as compared to that in the cultivated land. The results of the correlation analysis showed that among the studied soil physico-chemical properties, χlf (r = 0.83, p < 0.01) in the pasture land had the highest correlation with the Cs-137 inventory. Throughout the non-linear regression analysis, χlf was introduced for relating soil parameters and the cesium inventory explained 68% and 79% of the total variability of 137Cs in the pasture and cultivated lands, respectively. The results implied that the variability in the magnetic susceptibility within the hillslope is consistent with the variation of the Cs-inventory; and the results thus demonstrate the slope and land use effects on soil redistribution.  相似文献   

12.
The southernmost segment of the Andes of southern Patagonia and Tierra del Fuego forms a ~ 700 km long orogenic re-entrant with an interlimb angle of ~ 90° known as Patagonian orocline. No reliable paleomagnetic evidence has been gathered so far to assess whether this great orogenic bend is a primary arc formed over an articulated paleomargin, or is due to bending of a previously less curved (or rectilinear) chain. Here we report on an extensive paleomagnetic and anisotropy of magnetic susceptibility (AMS) study carried out on 22 sites (298 oriented cores), predominantly sampled in Eocene marine clays from the external Magallanes belt of Tierra del Fuego. Five sites (out of six giving reliable paleomagnetic results) containing magnetite and subordinate iron sulphides yield a positive fold test at the 99% significance level, and document no significant rotation since ~ 50 Ma. Thus, the Patagonian orocline is either a primary bend, or an orocline formed after Cretaceous–earliest Tertiary rotations. Our data imply that the opening of the Drake Passage between South America and Antarctica (probably causing the onset of Antarctica glaciation and global climate cooling), was definitely not related to the formation of the Patagonian orocline, but was likely the sole consequence of the 32 ± 2 Ma Scotia plate spreading. Well-defined magnetic lineations gathered at 18 sites from the Magallanes belt are sub-parallel to (mostly E–W) local fold axes, while they trend randomly at two sites from the Magallanes foreland. Our and previous AMS data consistently show that the Fuegian Andes were characterized by a N–S compression and northward displacing fold–thrust sheets during Eocene–early Miocene times (50–20 Ma), an unexpected kinematics considering coeval South America–Antarctica relative motion. Both paleomagnetic and AMS data suggest no significant influence from the E–W left-lateral Magallanes–Fagnano strike–slip fault system (MFFS), running a few kilometres south of our sampling sites. We thus speculate that strike–slip fault offset in the Fuegian Andes may range in the lower bound values (~ 20 km) among those proposed so far. In any case our data exclude any influence of strike–slip tectonics on the genesis of the great orogenic bend called Patagonian orocline.  相似文献   

13.
Electrical conductivity and seismic velocity are studied for plausible pore geometries in the Earth's interior for reliable quantitative analysis of experimental data such as seismic tomography and magnetotelluric explorations. Electrical conductivity of a two-phase system with equilibrium, interfacial energy-controlled phase geometry is calculated for the dihedral angles θ = 40°–100° that are typical for rock–aqueous fluid and θ = 20°–60° for rock–melt systems of lower crust and upper mantle for the case of tetrakaidecahedral grains. Electrical conductivity vs. seismic velocity correlations are acquired by combining of the simulated electrical conductivities with the seismic velocity calculated with the help of equilibrium geometry model Takei [Takei, Y., Effect of pore geometry on VP/VS: From equilibrium geometry to crack. J. Geophys. Res. 107 (2002): 10.1029/2001JB000522.] for the same pore geometries. The results show that electrical conductivity gradually decreases reaching zero when seismic velocities reach seismic velocities of intact rock for rock–melt systems, while for rock–aqueous fluid systems with θ  60° conductivity drops to zero at velocities up to 10% smaller. This can explain the seeming discrepancy of the low seismic velocity region, attributed to the high fluid fraction, and the low electrical conductivity of the same region, which is sometimes faced at collocated electromagnetic and seismic experiments.  相似文献   

