首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 897 毫秒
1.
Water is not currently stable in liquid form on the martian surface due to the present mean atmospheric pressure of ~7 mbar and mean global temperature of ~220 K. However, geomorphic features and hydrated mineral assemblages suggest that Mars’ climate was once warmer and liquid water flowed on the surface. These observations may indicate a substantially more massive atmosphere in the past, but there have been few observational constraints on paleoatmospheric pressures. Here we show how the 40Ar/36Ar ratios of trapped gases within martian meteorite ALH 84001 constrain paleoatmospheric pressure on Mars during the Noachian era [~4.56–3.8 billion years (Ga)]. Our model indicates that atmospheric pressures did not exceed ~1.5 bar during the first 400 million years (Ma) of the Noachian era, and were <400 mbar by 4.16 Ga. Such pressures of CO2 are only sufficient to stabilize liquid water on Mars’ surface at low latitudes during seasonally warm periods. Other greenhouse gases like SO2 and water vapor may have played an important role in intermittently stabilizing liquid water at higher latitudes following major volcanic eruptions or impact events.  相似文献   

2.
Data from the Pathfinder and Phoenix landers on Mars show transient pressure drops (~1–4 per day) attributed to nearby encounters with dust devils or dust-free vortices. The distribution of pressure drop amplitudes is consistent with a truncated power law distribution with a slope of ?2, similar to that suggested previously for the optical diameters of dust devils. Comparable data from terrestrial field observations are very sparse: the only published dataset is half a century old and lists only 19 pressure drops. That dataset is too small to permit a robust comparison with Mars and likely suffers from a low detection efficiency at small dust devil sizes. Observed pressure drops in these fixed-station Mars datasets (30–300 μbar) are 10× lower than those typically observed on Earth (0.3–3 mbar): some higher drops have been reported for large terrestrial devils sampled by pursuing vehicles. The needed terrestrial data for comparison with Mars in-situ data (soon to be augmented, we hope, by the Mars Science Laboratory mission) is noted. Prospects for obtaining such data via field campaigns using new data acquisition technology, and with microbarographs for nuclear test monitoring, are discussed.  相似文献   

3.
The IRTF/CSHELL observations in February 2006 at LS = 10° and 63–93°W show ~10 ppb of methane at 45°S to 7°N and ~3 ppb outside this region that covers the deepest canyon Valles Marineris. Observations in December 2009 at LS = 20° and 0–30°W included spectra of the Moon at a similar airmass as a telluric calibrator. A technique for extraction of the martian methane line from a combination of the Mars and Moon spectra has been developed. The observations reveal no methane with an upper limit of 8 ppb. The results of both sessions agree with the observations by Mumma et al. (Mumma, M.J. et al. [2009]. Science 323, 1041–1045) at the same season in February 2006 and are smaller than those in the PFS and TES maps. Production and removal of the biological methane on Mars do not significantly change the redox state of the atmosphere and the balance of hydrogen. A search for ethane at 2977 cm?1 results in an upper limit of 0.2 ppb. However, this limit does not help to establish the origin of methane on Mars. Reanalysis of our search for SO2 using TEXES confirms the recently established upper limit of 0.3 ppb. Along with the lack of hot spots and gas vents with endogenic heat sources in the THEMIS observations, the very low upper limit to SO2 on Mars does not favor geological methane that is less abundant than SO2 in the outgassing from the terrestrial planets.  相似文献   

4.
The two orders of magnitude drop between the measured atmospheric abundances of non-radiogenic argon, krypton and xenon in Earth versus Mars is striking. Here, in order to account for this difference, we explore the hypothesis that clathrate deposits incorporated into the current martian cryosphere have sequestered significant amounts of these noble gases assuming they were initially present in the paleoatmosphere in quantities similar to those measured on Earth (in mass of noble gas per unit mass of the planet). To do so, we use a statistical-thermodynamic model that predicts the clathrate composition formed from a carbon dioxide-dominated paleoatmosphere whose surface pressure ranges up to 3 bars. The influence of the presence of atmospheric sulfur dioxide on clathrate composition is investigated and we find that it does not alter the trapping efficiencies of other minor species. Assuming nominal structural parameters for the clathrate cages, we find that a carbon dioxide equivalent pressure of 0.03 and 0.9 bar is sufficient to trap masses of xenon and krypton, respectively, equivalent to those found on Earth in the clathrate deposits of the cryosphere. In this case, the amount of trapped argon is not sufficient to explain the measured Earth/Mars argon abundance ratio in the considered pressure range. In contrast, with a 2% contraction of the clathrate cages, masses of xenon, krypton and argon at least equivalent to those found on Earth can be incorporated into clathrates if one assumes the trapping of carbon dioxide at equivalent atmospheric pressures of ~2.3 bar. The proposed clathrate trapping mechanism could have then played an important role in the shaping of the current martian atmosphere.  相似文献   

