首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 271 毫秒
1.
We monitored 16 X-ray selected young solar-type stars for light variation and found appreciable periodic light variability with amplitudes of a few hundredths of a magni-tude in nine of the objects. Using the method of Phase Dispersion Minimization (PDM) and Fourier analysis (software PERIOD04), the rotation periods of these stars were determined from the photometric data. The rotation periods of all nine stars are shorter than about 3days. It is suggested that, as with the Pleiades cluster, small amplitude light variations are quite common among young solar-type stars with rotation periods around 3 days or less. This gives further evidence for the spin up of solar-type stars predicted by models of angular momentum evolution of pre-main sequence stars.  相似文献   

2.
The long-term monitoring and high photometric precision of the Kepler satellite will provide a unique opportunity to sound the stellar cycles of many solar-type stars using asteroseismology. This can be achieved by studying periodic changes in the amplitudes and frequencies of the oscillation modes observed in these stars. By comparing these measurements with conventional ground-based chromospheric activity indices, we can improve our understanding of the relationship between chromospheric changes and those taking place deep in the interior throughout the stellar activity cycle. In addition, asteroseismic measurements of the convection zone depth and differential rotation may help us determine whether stellar cycles are driven at the top or at the base of the convection zone. In this paper, we analyse the precision that will be possible using Kepler to measure stellar cycles, convection zone depths and differential rotation. Based on this analysis, we describe a strategy for selecting specific targets to be observed by the Kepler Asteroseismic Investigation for the full length of the mission, to optimize their suitability for probing stellar cycles in a wide variety of solar-type stars.  相似文献   

3.
From a set of stellar spectropolarimetric observations, we report the detection of surface magnetic fields in a sample of four solar-type stars, namely HD 73350, HD 76151, HD 146233 (18 Sco) and HD 190771. Assuming that the observed variability of polarimetric signal is controlled by stellar rotation, we establish the rotation periods of our targets, with values ranging from 8.8 d (for HD 190771) to 22.7 d (for HD 146233). Apart from rotation, fundamental parameters of the selected objects are very close to the Sun's, making this sample a practical basis to investigate the specific impact of rotation on magnetic properties of Sun-like stars.
We reconstruct the large-scale magnetic geometry of the targets as a low-order  (ℓ < 10)  spherical harmonic expansion of the surface magnetic field. From the set of magnetic maps, we draw two main conclusions. (i) The magnetic energy of the large-scale field increases with rotation rate. The increase in chromospheric emission with the mean magnetic field is flatter than observed in the Sun. Since the chromospheric flux is also sensitive to magnetic elements smaller than those contributing to the polarimetric signal, this observation suggests that a larger fraction of the surface magnetic energy is stored in large scales as rotation increases. (ii) Whereas the magnetic field is mostly poloidal for low rotation rates, more rapid rotators host a large-scale toroidal component in their surface field. From our observations, we infer that a rotation period lower than ≈12 d is necessary for the toroidal magnetic energy to dominate over the poloidal component.  相似文献   

4.
We study the dependence of the coronal activity index on the stellar rotation velocity. This question has been considered previously for 824 late-type stars on the basis of a consolidated catalogue of soft X-ray fluxes. We carry out a more refined analysis separately for G, K, and M dwarfs. Two modes of activity are clearly identified in them. The first is the saturation mode, is characteristic of young stars, and is virtually independent of their rotation. The second refers to the solar-type activity whose level strongly depends on the rotation period. We show that the transition from one mode to the other occurs at rotation periods of 1.1, 3.3, and 7.2 days for stars of spectral types G2, K4, and M3, respectively. In light of the discovery of superflares on G and K stars from the Kepler spacecraft, the question arises as to what distinguishes these objects from the remaining active late-type stars. We analyze the positions of superflare stars relative to the remaining stars observed by Kepler on the “amplitude of rotational brightness modulation (ARM)—rotation period” diagram. The ARM reflects the relative spots area on a star and characterizes the activity level in the entire atmosphere. G and K superflare stars are shown to be basically rapidly rotating young objects, but some of them belong to the stars with the solar type of activity.  相似文献   

