首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 43 cm by 5 cm diameter sediment core sample was obtained from Ford Lake reservoir in Washtenaw County, Michigan, and sectioned at 1 cm intervals. The purpose of this study was to determine whether diatom communities in this reservoir have undergone quantifiable changes in abundance and composition since its creation. Thirty-one cm of this core appeared to represent material deposited since the creation of the reservoir based on changes in diatom abundance, the physical composition of the sediment and the change in biogenic SiO2 concentration. Fortyseven species of diatoms were identified total concentrations of diatom remains varied from 1×104 g-1 to 1×107 g-1. Prior to the establishment of the reservoir, the diatom flora was dominated by benthic taxa. Benthic diatoms were numerous throughout the entire core, but eutrophic taxa (e.g., Aulacoseira italica, Aulacoseira granulata, Stephanodiscus niagarae, Fragilaria crotonensis) dominated much of the core after the reservoir's creation. Total diatom density increased about tenfold in the about the first 10–15 years after the reservoir's creation before declining markedly.  相似文献   

2.
Examination of surficial sediments at 16 stations shows minor, but consistent differences in the numbers and kinds of siliceous microfossils deposited in different regions of Lake Baikal. There is a general north-south decreasing trend in total microfossil abundance on a weight basis. Endemic plankton diatom species are the most abundant component of assemblages at all stations. Chrysophyte cysts are present at all stations, but most forms are more abundant at northern stations. Non-endemic plankton diatom species are most abundant at southern stations. Small numbers of benthic diatoms and sponge spicules are found in all samples. Although low numbers are present in offshore sediments, the benthic diatom flora is very diverse. Principal components analysis confirms primary north-south abundance trends and suggests further differentiation by station location and depth.  相似文献   

3.
Siliceous microfossil assemblage succession was analyzed in a 100 m sediment core from Lake Baikal, Siberia. The core was recovered from the lake's central basin at a water depth of 365 m. Microfossil abundance varied greatly within the intervals sampled, ranging from samples devoid of siliceous microfossils to samples with up to 3.49 × 1011 microfossils g-1 sediment. Fluctuations in abundance appear to reflect trends in the marine 18O record, with peak microfossil levels generally representing climate optima. Microfossil taxa present in sampled intervals changed considerably with core depth. Within each sample a small number of endemic diatom species dominated the assemblage. Changes in dominant endemic taxa between sampled intervals ranged from extirpation of some taxa, to shifts in quantitative abundance. Differences in microfossil composition and the association of variations in abundance with climate fluctuations suggest rapid speciation in response to major climatic excursions.  相似文献   

4.
As part of the international cooperative Baikal Drilling Project, siliceous microfossil assemblage succession was analyzed in two short ( 30-cm) sediment cores from Lake Baikal. One core was recovered from the north basin (Core 324, 55°15N, 109°30E), a second from between the central and southern basins (Core 316, 52°28N, 106°5E). The northern core had higher amounts of biogenic silica (40 g SiO2 per 100 g dry weight sediment) compared to the southern core, and increased deposition in the more recent sediments. Weight percent biogenic silica was lower in the southern core, ranging from approximately 20–30 g SiO2 per 100 g dry weight sediment throughout the entire core. Trends in absolute microfossil abundance mirror those of biogenic silica, with generally greater abundance in the northern core (86–275×106 microfossils g–1 dry sediment) compared to the southern core (94–163×106 microfossils g–1 dry sediment).Cluster analyses using relative abundance of the dominant diatom and chrysophyte taxa revealed four zones of microfossil succession in each core. Microfossil assemblage succession in the north basin may be reflecting shifts in nutrient supply and cycling driven by climatic changes. The most recent sediments in the northern basin (Zone 1,c. 1890's–1991 A.D.) were characterized by an increased abundance ofAulacoseira baicalensis andAulacoseira spore. Zone 3 (c. 1630's–1830's A.D.) was dominated by the endemicCyclotella spp. and reduced abundance of theAulacoseira spp. Zone 3 corresponds approximately to the Little Ice Age, a cooler climatic period. The microfossil assemblages between Zones 1 and 3 (Zone 2,c. 1830's–1890's A.D.) and below Zone 3 (Zone 4,c. 830's–1430's A.D.) are similar to one another suggesting they represent transitional intervals between warm and cold periods. Southern basin sediments record similar changes in the endemic taxa. However, the increased abundance of non-endemic planktonic taxa (e.g.Stephanodiscus binderanus, Synedra acus, Cyclostephanos dubius) during two periods in recent history (post World War II and late 1700's) suggests evidence for anthropogenic induced changes in southern Lake Baikal.  相似文献   