5.
The South Equatorial Belt (SEB) of Jupiter is known to alternate its appearance at visible wavelengths from a classical belt-like band most of the time to a short-lived zone-like aspect which is called a “fade” of the belt, hereafter SEBF. The albedo change of the SEB is due to a change in the structure and properties of the clouds and upper hazes. Recent works based on infrared observations of the last SEBF have shown that the aerosol density below 1 bar increased in parallel with the reflectivity change. However, the nature of the change in the upper clouds and hazes that produces the visible reflectivity change and whether or not this reflectivity change is accompanied by a change in the winds at the upper cloud level remained unknown. In this paper we focus in the near ultraviolet to near infrared reflected sunlight (255–953 nm) to address these two issues. We characterize the vertical cloud structure above the ammonia condensation level from Hubble Space Telescope images, and the zonal wind velocities from long-term high-quality images coming from the International Outer Planet Watch database, both during the SEB and SEBF phases. We show that reflectivity changes do not happen simultaneously in this wavelength range, but they start earlier in the most deep-sensing filters and end in 2010 with just minor changes in those sensing the highest particle layers. Our models require a substantial increase of the optical thickness of the cloud deck at 1.0 ± 0.4 bar from τcloud = 6 ± 2 in July 2009 (SEB phase) to semiinfinite at visual wavelengths in 2010 (SEBF). Upper tropospheric particles (~240–1400 mbar) are also required to become substantially reflectant and their single scattering albedo in the blue changes from ?0 = 0.905 ± 0.005 in November 2009 to ?0 = 0.95 ± 0.01 in June 2010. No significant changes were found in the cloud top heights or in the particle density of the tropospheric haze. The disturbance travels from the levels below ~3 bar to a level about 400 ± 100 mbar. We derive an upward velocity of 0.15 ± 0.05 cm/s, in agreement with a diffusive process in Jupiter’s upper troposphere requiring a mean eddy coefficient K  8 × 105 cm2 s?1. On the other hand, cloud tracking on the IOPW imaging showed no significant changes in the zonal wind profile between the SEB and SEBF stages. As in other visually huge changes in Jupiter’s cloud morphology and structure, the wind profile remains robust, possibly indicating a deeply rooted dynamical regime.  相似文献   

6.
Within several days of A. Wesley’s announcement that Jupiter was hit by an object on UT 19 July 2009, we observed the impact site with (1) the Hubble Space Telescope (HST) at UV through visible (225–924 nm) wavelengths, (2) the 10-m W.M. Keck II telescope in the near-infrared (1–5 μm), and (3) the 8-m Gemini-North telescope in the mid-infrared (7.7–18 μm). All observations reported here were obtained between 22 and 25 July 2009. Observations at visible and near-infrared wavelengths show that large (~0.75-μm radius) dark (imaginary index of refraction mi  0.01–0.1) particulates were deposited at atmospheric pressures between 10 and 200–300 mbar; analysis of HST-UV data reveals that in addition smaller-sized (~0.1 μm radius) material must have been deposited at the highest altitudes (~10 mbar). Differences in morphology between the UV and visible/near-IR images suggest three-dimensional variations in particle size and density across the impact site, which probably were induced during the explosion and associated events. At mid-infrared wavelengths the brightness temperature increased due to both an enhancement in the stratospheric NH3 gas abundance and the physical temperature of the atmosphere. This high brightness temperature coincides with the center part of the impact site as seen with HST. This observation, combined with (published) numerical simulations of the Shoemaker-Levy 9 impacts on Jupiter and the Tunguska airburst on Earth, suggests that the downward jet from the terminal explosion probably penetrated down to the ~700-mbar level.  相似文献   