14.
To study the relations of the polar cap (PC) magnetic activity (characterized by the PC index) to magnetic disturbances in the auroral zone (AL index) the behavior of 62 repetitive bay-like magnetic disturbances has been analyzed. It was found that the PC index, derived as a proxy of the geoeffective interplanetary electric field Em, starts to increase, on average, about 30 min ahead of the magnetic disturbance onset. Value of Em and PC~2 mV/m seems to be necessary for development of the repetitive bay-like disturbances with peak AL exceeding 400 nT. Growth phase duration (the time interval between the start of PC increase and AL sudden onset) and intensity of magnetic disturbances in the auroral zone (AL max) highly correlate with the PC growth rate. The growth phase reduces to a few minutes, if the PC index suddenly jumps above ~6–8 mV/m. The sharp development of Birkeland current wedge during expansion phase insignificantly influences the polar cap activity: the corresponding PC index increase does not exceed 10–20% of the PC value. It is concluded that the PC index may be considered as a convenient proxy of the solar wind energy input into the magnetosphere.  相似文献   

15.
Raindrops falling on the sea surface produce turbulence. The present study examined the influence of rain-induced turbulence on oil droplet size and dispersion of oil spills in Douglas Channel in British Columbia, Canada using hourly atmospheric data in 2011–2013. We examined three types of oils: a light oil (Cold Lake Diluent - CLD), and two heavy oils (Cold Lake Blend - CLB and Access Western Blend - AWB). We found that the turbulent energy dissipation rate produced by rainfalls is comparable to what is produced by wind-induced wave breaking in our study area. With the use of chemical dispersants, our results indicate that a heavy rainfall (rain rate > 20 mm h? 1) can produce the maximum droplet size of 300 μm for light oil and 1000 μm for heavy oils, and it can disperse the light oil with fraction of 22–45% and the heavy oils of 8–13%, respectively. Heavy rainfalls could be a factor for the fate of oil spills in Douglas Channel, especially for a spill of light oil and the use of chemical dispersants.  相似文献   

16.
This study seeks to establish a new system characteristic describing dayside convective flows in the coupled magnetosphere–ionosphere: the low-pass filter function through which interplanetary magnetic field (IMF) fluctuations are processed as they are communicated from the magnetopause to the high-latitude ionosphere near local noon. In doing so, this study confirms that variations in the ionospheric flows at high-latitudes near local noon are well correlated with variations in the IMF orientation and magnitude on short timescales. We construct the filter function by comparing time series of the ionospheric equivalent flows at a fixed location at magnetic local noon and 80° latitude with time series of the IMF. The coherence spectra of these two parameters—averaged over 330 h of comparison—indicate that there is a low-pass cutoff in the ionospheric response to IMF driving at a periods shorter than 20 min (frequencies higher than 0.8 mHz). When there is sufficient power in the IMF fluctuations, this cutoff is relatively sharp—the coherence drops by roughly a factor of three between the periods 32 and 21 min (0.5 and 0.8 mHz). The results also show that on average the coherence between the east–west component of the equivalent flows and IMF By tends to be less than the coherence between the north–south component of the equivalent flows and IMF Bz.  相似文献   

17.
Outcrops of the Cretaceous Upper sandstone formation some 375 km to the East of Addis Ababa on the motor Highway to Harar was paleomagnetically investigated. About seventy core samples were collected at various stratigraphic levels from 250–300 meters thick sedimentary formation. After standard sample preparations in the laboratory the resulting specimens were subjected to routine paleomagnetic demagnetization protocol. In the first steps of demagnetizations process the recent and viscous magnetizations were removed by heating until a temperature of level of 300 °C. Further demagnetization of the samples resulted in the isolation of the final magnetization with stable line segments that is directed towards the origin, which is interpreted as Characteristic Remanent Magnetization (ChRM). Rock – magnetic experiments have identified goethite (αFeOOH), hematite (αFe2O3), detritial hematite, and magnetite as the magnetic mineral phases carrying the remanence. The ChRM identified resulted in an average value of (Ds = 0.5°, Is = ?0.7°, α95 = 4.3°, N = 34) for the red sandstones while an average value of (Ds = 335.8°, Is = ?31.8°, α95 = 4.7°, N = 14) for the limestone intercalations. The former ChRM in the red sandstone is determined to be secondary while the latter ChRM is known to be primary. Comparison of these directional results and their pole equivalents with the African plate Apparent Polar Wander Path curve established by Besse and Courtillot (2003) give ages of between 115–130 Million years for the limestone intercalation and ages of 30 million years for red sandstone unit. These are interpreted respectively as estimates of the age of deposition and a later remagnetization respectively.  相似文献   