5.
The cluster Praesepe (age ∼650 Myr) is an ideal laboratory to study stellar evolution. Specifically, it allows us to trace the long-term decline of rotation and activity on the main sequence. Here, we present rotation periods measured for five stars in Praesepe with masses of 0.1–0.5 M– the first rotation periods for members of this cluster. Photometric periodicities were found from two extensive monitoring campaigns, and are confirmed by multiple independent test procedures. We attribute these variations to magnetic spots co-rotating with the objects, thus indicating the rotation period. The five periods, ranging from 5 to 84 h, show a clear positive correlation with object mass, a trend which has been reported previously in younger clusters. When comparing with data for F–K stars in the coeval Hyades, we find a dramatic drop in the periods at spectral type K8–M2 (corresponding to 0.4–0.6 M). A comparison with periods of very low mass (VLM) stars in younger clusters provides a constraint on the spin-down time-scale: we find that the exponential rotational braking time-scale is clearly longer than 200 Myr, most likely 400–800 Myr. These results are not affected by the small sample size in the rotation periods in Praesepe. Both findings, the steep drop in the period–mass relation and the long spin-down time-scale, indicate a substantial change in the angular momentum loss mechanism for VLM objects, possibly the breakdown of the solar-type (Skumanich) rotational braking. While the physical origin for this behaviour is unclear, we argue that parts of it might be explained by the disappearance of the radiative core and the resulting breakdown of an interface-type dynamo in the VLM regime. Rotational studies in this mass range hold great potential to probe magnetic properties and interior structure of main-sequence stars.  相似文献   

6.
We model stellar differential rotation based on the mean-field theory of fluid dynamics. DR is mainly driven by Reynolds stress, which is anisotropic and has a non-diffusive component because the Coriolis force affects the convection pattern. Likewise, the convective heat transport is not strictly radial but slightly tilted towards the rotation axis, causing the polar caps to be slightly warmer than the equator. This drives a flow opposite to that caused by differential rotation and so allows the system to avoid the Taylor-Proudman state. Our model reproduces the rotation pattern in the solar convection zone and allows predictions for other stars with outer convection zones. The surface shear turns out to depend mainly on the spectral type and only weakly on the rotation rate. We present results for stars of spectral type F which show signs of very strong differential rotation in some cases. Stars just below the mass limit for outer convection zones have shallow convection zones with short convective turnover times. We find solar-type rotation and meridional flow patterns at much shorter rotation periods and horizontal shear much larger than on the solar surface, in agreement with recent observations. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We present a spectroscopic and photometric follow-up of binary stars, discovered in a sample of X-ray sources, aimed at a deep characterization of the stellar X-ray population in the solar neighborhood and in Star Forming Regions (SFRs). The sources have been selected from the RasTyc sample, obtained by the cross-correlation between the ROSAT all-sky survey and Tycho catalogues (Guillout et al., 1999). Thanks to the high resolution spectroscopy, we have obtained good radial velocity curves, whose solutions provided us with the mass ratios and minimum masses of the components. We have also obtained an accurate spectral classification with codes specifically developed by us. In addition, we could obtain information on the age of the sources through the Lii-6708 line and on the chromospheric activity level through the Hα line.We show also some results on very young pre-main sequence (PMS) binaries discovered as optical counterparts of X-ray sources in SFRs. The spectroscopic and photometric monitoring has allowed us to determine the orbital and physical parameters and the rotation periods, that are of great importance for testing the models of PMS evolution.  相似文献   

8.
Donahue  R. A.  Dobson  A. K.  Baliunas  S. L. 《Solar physics》1997,171(1):211-220
The relative distribution of pooled variance computed at various time scales for records of chromospheric activity has been calculated for approximately 100 stars observed at Mount Wilson Observatory. As shown in Paper I, analysis of the pooled variance provides a technique for estimating the lifetimes of stellar active regions and their influence on chromospheric time series used for determining rotation and activity cycle periods. Pooled variance diagrams may be divided into three morphological types which depend to a large extent on a star's mean level of chromospheric activity (i.e., age) and B-V color (i.e., mass), and possibly depend on star's evolutionary state.  相似文献   

9.
The study of the earliest stages of star formation in molecular clouds is one of the fields that should benefit most from ALMA. Improving our understanding of these deeply embedded stages is crucial to gain insight into the origin of stellar masses and binary systems. While the use of large single-dish (sub)millimeter radiotelescopes and existing interferometers has led to good progress on the overall density structure of isolated prestellar cores and young protostars, many questions remain open concerning, e.g., their fragmentation properties and detailed kinematics. Furthermore, the classical paradigm for the formation of single low-mass stars in well-separated, magnetized prestellar cores has been challenged on the grounds that most young stars actually belong to multiple systems and/or coherent clusters. A new paradigm based on supersonic turbulence has emerged which emphasizes the role of dynamical interactions between individual (proto)stars in cluster-forming clumps. The debate is far from settled and ALMA will greatly help to discriminate between these two paradigms.  相似文献   

10.
The aim of the present investigation has been to consider rotational evolution of solar-type stars simulated by a polytropic model that possesses differential rotation of Clement's type. A properly defined reduction factor moderates the effects of such a rotation. The present treatment is based upon the general Eulerian equation, governing nonuniform (i.e., nonrigid-body) rotation, which has been set up in a previous investigation. Nonconservative terms, arising when stellar wind torque is under consideration, are taken into account. Data available for the viscosity of the Sun are used to construct a plausible viscosity model. Certain assumptions are made that remove the mathematical difficulties and simplify the physical ground. The obtained results are compared to corresponding estimates of recent observations.  相似文献   