7.
The planet-encircling springtime storm in Saturn’s troposphere (December 2010–July 2011, Fletcher, L.N. et al. [2011]. Science 332, 1413–1414; Sánchez-Lavega, A. et al. [2011]. Nature 475, 71–74; Fischer, G. et al. [2011]. Nature 475, 75–77) produced dramatic perturbations to stratospheric temperatures, winds and composition at mbar pressures that persisted long after the tropospheric disturbance had abated. Thermal infrared (IR) spectroscopy from the Cassini Composite Infrared Spectrometer (CIRS), supported by ground-based IR imaging from the VISIR instrument on the Very Large Telescope and the MIRSI instrument on NASA’s IRTF, is used to track the evolution of a large, hot stratospheric anticyclone between January 2011 and March 2012. The evolutionary sequence can be divided into three phases: (I) the formation and intensification of two distinct warm airmasses near 0.5 mbar between 25 and 35°N (B1 and B2) between January–April 2011, moving westward with different zonal velocities, B1 residing directly above the convective tropospheric storm head; (II) the merging of the warm airmasses to form the large single ‘stratospheric beacon’ near 40°N (B0) between April and June 2011, disassociated from the storm head and at a higher pressure (2 mbar) than the original beacons, a downward shift of 1.4 scale heights (approximately 85 km) post-merger; and (III) the mature phase characterised by slow cooling (0.11 ± 0.01 K/day) and longitudinal shrinkage of the anticyclone since July 2011. Peak temperatures of 221.6 ± 1.4 K at 2 mbar were measured on May 5th 2011 immediately after the merger, some 80 K warmer than the quiescent surroundings. From July 2011 to the time of writing, B0 remained as a long-lived stable stratospheric phenomenon at 2 mbar, moving west with a near-constant velocity of 2.70 ± 0.04 deg/day (?24.5 ± 0.4 m/s at 40°N relative to System III longitudes). No perturbations to visible clouds and hazes were detected during this period.With no direct tracers of motion in the stratosphere, we use thermal windshear calculations to estimate clockwise peripheral velocities of 200–400 m/s at 2 mbar around B0. The peripheral velocities of the two original airmasses were smaller (70–140 m/s). In August 2011, the size of the vortex as defined by the peripheral collar was 65° longitude (50,000 km in diameter) and 25° latitude. Stratospheric acetylene (C2H2) was uniformly enhanced by a factor of three within the vortex, whereas ethane (C2H6) remained unaffected. The passage of B0 generated a new band of warm stratospheric emission at 0.5 mbar at its northern edge, and there are hints of warm stratospheric structures associated with the beacons at higher altitudes (p < 0.1 mbar) than can be reliably observed by CIRS nadir spectroscopy. Analysis of the zonal windshear suggests that Rossby wave perturbations from the convective storm could have propagated vertically into the stratosphere at this point in Saturn’s seasonal cycle, one possible source of energy for the formation of these stratospheric anticyclones.  相似文献   

8.
It has been suggested that the present release rate of methane to the Martian atmosphere could be the result of serpentinization in the deep subsurface, followed by the conversion of H2 to CH4 in a CO2-rich fluid. Making this assumption, we show that the cryosphere could act as a buffer storing, under the form of micron-size methane clathrate particles, the methane delivered from below by hydrothermal fluids and progressively releasing it to the atmosphere at the top. From an extrapolation of the present CH4 release rate back to the past, we calculate that up to several hundred millibars (~200–2000 mbar) of CO2, resulting from the oxidation of the released CH4, in addition to the volcanic supply (~400 mbar), should have accumulated in the atmosphere in the absence of a CO2 sink. We reassess the capability of escape to have removed CO2 from the atmosphere by C non-thermal escape and show that it is not significant. We suggest that atmospheric carbon is recycled to the crust through an active subsurface hydrological system, and precipitates as carbonates within the crust. During episodic periods of magmatic activity, these carbonates are decomposed to CO2 dissolved in running water, and CO2 can react with H2 formed by serpentinization to build CH4. CH4 is then buffered in the subsurface cryosphere, above the water table, and finally released to the atmosphere, before being recycled to the subsurface hydrological system, and converted back to carbonates. We propose a typical evolution curve of the CO2 pressure since the late Noachian based on our hypothesis. Contrary to the steady state carbon cycle at work on Earth, a progressive damping of the carbon cycle occurs on Mars due to the absence of plate tectonics and the progressive cooling of the planet.  相似文献   