5.
Water chemistry and surface sediments were analyzed from 41 shallow lakes representing three previously-defined hydrological categories in the Slave River Delta, Northwest Territories, Canada, in order to identify relationships between hydrological and limnological conditions and their associations with recently deposited diatom assemblages. Evaporation-dominated lakes are physically removed from the influence of the Slave River, and are characterized by high alkalinity and high concentrations of nutrients and ions. In contrast, flood-dominated lakes tend to receive a pulse of floodwater from the Slave River during the spring thaw and have low alkalinity and low concentrations of most nutrients and ions. Exchange-dominated lakes are variably influenced by floodwaters from the Slave River and seiche events from Great Slave Lake throughout the spring thaw and open-water season, and are characterized by a broad array of limnological conditions that are largely dependent on the strength of the connection to these sources of floodwater. Specific diatom ‘indicator’ taxa have been identified that can discriminate these three hydrological lake categories. Evaporation-dominated lakes are associated with high relative abundance of common epiphytic diatom taxa, while diatoms indicative of flood- and exchange-dominated lakes span a wide range of habitat types (epiphytic, benthic) but also include unique planktonic diatoms (Stephanodiscus and Cyclostephanos taxa) that were not found in surface sediments of evaporation-dominated lakes. The planktonic diatom taxa originate from the Slave River, and thus are indicative of river influence. In complex, remote, freshwater ecosystems like the Slave River Delta, integration of results from hydrological and limnological approaches provides a necessary foundation to assess present, past and future hydroecological responses to changes in river discharge and climate.  相似文献   

6.
Paleolimnological investigations of a marginal lake in the Lake Michigan basin revealed signals of long-term lake-level changes primarily controlled by climatic forces. Multiple analyses identified concurrent signals in sediment chemistry, grain size, and the microfossil record. Coarse-grained sediments, benthic diatoms, and nutrient response species increased as lake levels rose or fell. Finer sediments and higher percentages of taxa associated with stable thermocline conditions occurred during high-lake periods. Sedimentary evidence revealed corresponding strong high-lake signals c. 2500–2200, 1800–1500, 1170–730, and 500–280 BP. Low-lake periods occurred c. 1500–1170 and 700–500 B.P. An additional signal of lake-level decline was apparent beginning c. 280 BP but was interrupted by anthropogenic effects. Evidence of extreme low-lake levels (c. 1400–1300 BP), and signals for a medieval warming period (1030–910 BP) and the Maunder minimum (370–325 BP) indicate occurrence of short-lived dry climatic conditions.  相似文献   

7.
Multiple proxy indicators are regularly used to present robust arguments for paleoenvironmental change. We use fossil pollen and diatoms from a 495-cm core taken from Cootes Paradise, a coastal wetland in the western end of Lake Ontario, to investigate ecological changes in the late Holocene. We use consensus analysis to demonstrate that pollen diagrams are best zoned after the data have been split into source area, in this case upland and wetland taxa, because each group responds differently to environmental change. We also use consensus analysis to demonstrate the sensitivity of clustering to the distance measure used. The record begins at 2400 14C years BP, when the wetland was dominated by shallow water emergents and epiphytic diatoms. At 2100 14C years BP, a decline in the epiphytic diatoms Epithemia spp., a rise in Poaceae (cf. Zizania aquatica) pollen and a coincident increase in pollen concentration suggest a water level rise at this time. At about 800 14C years BP, the diatom record shows a pulse in small benthic Fragilaria species; shortly after, a shift occurs in the upland tree pollen spectra involving an increase in Pinus and a decline in Fagus. This shift in upland forest trees has been associated elsewhere with the Little Ice Age and the diatom data present some evidence for impacts of this climatic event on aquatic systems. The diatom and pollen records both indicate large changes associated with the effects of European settlement, including rises in Ambrosia as well as Typha angustifolia pollen. Planktonic diatoms dominate post-settlement assemblages indicating large-scale hydrological and ecological changes, probably associated with the introduction of carp and alterations to the Iroquois bar which separates the wetland from Lake Ontario. Our work at Cootes Paradise is important for multi-proxy coastal wetland studies in general, in addition to the late Holocene environmental history and prehistory of the Great Lakes region.  相似文献   