11.
In this lecture, I will briefly address several phenomena expected when magnetic fields are present in the innermost regions of circumstellar accretion discs: (i) the magneto-rotational instability and related “dead zones”; (ii) the formation of magnetically-driven jets and the observational constraints derived from Classical T Tauri stars; (iii) the magnetic star–disc interactions and their expected role in the stellar spin down.It should be noted that the magnetic fields invoked here are organized large scale magnetic fields, not turbulent small scale ones. I will therefore first argue why one can safely expect these fields to be present in circumstellar accretion discs. Objects devoid of such large scale fields would not be able to drive jets. A global picture is thus gradually emerging where the magnetic flux is an important control parameter of the star formation process as a whole. High angular resolution technics, by probing the innermost circumstellar disc regions should provide valuable constraints.  相似文献   

12.
Starspots     
Starspots are created by local magnetic fields on the surfaces of stars, just as sunspots. Their fields are strong enough to suppress the overturning convective motion and thus block or redirect the flow of energy from the stellar interior outwards to the surface and consequently appear as locally cool and therefore dark regions against an otherwise bright photosphere (Biermann in Astronomische Nachrichten 264:361, 1938; Z Astrophysik 25:135, 1948). As such, starspots are observable tracers of the yet unknown internal dynamo activity and allow a glimpse into the complex internal stellar magnetic field structure. Starspots also enable the precise measurement of stellar rotation which is among the key ingredients for the expected internal magnetic topology. But whether starspots are just blown-up sunspot analogs, we do not know yet. This article is an attempt to review our current knowledge of starspots. A comparison of a white-light image of the Sun (G2V, 5 Gyr) with a Doppler image of a young solar-like star (EK Draconis; G1.5V, age 100 Myr, rotation 10 × Ω Sun) and with a mean-field dynamo simulation suggests that starspots can be of significantly different appearance and cannot be explained with a scaling of the solar model, even for a star of same mass and effective temperature. Starspots, their surface location and migration pattern, and their link with the stellar dynamo and its internal energy transport, may have far reaching impact also for our understanding of low-mass stellar evolution and formation. Emphasis is given in this review to their importance as activity tracers in particular in the light of more and more precise exoplanet detections around solar-like, and therefore likely spotted, host stars.  相似文献   

13.
《New Astronomy》2007,12(4):346-352
We monitored the light variations of 16 solar-type stars recently discovered in the X-ray wave-length range during the ROSAT all-sky survey. We find that 9 out of 16 stars showed appreciable light variability with amplitudes of a few hundredths of a magnitude. They are all proved to be in periodic variations. Using the methods of the phase dispersion minimization (PDM) and Fourier Analysis (PERIOD04), we derive the photometric periods for these stars. The rotational periods are found range from 0.471 to 17.31 days and the period of stars most (of 7 stars) being shorter than 3 days. Apart from binaries system, the results give further evidence for the spin up of solar-type stars as predicted by models of angular momentum evolution of pre-main sequence stars.  相似文献   

14.
Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Their X-ray spectra have been important in constraining physical processes that heat plasma in stellar environments to temperatures exceeding one million degrees. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. The Sun itself as a typical example of a main-sequence cool star has been a pivotal testbed for physical models to be applied to cool stars. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma, although plasma parameters such as temperature, density, and element abundances vary widely. Coronal structure, its thermal stratification and geometric extent can also be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Medium and high- resolution spectroscopy have shed new light on these objects as well. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.  相似文献   

15.
Recent theoretical calculations of stellar evolutionary tracks for rotating high-mass stars suggests that the chemical composition of the surface layers changes even whilst the star is evolving on the Main Sequence. The abundance analysis of binary components with precisely known fundamental stellar quantities allows a powerful comparison with theory. The observed spectra of close binary stars can be separated into the individual spectra of the component stars using the method of spectral disentangling on a time-series of spectra taken over the orbital cycle. Recently, Pavlovski and Hensberge (2005, A&A, 439, 309) have shown that, even with moderately high line-broadening, metal abundances can be derived from disentangled spectra with a precision of 0.1 dex. In a continuation of this project we have undertaken a detailed abundance analysis of the components of another two high-mass binaries, V453 Cyg, and V380 Cyg. Both binaries are well-studied systems with modern solutions. The components are close to the TAMS and therefore very suitable for an observational test of early mixing in high-mass stars.  相似文献   