18.
The basic characteristics of the global distribution for the corona plasma and magnetic field near 2.5 Rs are analyzed with the statistical and numerical methods for 136 Carrington Rotations (CRs) covering four different phases of solar activity. By using the observational data and the velocity distribution model in the corona, the statistical average distribution of the magnetic field, density and the coronal mass outputs are analyzed for the four different phases. Then, a numerical study of the global distribution near 2.5 Rs has been made by solving a self-consistent MHD system. Finally, the solar wind speed at 1 AU is given by mapping the speed at 2.5 Rs to that near 1 AU, and the comparison of the numerical results with the observational measurements and the simulation result of the Wang–Sheeley–Arge (WSA) model are made during more than 5 years. The numerical results indicate that the global distributions on the source surface of 2.5 Rs at different phases of solar activity could be used to predict the change of the solar wind in interplanetary space.  相似文献   

19.
The northern Tehran fault (NTF) is a principal active fault of the Alborz mountain belt in the northern Iran. The fault is located north of the highly populated Metropolitan Area of Tehran. Historical records and paleoseismological studies have shown that the NTF poses a high seismic risk for the Tehran region and the surrounding cities (e.g. Karaj). A series of ground-motion simulations are carried out using a hybrid kinematic-stochastic model to calculate broadband (0.1–20 Hz) ground-motion time histories for deterministic earthquake scenarios (M7.2) on the NTF. We will describe the source characteristics of the target event to develop a list of scenario earthquakes that are probably similar to a large earthquake on the NTF. The effect of varying different rupture parameters such as rupture velocity and rise time on the resulting broadband strong motions has been investigated to evaluate the range of uncertainty in seismic scenarios. The most significant parameters in terms of ground-shaking level are the rise time and the value of the rupture velocity. For the worst-case scenario, the maximum expected horizontal acceleration, and velocity at rock sites in Tehran range between 128 and 1315 cm/s/s and 11–191 cm/s, respectively. For the lowest scenario, the corresponding values range between 102 and 776 cm/s/s and 12 to 81 cm/s. Nonlinear soil effects may change these results but are not accounted for in this study. The largest variability of ground motion is observed in neighborhood of asperity and also in the direction of rupture propagation. The calculated standard deviation of all ground-motion scenarios is less than 30% of the mean. The capability of the simulation method to synthesize expected ground motions and the appropriateness of the key parameters used in the simulations are confirmed by comparing the synthetic peak ground motions (PGA, PGV and response spectra) with empirical ground-motion prediction equations.  相似文献   

20.
Parallel studies on rock magnetic properties, petrology and mineralogy were conducted on 16 eclogite samples from the ZK703 hole and magnetic susceptibilities and densities of 41 eclogite samples with different degree of retrograde metamorphism (from fresh eclogite to fully-retrograded eclogite) from the Chinese Continental Scientific Drilling (CCSD) near the ZK703 hole, located at Donghai, southern Sulu ultrahigh-pressure metamorphic belt, eastern China. Results show: (1) that the high-field slopes obtained from the hysteresis loops (the paramagnetic fraction χpara) and density have a positive correlation with the volume concentration of garnet + omphacite, a typical mineral assemblage used to semi-quantify the degree of retrograde metamorphism. The low-field slopes obtained from hysteresis loops (the ferrimagnetic susceptibility fraction χferri), saturation isothermal remanent magnetization Mrs and saturation magnetization Ms have a positive correlation with the volume concentration of symplectite, a mineral related to retrograded metamorphism. Therefore they could be potential indicators for quickly semi-quantifying the degree of retrograde metamorphism of the eclogite units. (2) The dominant magnetic carriers in retrograded eclogites are magnetite particles in pseudo-single domain grain size region. (3) The PT conditions during the retrograde (decompressional) process could first increase the concentration of magnetite, which can reach up to 3% for extensively retrograded eclogite and then was dissolved for fully-retrograded eclogite. Therefore, change in the magnetite contents during the retrograde process is the major factor controlling the magnetism of retrograde eclogites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号