8.
Fish introduction and eutrophication are important disturbances to aquatic ecosystems, especially to oligotrophic plateau lakes that are generally considered to be very vulnerable ecosystems. Planktivorous fish Neosalanx taihuensis were introduced to Lake Fuxian, an oligotrophic (TP 17 μg/l) deep (average depth 89.7 m) plateau lake in southwest China, in the middle of the 1980s. After the introduction, N. taihuensis became the dominant fish species, and the total fish yield increased about threefold. Although the lake is still oligotrophic, the trophic state of Lake Fuxian has started to shift with increasing nutrient supply (eutrophication) due to an increase in human activities in the drainage basin. This study investigated the effects of N. taihuensis introduction and eutrophication on the cladoceran community of Lake Fuxian by examining changes in cladoceran assemblages and abundance, as well as the morphological features of Bosmina microfossils in the lake sediment. Absolute abundance of total Bosmina increased substantially after the middle of the 1980s. In addition, dominance of Bosmina with straight antennules was replaced by Bosmina with hooked antennules. The morphological variables (length of carapace, antennule and mucro) of Bosmina all decreased when planktivorous fish N. taihuensis achieved relatively large numbers. Eutrophication was the most important process determining cladoceran abundance, while fish introduction played an important role in structuring the cladoceran community in this oligotrophic, deep plateau lake.  相似文献   

9.
Simulations (216) were undertaken to evaluate the impact of typical Lake Agassiz outbursts on the upper Great Lakes under plausible variations in lake surface areas and sill widths. Flows over sills out of lakes are modelled using the equation for a broad-crested weir, with the model time increment set to one day. The model was evaluated for Lake Agassiz outlet sill widths of 1, 4, and 10 km and with outbursts ranging from 100 000 m3 s–1 to 600 000 m3 s–1. The surface area of Lake Agassiz was evaluated for 182 000 km2 ±20%. The surface area of the upper Great Lakes were modelled as either Lake Algonquin (Superior, Huron and Michigan basins =200 000 km2) or Lake Minong (Superior basin 87 000 km2) with sill widths of 0.5, 1.5, and 3 km.Downstream peak discharge modelled at the outlet sill of the upper Great Lakes, was normally between 20 and 60% of the initial outburst, with a lagtime to peak usually between 80 and 280 days. Upper Great Lakes water level rises of between 2 and 20 m are calculated with rises to 36 m for some configurations. Rise magnitude is inversely related to the width of the outlet sills at both lake systems and to the surface area of the receiving lake.The modeling implies that measuring outflow from the upper Great Lakes, or water level rises, does not in itself determine peak or total outflow from Lake Agassiz unless the dimensions of the Lake Agassiz and upper Great Lakes outflow sills are also known.Lake level rises probably coincided on the upper Great Lakes with meltout from the winter freeze-up. Lake levels re-attain equilibrium values with respect to through flow within three years of an outburst. Substantial episodic lake level rises in the upper Great Lakes may have had severe impacts on the lake biota, for example via the affect on spawning grounds.  相似文献   

10.
This paper presents the recent history of a large prealpine lake (Lake Bourget) using chironomids, diatoms and organic matter analysis, and deals with the ability of paleolimnological approach to define an ecological reference state for the lake in the sense of the European Framework Directive. The study at low resolution of subfossil chironomids in a 4-m-long core shows the remarkable stability over the last 2.5 kyrs of the profundal community dominated by a Micropsectra-association until the beginning of the twentieth century, when oxyphilous taxa disappeared. Focusing on this key recent period, a high resolution and multiproxy study of two short cores reveals a progressive evolution of the lake’s ecological state. Until AD 1880, Lake Bourget showed low organic matter content in the deep sediments (TOC less than 1%) and a well-oxygenated hypolimnion that allowed the development of a profundal oxyphilous chironomid fauna (Micropsectra-association). Diatom communities were characteristic of oligotrophic conditions. Around AD 1880, a slight increase in the TOC was the first sign of changes in lake conditions. This was followed by a first limited decline in oligotrophic diatom taxa and the disappearance of two oxyphilous chironomid taxa at the beginning of the twentieth century. The 1940s were a major turning point in recent lake history. Diatom assemblages and accumulation of well preserved planktonic organic matter in the sediment provide evidence of strong eutrophication. The absence of profundal chironomid communities reveals permanent hypolimnetic anoxia. From AD 1995 to 2006, the diatom assemblages suggest a reduction in nutrients, and a return to mesotrophic conditions, a result of improved wastewater management. However, no change in hypolimnion benthic conditions has been shown by either the organic matter or the subfossil chironomid profundal community. Our results emphasize the relevance of the paleolimnological approach for the assessment of reference conditions for modern lakes. Before AD 1900, the profundal Micropsectra-association and the Cyclotella dominated diatom community can be considered as the Lake Bourget reference community, which reflects the reference ecological state of the lake.  相似文献   