9.
Laboratory experiments show that dusty bodies in a gaseous environment eject dust particles if they are illuminated. We find that even more intense dust eruptions occur when the light source is turned off. We attribute this to a compression of gas by thermal creep in response to the changing temperature gradients in the top dust layers. The effect is studied at a light flux of 13 kW/m2 and 1 mbar ambient pressure. The effect is applicable to protoplanetary disks and Mars. In the inner part of protoplanetary disks, planetesimals can be eroded especially at the terminator of a rotating body. This leads to the production of dust which can then be transported towards the disk edge or the outer disk regions. The generated dust might constitute a significant fraction of the warm dust observed in extrasolar protoplanetary disks. We estimate erosion rates of about 1 kg s?1 for 100 m parent bodies. The dust might also contribute to subsequent planetary growth in different locations or on existing protoplanets which are large enough not to be susceptible to particle loss by light induced ejection. Due to the ejections, planetesimals and smaller bodies will be accelerated or decelerated and drift outward or inward, respectively. The effect might also explain the entrainment of dust in dust devils on Mars, especially at high altitudes where gas drag alone might not be sufficient.  相似文献   

10.
The Hungarias are a stable asteroid group orbiting between Mars and the main asteroid belt, with high inclinations (16–30°), low eccentricities (e < 0.18), and a narrow range of semi-major axes (1.78–2.06 AU). In order to explore the significance of thermally-induced Yarkovsky drift on the population, we conducted three orbital simulations of a 1000-particle grid in Hungaria aei space. The three simulations included asteroid radii of 0.2, 1.0, and 5.0 km, respectively, with run times of 200 Myr. The results show that mean motion resonances—martian ones in particular—play a significant role in the destabilization of asteroids in the region. We conclude that either the initial Hungaria population was enormous, or, more likely, Hungarias must be replenished through collisional or dynamical means. To test the latter possibility, we conducted three more simulations of the same radii, this time in nearby Mars-crossing space. We find that certain Mars crossers can be trapped in martian resonances, and by a combination of chaotic diffusion and the Yarkovsky effect, can be stabilized by them. Therefore, some Hungarias (around 5% of non-family members with absolute magnitudes H < 15.5 and 10% for H < 17) may represent previously transient Mars crossers that have been adopted in this manner.  相似文献   

11.
We present direct observations of Mars zonal wind velocities around northern spring equinox (LS = 336°, LS = 355°, LS = 42°) during martian year 27 and 29. Data was acquired by means of infrared heterodyne spectroscopy of CO2 features at 959.3917 cm?1 (10.4232 μm) and 957.8005 cm?1 (10.4405 μm) using the Cologne Tuneable Heterodyne Infrared Spectrometer (THIS) at the McMath–Pierce telescope of the National Solar Observatory on Kitt Peak in Arizona and the NASA Infrared Telescope Facility on Mauna Kea, Hawaii between 2005 and 2008. Winds were measured on the dayside of Mars with an unprecedented spatial resolution allowing sampling of up to nine independent latitudes over the martian disk. Retrieved wind velocities depend strongly on latitude and season with values ranging from 180 m/s prograde to ?94 m/s retrograde. A comparison of the observational results to predicted values from the Mars Climate Database yield a reasonable agreement between modeling and observation.  相似文献   

12.
Spectral observations have detected methane within the martian atmosphere (Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., Giuranna, M. [2004]. Science 306, 1758–1761; Mumma, M.J. et al. [2009]. Science 323, 1041–1045), however, the origin of the methane has not been determined. Methane clathrate (also referred to as methane hydrate) has been suggested as a potential subsurface reservoir, storing and releasing biologic and/or abiogenic methane. In this study, rates of methane hydrate formation and dissociation were measured experimentally at 234–264 K and 1.4–4.7 MPa to test the clathrate reservoir hypothesis. Initial formation rates range from 4.3 × 10?6 to 8.1 × 10?5 mol m?2 s?1. Results show decreasing rates of formation over time in individual experiments, indicating initial rapid clathration, followed by diffusion-limited transport of methane into the ice through the previously formed hydrate. These experiments indicate increased pressure results in increased formation rates, likely the result of higher concentration gradients, enhancing the methane diffusion flux into the solid phase. Experiments conducted at elevated temperatures produced faster initial rates of formation, resulting from increased kinetic energy of methane molecules and/or thickening of the Quasi-Liquid Layer. Based on this temperature dependence, the activation energy for methane hydrate formation from ice was determined to be 35.9 kJ/mol. Hydrate dissociation experiments initiated by depressurization or warming at conditions between 222 K and 265 K and 0.1–2.0 MPa were conducted following each formation experiment, yielding methane hydrate dissociation rates from 3.01 × 10?6 to 9.92 × 10?5 mol m?2 s?1. While both hydrate dissociation and formation showed decreasing instantaneous rates over the course of each experiment, the transition between the initial rate of dissociation and the interpreted diffusion-limited period of continued dissociation was more abrupt than that observed in formation experiments, supporting an ice shielding effect. The initial concentration of methane in the solid phase had a significant effect on hydrate dissociation rates. Higher methane concentrations in the solid phase produce faster initial rates, likely due to increased concentration gradients, thus increasing the diffusion component of dissociation. Increased temperatures also produced faster dissociation rates, yielding an activation energy for dissociation of 32.7 kJ/mol. The rates determined within this study suggest that small near-surface methane hydrate reservoirs are a feasible source for recent methane plumes detected on Mars. Rates of methane release from gas hydrates also indicate that gas hydrate dissociation may have played a role in forming ancient chaos terrain and associated outflow channels.  相似文献   