16.
The possibility of observing solar-type oscillations on other stars is of great relevance to investigating the uncertain aspects of the internal structure of stars. One of these aspects is the convective overshoot that takes place at the borders of the envelopes of stars of mass similar to, or lower than, the Sun. It affects the temperature stratification, mixing, rotation and magnetic-field generation. Asteroseismology can provide an observational test for the studies of the structure of such overshoot regions.
The seismic study of the transition in the Sun, located at the base of the convection zone, has been successful in determining the characteristics of this layer in the Sun. In this work we consider the extension of the analysis to other solar-type stars (of mass between 0.85 and 1.2 M) in order to establish a method for determining the characteristics of their convective envelopes. In particular, we hope to be able to establish seismologically that a star does indeed possess a convective envelope, to measure the size of the convective region and also to constrain the properties of an overshoot layer at the bottom of the envelope. The limitations in terms of observational uncertainties and stellar characteristics, and the detectability of an overshoot layer, are discussed.  相似文献   

17.
Kepler卫星提供的长时序、高精度的光度观测和郭守敬望远镜(LAMOST)提供的大规模光谱观测为研究恒星表面转动周期与富锂巨星锂丰度关系提供了良好的数据.将LAMOST搜寻到的富锂巨星与Kepler观测交叉,获得了619颗共同源,研究了其中295颗有良好观测数据的富锂巨星的表面转动.在205颗有星震学参数的恒星中提取出14颗恒星的转动周期,其中氦核燃烧星(HeB) 11颗,红巨星支(RGB) 2颗, 1颗演化阶段未确定.本样本中的极富锂巨星(A(Li) 3.3 dex)皆为HeB;对于90颗没有星震学参数的样本因而没有依靠星震学手段确定演化阶段的恒星中,有22颗提取出了自转周期.前者的自转探测率为6.8%,显著高于之前工作中大样本巨星2.08%的探测率.同时,此研究首次从自转周期的角度确认了恒星转动与巨星锂增丰存在相关性,在增丰程度较弱时,自转周期分布比较弥散;强锂增丰的星倾向于快速转动.富锂巨星与极富锂巨星在转动速度随锂丰度的演化上展现了两个序列,在转动-锂丰度图上的A(Li)≈3.3 dex处产生第2个下降序列,或许暗示了两者在形成机制上的不同.极富锂巨星的样本中,随巨星锂增丰程度增强,恒星转速加快.这种相关性为由转动引起的额外混合作为富锂巨星形成的机制提供了支持.  相似文献   

18.
We analyze the long-term variability of the chromospheric radiation of 20 stars monitored in the course of the HK-Project at the Mount Wilson Observatory. We apply the modified wavelet algorithm for this set of gapped time series. Besides the mean rotational periods for all these stars, we find reliable changes of the rotational periods from year to year for a few stars. Epochs of slower rotation occur when the activity level of the star is high, and the relationship repeats again during the next maximum of an activity cycle. Such an effect is traced in two stars with activity cycles that are not perfectly regular (but labeled “Good” under the classification in [Baliunas, S.L., Donahue, R.A., Soon, W.H., Horne, J.H., Frazer, J., Woodard-Eklund, L., Bradford, M., Rao, L.M., Wilson, O.C., Zhang, Q. et al., 1995. ApJ 438, 269.]) but the two stars have mean activity levels exceed that of the Sun. The averaged rotational period of HD 115404 is 18.5 days but sometimes the period increases up to 21.5 days. The sign of the differential rotation is the same as the Sun’s, and the value ΔΩ/Ω=-0.14. For the star HD 149661, this ratio is −0.074. Characteristic changes of rotational periods occur over around three years when the amplitude of the rotational modulation is large. These changes can be transformed into latitude-time butterfly diagrams with minimal a priori assumptions. We compare these results with those for the Sun as a star and conclude that epochs when surface inhomogeneities rotate slower are synchronous with the reversal of the global magnetic dipole.  相似文献   

19.
Ultraviolet spectra of FK Comae and V1794 Cygni observed with the Hubble Space Telescope Cosmic Origins Spectrograph (HST COS) and the International Ultraviolet Explorer (IUE) satellites were analyzed for the period 1981–2011. Temporal variations of line fluxes of the O I 1306 Å, C II 1336 Å, C IV 1550 Å, He II 1640 Å and Mg II k & h 2800 Å, produced in the transition regions and chromospheres of these stars, imply variations in density and temperature changes in the line emitting regions as a result of the rapid rotation and magnetic fields responsible for stellar activity. Results are consistent with the models of Ramsey et al. (1981), Oliveira and Foing (1999), and Korhonen et al. (2000).  相似文献   

20.
The characteristics of the line profile variations observed in optical transitions of O-type stars are reviewed. For a few well-observed stars, there is compelling evidence that the variations are due to photospheric velocity fields from one or more modes of nonradial pulsation. However, the origin of the line profile variations observed in most O stars is not yet established. To date, there is little empirical evidence to suggest that the variability in optical absorption lines of O stars is causally linked to the stellar wind variability commonly observed in their UV resonance lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号