11.
J.L. Hough in 1962 recognized an erosional unconformity in the upper section of early postglacial lake sediments in northwestern Lake Huron. Low-level Lake Stanley was defined at 70 m below present water surface on the basis of this observation, and was inferred to follow the Main Algonquin highstand and Post-Algonquin lake phases about 10 14C ka, a seminal contribution to the understanding of Great Lakes history. Lake Stanley was thought to have overflowed from the Huron basin through the Georgian Bay basin and the glacio-isostatically depressed North Bay outlet to Ottawa and St. Lawrence rivers. For this overflow to have occurred, Hough assumed that post-Algonquin glacial rebound was delayed until after the Lake Stanley phase. A re-examination of sediment stratigraphy in northwestern Lake Huron using seismic reflection and new core data corroborates the sedimentological evidence of Hough’s Stanley unconformity, but not its inferred chronology or the level of the associated lowstand. Erosion of previously deposited sediment, causing the gap in the sediment sequence down to 70 m present depth, is attributed to wave erosion in the shoreface of the Lake Stanley lowstand. Allowing for non-deposition of muddy sediment in the upper 20 m approximately of water depth as occurs in the present Great Lakes, the inferred water level of the Stanley lowstand is repositioned at 50 m below present in northwestern Lake Huron. The age of this lowstand is about 7.9 ± 0.314C ka, determined from the inferred 14C age of the unconformity by radiocarbon-dated geomagnetic secular variation in six new cores. This relatively young age shows that the lowstand defined by Hough’s Stanley unconformity is the late Lake Stanley phase of the northern Huron basin, youngest of three lowstands following the Algonquin lake phases. Reconstruction of uplift histories for lake level and outlets shows that late Lake Stanley was about 25–30 m below the North Bay outlet, and about 10 m below the sill of the Huron basin. The late Stanley lowstand was hydrologically closed, consistent with independent evidence for dry regional climate at this time. A similar analysis of the Chippewa unconformity shows that the Lake Michigan basin also hosted a hydrologically closed lowstand, late Lake Chippewa. This phase of closed lowstands is new to the geological history of the Great Lakes. This is the ninth in a series of ten papers published in this special issue of Journal of Paleolimnology. These papers were presented at the 47th Annual Meeting of the International Association for Great Lakes Research (2004), held at the University of Waterloo, Waterloo, Ontario, Canada. P.F. Karrow and C.F.M Lewis were guest editors of this special issue.  相似文献   

12.
A paleolimnological evaluation of cladoceran microfossils was initiated to study limnological changes in Lake Apopka, a large (125 km2), shallow (mean depth = 1.6 m), warm, polymictic lake in central Florida. The lake switched from macrophyte to algal dominance in the late 1940s, creating a Sediment Discontinuity Layer (SDL) that can be visually used to separate sediments derived from macrophytes and phytoplankton. Cladoceran microfossils were enumerated as a means of corroborating extant eutrophication data from the sediment record. Inferences about the timing and trajectory of eutrophication were made using the cladoceran-based paleo-reconstruction. The cladoceran community of Lake Apopka began to change abruptly in both total abundance and relative percent abundance just before the lake shifted from macrophyte to algal dominance. Alona affinis, a mud-vegetation associated cladoceran, disappeared before the SDL was formed. Planktonic and benthic species also began to increase below the SDL, indicating an increase in production of both planktonic and benthic species. Chydorus cf. sphaericus, an indicator of nutrient loading, increased relative to all other cladocerans beginning in the layer below the SDL and continuing upcore. Changes in the transitional sediment layer formed before the lake switched to phytoplankton dominance, including an increase in total phosphorus concentration, suggest a more gradual eutrophication process than previously reported. Data from this study supported conclusions from other paleolimnological studies that suggested anthropogenic phosphorus loading was the key factor in the hypereutrophication of Lake Apopka.  相似文献   