13.
We present the spatial distribution of air temperature on Venus’ night side, as observed by the high spectral resolution channel of VIRTIS (Visible and Infrared Thermal Imaging Spectrometer), or VIRTIS-H, on board the ESA mission Venus Express. The present work extends the investigation of the average thermal fields in the northern hemisphere of Venus, by including the VIRTIS-H data. We show results in the pressure range of 100–4 mbar, which corresponds to the altitude range of 65–80 km. With these new retrievals, we are able to compare the thermal structure of the Venus’ mesosphere in both hemispheres.The major thermal features reported in previous investigations, i.e. the cold collar at about 65–70°S latitude, 100 mbar pressure level, and the asymmetry between the evening and morning sides, are confirmed here. By comparing the temperatures retrieved by the VIRTIS spectrometer in the North and South we find that similarities exist between the two hemispheres. Solar thermal tides are clearly visible in the average temperature fields. To interpret the thermal tide signals (otherwise impossible without day site observations), we apply model simulations using the Venus global circulation model Venus GCM (Lebonnois, S., Hourdin, F., Forget, F., Eymet, V., Fournier, R. [2010b]. International Venus Conference, Aussois, 20–26 June 2010) of the Laboratoire de Météorologie Dynamique (LMD). We suggest that the signal detected at about 60–70° latitude and pressure of 100 mbar is a diurnal component, while those located at equatorial latitudes are semi-diurnal. Other tide-related features are clearly identified in the upper levels of the atmosphere.  相似文献   

14.
The presence of methane on Mars is of great interest, since one possibility for its origin is that it derives from living microbes. However, CH4 in the martian atmosphere also could be attributable to geologic emissions released through pathways similar to those occurring on Earth. Using recent data on methane degassing of the Earth, we have estimated the relative terrestrial contributions of fossil geologic methane vs. modern methane from living methanogens, and have examined the significance that various geologic sources might have for Mars.Geologic degassing includes microbial methane (produced by ancient methanogens), thermogenic methane (from maturation of sedimentary organic matter), and subordinately geothermal and volcanic methane (mainly produced abiogenically). Our analysis suggests that ~80% of the “natural” emission to the terrestrial atmosphere originates from modern microbial activity and ~20% originates from geologic degassing, for a total CH4 emission of ~28.0×107 tonnes year?1.Estimates of methane emission on Mars range from 12.6×101 to 57.0×104 tonnes year?1 and are 3–6 orders of magnitude lower than that estimated for Earth. Nevertheless, the recently detected martian, Northern-Summer-2003 CH4 plume could be compared with methane expulsion from large mud volcanoes or from the integrated emission of a few hundred gas seeps, such as many of those located in Europe, USA, Mid-East or Asia. Methane could also be released by diffuse microseepage from martian soil, even if macro-seeps or mud volcanoes were lacking or inactive. We calculated that a weak microseepage spread over a few tens of km2, as frequently occurs on Earth, may be sufficient to generate the lower estimate of methane emission in the martian atmosphere.At least 65% of Earth’s degassing is provided by kerogen thermogenesis. A similar process may exist on Mars, where kerogen might include abiogenic organics (delivered by meteorites and comets) and remnants of possible, past martian life. The remainder of terrestrial degassed methane is attributed to fossil microbial gas (~25%) and geothermal-volcanic emissions (~10%). Global abiogenic emissions from serpentinization are negligible on Earth, but, on Mars, individual seeps from serpentinization could be significant. Gas discharge from clathrate-permafrost destabilization should also be considered.Finally, we have shown examples of potential degassing pathways on Mars, including mud volcano-like structures, fault and fracture systems, and major volcanic edifices. All these types of structures could provide avenues for extensive gas expulsion, as on Earth. Future investigations of martian methane should be focused on such potential pathways.  相似文献   