13.
Diatom assemblages in surficial sediments, sediment cores, sediment traps, and inflowing streams of perennially ice-covered Lake Hoare, South Victorialand, Antarctica were examined to determine the distribution of diatom taxa, and to ascertain if diatom species composition has changed over time. Lake Hoare is a closed-basin lake with an area of 1.8 km2, maximum depth of 34 m, and mean depth of 14 m, although lake level has been rising at a rate of 0.09 m yr-1 in recent decades. The lake has an unusual regime of sediment deposition: coarse grained sediments accumulate on the ice surface and are deposited episodically on the lake bottom. Benthic microbial mats are covered in situ by the coarse episodic deposits, and the new surfaces are recolonized. Ice cover prevents wind-induced mixing, creating the unique depositional environment in which sediment cores record the history of a particular site, rather than a lake-wide integration. Shallow-water (<1 m) diatom assemblages (Stauroneis anceps, Navicula molesta, Diadesmis contenta var. parallela, Navicula peraustralis) were distinct from mid-depth (4–16 m) assemblages (Diadesmis contenta, Luticola muticopsis fo. reducta, Stauroneis anceps, Diadesmis contenta var. parallela, Luticola murrayi) and deep-water (26–31 m) assemblages (Luticola murrayi, Luticola muticopsis fo. reducta, Navicula molesta). Analysis of a sediment core (30 cm long, from 11 m water depth) from Lake Hoare revealed two abrupt changes in diatom assemblages. The upper section of the sediment core contained the greatest biomass of benthic microbial mat, as well as the greatest total abundance and diversity of diatoms. Relative abundances of diatoms in this section are similar to the surficial samples from mid-depths. An intermediate zone contained less organic material and lower densities of diatoms. The bottom section of core contained the least amount of microbial mat and organic material, and the lowest density of diatoms. The dominant process influencing species composition and abundance of diatom assemblages in the benthic microbial mats is episodic deposition of coarse sediment from the ice surface.  相似文献   

14.
Diatom responses to 20th century climate-related environmental change were assessed from three high-elevation lakes in the northern Canadian Cordillera. Dominance of small benthic Fragilaria diatoms reflect the generally cold conditions with long periods of ice cover that have characterized these mountain lakes over at least the last ~300 years until the period of recent warming. At the turn of the 20th century, salient shifts in the diatom assemblages reveal individualistic limnological responses with the onset of climate warming trends in northwest Canada. At YK3 Lake, an oligotrophic, chemically dilute, alpine lake, increased representation of the planktonic Cyclotella pseudostelligera may reflect longer ice-free conditions and/or more stable thermal stratification. By contrast, in the more productive, alkaline lakes (BC2 and Deadspruce lakes), changes to more diverse assemblages of periphytic diatoms suggest greater benthic habitat availability, most likely associated with the enhanced growth of aquatic plants with lengthening of the growing seasons. In addition, diatom assemblages from these lakes suggest less alkaline conditions following the onset of 20th century climate warming. Continued alkalinity reduction throughout the 20th century is qualitatively inferred at the lower elevation, treeline lake (Deadspruce Lake), while greater representation of alkaliphilous Fragilaria diatoms after ~1950 suggested increased alkalinity at the alpine BC2 Lake. Our results confirm the sensitivity of diatoms from high-elevation mountain lakes to regional climate change in northwest Canada. Individualistic limnological responses to 20th century warming are potentially attributed to differences in their physical setting (e.g., bedrock geology, elevation, catchment vegetation) in this complex mountain environment.  相似文献   

15.
Palaeolimnological and palynological records from climatically variable central Alberta, Canada, document periods of hypersaline lake conditions indicative of late glacial and early Holocene drought. The sensitivity of palaeolimnological indicators for inferring palaeoclimates is examined by comparing records from two sites at opposite ends of the regional precipitation gradient. Palaeosalinity is identified by the presence of Ruppia pollen, a hypersaline aquatic plant not presently growing in either lake, and diatom assemblages comprising both saline epipelic and planktonic species. Goldeye Lake (52° 27 N; 116° 12 W), in the relatively moist Rocky Mountain Foothills remained saline from its inception before ca 14500 years BP until ca 10400 years BP by which time pioneering forests had replaced tundra vegetation; however, freshwater planktonic diatoms dominated ca 12500 to 11500 years BP. However, dating problems endemic to the Foothills region make this chronology only tentative. Moore Lake (54° 30 N; 110° 30 N), in dry, east-central Alberta contained Ruppia only between ca 9000 and 6000 years BP. Freshwater diatoms dominated until ca 10000 years BP when they were succeeded by taxa characteristic of saline water. The lake remained saline until ca 6000 years BP. The late glacial period of palaeosalinity at Goldeye Lake occurred because the lake was surrounded by Cordilleran and Laurentide glacial ice, and therefore, cut off from moisture sources until the early Holocene by which time significant ice recession had occurred. Factors causing the second period of salinity remain unknown at this time. In contrast, by the early Holocene, Moore Lake was influenced by drought caused by high summer insolation induced by orbital fluctuations. Freshwater conditions were maintained through the Holocene in the Foothills region of west-central Alberta, but occurred consistently only over the last 4000 years in central and east-central Alberta. The warmer, drier climate during the early Holocene did affect lake levels in at least one headwater Foothills lake (Fairfax Lake — 52° 58 N; 116° 34 W). The severity of the drought increased in an easterly direction across the province.This publication is the fourth of a series of papers presented at the Conference on Sedimentary and Palaeolimnological Records of Saline Lakes. This Conference was held August 13–16, 1991 at the University of Saskatchewan, Saskatoon, Canada. Dr. Evans is serving as Guest Editor.  相似文献   

16.
Fossil diatoms were analysed from a 10.3 m core from Harris Lake, Cypress Hills, Saskatchewan, and a diatom-salinity transfer function was used to construct a history of Holocene salinity changes for the lake. The diatom paleosalinity record indicates that Harris Lake remained fresh <0.5 g l-1 throughout the Holocene, with only slight increases in salinity between approximately 6500 and 5200 years BP. This interval corresponds to the only period in the lake's history when planktonic diatoms were abundant; benthic Fragilaria taxa, mainly F. pinnata, F. construens and F. brevistriata were dominant throughout most of the Holocene. The shift from a benthic to a planktonic diatom flora between 6500 and 5200 years BP may be an indirect response to a warmer climate that reduced forest cover in the watershed and allowed greater rates of inorganic sedimentation. The small salinity increase that accompanies the floristic change is probably not the result of lower lake levels; in fact the lake was probably deeper at this point than in the later Holocene. This paleosalinity record indicates that Harris Lake did not experience episodes of hypersalinity during the mid-Holocene, as suggested by a previous study, and that the lake may have been fresh during the early Holocene as well.  相似文献   

17.
Europe Lake occupies a small, closed, basin that would have been an embayment in Lake Michigan during the high water level events in the larger lake. Cores recovered from the lake reveal late Holocene water level fluctuations in the basin that are inferred from changes in taxa and abundance of molluscs, ostracodes, magnetic susceptibility, organic carbon, and oxygen isotopes.Non-glacial, Holocene lacustrine/paludal sedimentation in this portion of the Europe Lake basin started after 6600 RCYBP and was probably initiated by a rise in the water table of the deep bedrock aquifer, during the Nipissing transgression in Lake Michigan. Isotopically light ground water from this source was probably a major contributor during this phase to the negative 18O spikes in Valvata tricarinata and Amnicola limosa.The start of stable lacustrine conditions is marked by maximum diversity of ostracode and mollusc taxa and a shift toward much more positive 18O values. The Europe Lake basin at this time became an embayment of Lake Michigan. This event was probably coeval with the peak of the Nipissing transgression, when the water plane reached an altitude of about 183 m.The isolation of Europe Lake from Lake Michigan started at about 2390 RCYBP and is probably due to a drop in water level in Lake Michigan and/or to isostatic uplift of the Door Peninsula. Since isolation from Lake Michigan, water levels in Europe lake have been controlled primarily by fluctuations in local precipitation, evaporation and ground water discharge.  相似文献   