15.
Complex organic materials may exist as haze layers in the atmosphere of Titan and as dark coloring agents on icy satellite surfaces. Laboratory measurements of optical constants of plausible complex organic materials are necessary for quantitative evaluation from remote sensing observations, and to document the existence of complex organic materials in the extraterrestrial environments. The recent Cassini VIMS and CIRS observations provide new constraints on Titan’s haze properties in the mid-infrared wavelength region. Here, we present the optical constants (2.5–25 μm) of Titan tholins generated with cold plasma irradiation of a N2/CH4 (90/10) gas mixture at pressures of 0.26 mbar, 1.6 mbar, and 23 mbar. Our new optical constants of three types of Titan tholins suggest that no single Titan tholin in this study fulfills all the observational constraints of the Titan haze material. The discrepancy remains a challenge for future modeling and laboratory efforts that aim toward a better understanding of Titan’s haze material.  相似文献   

16.
We present observations of the O2(a1Δg) nightglow at 1.27 μm on Mars using the SPICAM IR spectrometer onboard of the Mars Express orbiter. In contrast to the O2(a1Δg) dayglow that results from the ozone photodissociation, the O2(a1Δg) nightglow is a product of the recombination of O atoms formed by CO2 photolysis on the dayside at altitudes higher than 80 km and transported downward above the winter pole by the Hadley circulation. The first detections of the O2(a1Δg) nightglow in 2010 indicate that it is about two order of magnitude less intense than the dayglow (Bertaux, J.-L., Gondet, B., Bibring, J.-P., Montmessin, F., Lefèvre, F. [2010]. Bull. Am. Astron. Soc. 42, 1040; Clancy et al. [2010]. Bull. Am. Astron. Soc. 42, 1041). SPICAM IR sounds the martian atmosphere in the near-IR range (1–1.7 μm) with the spectral resolution of 3.5 cm?1 in nadir, limb and solar occultation modes. In 2010 the vertical profiles of the O2(a1Δg) nightside emission have been obtained near the South Pole at latitudes of 82–83°S for two sequences of observations: Ls = 111–120° and Ls = 152–165°. The altitude of the emission maximum varied from 45 km on Ls = 111–120° to 38–49 km on Ls = 152–165°. Averaged vertically integrated intensity of the emission at these latitudes has shown an increase from 0.22 to 0.35 MR. Those values of total vertical emission rate are consistent with the OMEGA observations on Mars-Express in 2010. The estimated density of oxygen atoms at altitudes from 50 to 65 km varies from 1.5 × 1011 to 2.5 × 1011 cm?3. Comparison with the LMD general circulation model with photochemistry (Lefèvre, F., Lebonnois, S., Montmessin, F., Forget, F. [2004]. J. Geophys. Res. 109, E07004; Lefèvre et al. [2008]. Nature 454, 971–975) shows that the model reproduces fairly well the O2(a1Δg) emission layer observed by SPICAM when the large field of view (>20 km on the limb) of the instrument is taken into account.  相似文献   

17.
CRISM indicates the presence of water ice patches in Richardson crater, located on Mars’ southern polar region at the area of the seasonal ice cap. Numerical simulations suggest that the maximum daytime temperature of the ice at these locations is between 195 and 220 K during local spring. Previous studies suggest that at these temperatures liquid interfacial water could be present. Here, for the first time, we provide an example where the environmental conditions allow for the formation of such liquid films on present day Mars at the southern hemisphere. The upper bound estimated H2O loss during the presence of these water ice patches is approximately 30 μm between Ls = 200 and 220, though it may be as low as 0.1 μm depending on the ambient water vapor. The upper bound value is larger than the expected condensation thickness in autumn; however, it may still be realistic due to CO2 gas jet generated deposition and possible subsequent accumulation on mineral grains. The presence of this interfacial water may have impact on local chemical processes along with astrobiological importance.  相似文献   