18.
Diatom assemblages in surface sediments were sampled along three transects in Lake 239, from the Experimental Lakes Area (NW Ontario), and analyzed in order to explore the relationship between modern species distributions and water depth. Approximately 170 diatom species were identified in surficial sediments at lake depths from 2 to 30 m. The species composition varied with sample depth but remained highly similar across all three transects. The main patterns of variation in the diatom assemblages across transects, derived from a detrended correspondence analysis (DCA), showed that assemblages were highly correlated (r = 0.97 to 0.98). At depths > 8 m the pattern of predominantly benthic composition changed to a planktonic assemblage dominated by Cyclotella stelligera. This depth currently corresponds to the depth of 1% light penetration as assessed from extinction coefficient measurements. Diatom species diversity increases with the switch to the near-shore benthic taxa in all three transects. Additionally, there is a large decrease in the ratio of chrysophyte scales to diatoms at depths < 8 m. Light transmission data from wet and dry periods over the last 35 years suggests that during dry periods the extent of the littoral zone should change by over 2 m. We suggest that cores along a transect from 8 to 14 m should provide a highly sensitive location for detailed paleoclimatic study.  相似文献   

19.
Lake Jezero v Ledvici (NW Slovenia) is a 14 m deep mountain lake at an elevation of 1860 m, situated on limestone bedrock. It is an oligotrophic, alkaline and hard-water lake with a transparency of about 14 m and has suffered several times over recent centuries from strong earthquakes. In 1996 five sediment cores, between 35 and 45 cm long, were collected from the deepest part of the lake and analysed to reconstruct environmental changes over the last few centuries. The data indicate changes induced by pollution and climate change during the last two centuries similar to those in other European mountain and remote lakes. However, at this site earthquakes have also affected the lake and partly obscure the interpretation of the sediment record. From 1780 to 1890, sediment records show low abundance of diatoms and relatively high abundance of Cladocera. After 1890, the number of diatoms started to increase coinciding with a strong earthquake. From the beginning of the 20th century, concentrations of spheroidal carbonaceous particles (SCP), diatom valves and head capsules of chironomids gradually increased whilst in Cladocera the main difference observed was a change in the proportion of benthic taxa. After 1960, in parallel with a rise in air temperature, a further increase in accumulation rate of diatoms started, but there was a decrease in Cladocera.  相似文献   

20.
A paleolimnological investigation of post-European sediments in a Lake Michigan coastal lake was used to examine the response of Lower Herring Lake to anthropogenic impacts and its role as a processor of watershed inputs. We also compare the timing of this response with that of Lake Michigan to examine the role of marginal lakes as early warning indicators of potential changes in the larger connected system and their role in buffering Lake Michigan against anthropogenic changes through biotic interactions and material trapping. Sediment geochemistry, siliceous microfossils and nutrient-related morphological changes in diatoms, identified three major trophic periods in the recent history of the lake. During deforestation and early settlement (pre-1845–1920), lake response to catchment disturbances results in localized increases in diatom abundances with minor changes in existing communities. In this early phase of disturbance, Lower Herring Lake acts as a sediment sink and a biological processor of nutrient inputs. During low-lake levels of the 1930s, the lake goes through a transitional period characterized by increased primary productivity and a major shift in diatom communities. Post-World War II (late 1940s–1989) anthropogenic disturbances push Lower Herring Lake to a new state and a permanent change in diatom community structure dominated by Cyclotella comensis. The dominance of planktonic summer diatom species associated with the deep chlorophyll maximum (DCM) is attributed to epilimnetic nutrient depletion. Declining Si:P ratios are inferred from increased sediment storage of biogenic silica and morphological changes in the silica content of Aulacoseira ambigua and Stephanodiscus niagarae. Beginning in the late 1940s, Lower Herring Lake functions as a biogeochemical processor of catchment inputs and a carbon, nutrient and silica sink. Microfossil response to increased nutrients and increased storage of biogenic silica in Lower Herring Lake and other regional embayments occur approximately 20–25 years earlier than in a nearby Lake Michigan site. Results from this study provide evidence for the role of marginal lakes and bays as nutrient buffering systems, delaying the impact of anthropogenic activities on the larger Lake Michigan system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号