18.
The morphology of fluvial valleys on Mars provides insight into surface and subsurface hydrology, as well as to Mars’ past climate. In this study, Naktong Vallis and its tributaries were examined from high-resolution stereoscopic camera (HRSC) images, thermal emission imaging system (THEMIS) daytime IR images, and mars orbiter laser altimeter (MOLA) data. Naktong Vallis is the southern part of a very large fluvial basin composed by Mamers, Scamander, and Naktong Vallis with a total length of 4700 km, and is one of the largest fluvial system on Mars. Naktong Vallis incised along its path a series of smooth intercrater plains. Naktong's main valley cut smooth plains during the Early Hesperian period, estimated ~3.6–3.7 Gyr, implying a young age for the valley when compared to usual Noachian-aged valley networks. Branching valleys located in degraded terrains south of the main Naktong valley have sources inside a large plateau located at more than 2000 m elevation. Connections between these valleys and Naktong Vallis have been erased by the superimposition of late intercrater plains of Early to Late Hesperian age, but it is likely that this plateau represents the main source of water. Small re-incisions of these late plains show that there was at least one local reactivation. In addition, valley heads are often amphitheatre-shaped. Despite the possibility of subsurface flows, the occurrence of many branching valleys upstream of Naktong's main valley indicate that runoff may have played an important role in Naktong Vallis network formation. The importance of erosional landforms in the Naktong Vallis network indicates that fluvial activity was important and not necessarily lower in the Early Hesperian epoch than during the Noachian period. The relationships between overland flows and sapping features suggest a strong link between the two processes, rather than a progressive shift from surface to subsurface flow.  相似文献   

19.
This paper presents the absolute parameters of RZ Dra. New CCD observations were made at the Mt. Suhora Observatory in 2007. Two photometric data sets (1990 BV and 2007 BVRI) were analysed using modern light-curve synthesis methods. Large asymmetries in the light curves may be explained in terms of a dark starspot on the primary component, an A6 type star. Due to this magnetic activity, the primary component would appear to belong to the class of Ap-stars and would show small amplitude with δ Scuti-type pulsations. With this in mind, a time-series analysis of the residual light curves was made. However, we found no evidence of pulsation behaviour in RZ Dra. Combining the solutions of our light curves and Rucinski et al. (2000)’s radial velocity curves, the following absolute parameters of the components were determined: M1 = 1.63 ± 0.03 M, M2 = 0.70 ± 0.02 M, R1 = 1.65 ± 0.02R, R2 = 1.15 ± 0.02 R, L1 = 9.72 ± 0.30 L and L2 = 0.74 ± 0.10 L. The distance to RZ Dra was calculated as 400 ± 25 pc, taking into account interstellar extinction. The orbital period of the system was studied using updated OC information. It was found that the orbital period varied in its long-period sinusoidal form, superimposed on a downward parabola. The parabolic term shows a secular period decrease at a slow rate of 0.06 ± 0.02 s per century and is explained by the mass loss via magnetized wind of the Ap-star primary. The tilted sinusoidal form of the period variation may be considered as an apparent change and may be interpreted in terms of the light-time effect due to the presence of a third body.  相似文献   

20.
Here we report the serendipitous identification of a bright optical transient in the vicinity of the dwarf elliptical galaxy M 32 (NGC 221). This transient (MONS OT J004240.69+405142.0) was detected using filtered CCD imaging, about 20 arcsec southwest from the core of M 32, at equatorial coordinates α = 00:42:40.69 ± 0.05, δ = +40:51:42.0 ± 0.5, between 04:20:16 and 04:21:46 UT on June 22, 2007. A detailed analysis of the intensity profile of the feature suggests that it is of stellar nature with apparent visual magnitude 9.69 ± 0.15 which gives an absolute magnitude of ?14.7 ± 0.3 if the feature is located in M 31/M 32. Under the assumption of the event reported here being of cosmic origin and although no correlation with GRBs in time or space has been found, the behaviour of the optical transient appears to resemble that of the recently observed GRB 080319B: very fast ascent and decay of several magnitudes within a few minutes. If this interpretation is correct, the afterglow decay was extremely rapid, decreasing by more than 5 mag. in about 2 min, α = 2.4. Given its properties, the event is a possible orphan GRB optical afterglow candidate originated beyond the Local Group. Alternative explanations are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号