首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 New high-resolution seismic reflection data from the central part of Lake Baikal provide new insight into the structure and stratigraphy of Academician Ridge, a large intra-rift accommodation zone separating the Central and North Baikal basins. Four seismic packages are distinguished above the basement: a thin top-of-basement unit; seismic-stratigraphic unit X; seismic-stratigraphic unit A; and seismic-stratigraphic unit B. Units A and B were cored on selected key locations. The four packages are correlated with a series of deposits exposed on the nearby western shores: the Ularyar Sequence (Oligocene); the Tagay Sequence (Lower to Middle Miocene); the Sasa Sequence (Upper Miocene to Lower Pliocene); the Kharantsy Sequence (Upper Pliocene); and the Nyurga Sequence (Lower Pleistocene). Based on stratal relationships, sedimentary geometries, distribution patterns and principal morphostructural elements – both onshore and offshore – we propose a new palaeogeographic evolution model for the area. In this model progressive tectonic subsidence of the Baikal basins and successive pulses of uplift of various segments of the rift margins lead to: (a) formation of the ridge as a structural and morphological feature separating the Central and North Baikal basins during the Middle to Late Miocene; (b) gradual flooding of the main parts of the ridge and establishment of a lacustrine connection between the two rift basins during the Late Miocene; and (c) total submergence of the top parts of the crest of the ridge during the latest Pleistocene. This new model helps to better constrain numerous phases in the structural evolution of the Baikal Rift, in which the Academician Ridge as an accommodation zone plays a crucial role. Received: 26 November 1999 / Accepted: 12 March 2000  相似文献   

2.
This paper presents data on the lithological composition of Cenozoic deposits penetrated for the first time by boreholes BDP-96-1, BDP-96-2, and BDP-98 down to a depth of 600 m on the underwater Akademicheskii Ridge in Lake Baikal. The deposits are subdivided into the upper (Angara) and lower (Barguzin) sequences, which span the Middle Miocene-Holocene period. They formed under different climatic conditions and tectonic settings. Sources of the terrigenous material were also different. Outbursts of diatom-and mineral formation in Lake Baikal can be related to not only climatic fluctuations in the Miocene-Holocene, but also the endogenous activity. By the analogy with the World Ocean, underwater gas-hydrothermal fluid discharge detected at the water-bottom interface in this lake may be accompanied by the formation of diatomaceous oozes and ferromanganese nodule fields and the concentration of rare elements.  相似文献   

3.
In this paper we present a review of sedimentological, geomorphological, lithological, geochronological and geophysical data from major, minor and satellite basins of the Baikal Rift Zone (BRZ) and discuss various aspects of its evolution. Previously, the most detailed sedimentological data have been obtained from the basins of the central BRZ, e.g., Baikal, Tunka and Barguzin, and have been used by many scientists worldwide. We add new information about the peripheral part and make an attempt to provide a more comprehensive view on BRZ sedimentation stages and environments and their relations to local and regional tectonic events. A huge body of sedimentological data was obtained many years ago by Soviet geologists and therefore is hardly accessible for an international reader. We pay tribute to their efforts to the extent as the format of a journal paper permits. We discuss structural and facial features of BRZ sedimentary sequences for the better understanding of their sedimentation environments. In addition, we review tectono-sedimentation stages, neotectonic features and volcanism of the region. Finally, we consider the key questions of the BRZ evolution from the sedimentological point of view, in particular, correlation of Mesozoic and Cenozoic basins, bilateral growth of the Baikal rift, Miocene sedimentation environment and events at the Miocene/Pliocene boundary, Pliocene and Pleistocene tectonic deformations and sedimentation rates. The data from deep boreholes and surface occurrences of pre-Quaternary sediments, the distribution of the Pleistocene sediments, and the data from the Baikal and Hovsgol lakes sediments showed that 1) BRZ basins do not fit the Mesozoic extensional structures and therefore hardly inherited them; 2) the Miocene stage of sedimentation was characterized by low topography and weak tectonic processes; 3) the rifting mode shifted from slow to fast at ca. 7–5 Ma; 4) the late Pleistocene high sedimentation rates reflect the fast subsidence of basin bottoms.  相似文献   

4.
A new composite BDP-96 biogenic silica record over the entire Pleistocene was generated by splicing BDP-96-1 and BDP-96-2 drill cores from Lake Baikal, crosschecked against a similar record from a nearby BDP-98 drill core. A new astronomically tuned age model is proposed based on correlating peak biogenic silica responses with the timing of September perihelia. This target is derived from analysis of regional climate proxy responses during the Holocene, the last interglacial and around paleomagnetic reversals. By resolving virtually every precessional cycle during the Pleistocene, the new age model represents a major improvement compared with previously reported Lake Baikal timescales. The astronomically tuned ages of the Pleistocene paleomagnetic reversals are consistent with published dates. The minimal tuning approach we used (precession only) has also aligned high signal power in a narrow obliquity band, confirming the strong presence of orbital forcing. There are also strong ca 100-ka scale cycles, but these are not aligned with the orbital eccentricity.Despite the location of Lake Baikal in a continental interior that is highly sensitive to insolation forcing, the tuned biogenic silica record reveals a consistent phase difference of −32° (ca 4 ka) relative to insolation in the obliquity band. An inherent lag embedded in a continental proxy record, not driven by global ice volume, is an intriguing finding. Another new observation is that long-term changes in sedimentation rates in Lake Baikal appear to be related to the amplitude of orbital forcing; both amplitudes and sedimentation rates undergo significant changes during MIS 24-MIS 19 interval corresponding to the Middle Pleistocene Transition. With potential for linking continental and marine climato-stratigraphies, the new Baikal record serves a new benchmark correlation target in continental Eurasia, as an alternative to June 65°N insolation and ODP-correlated timescales.  相似文献   

5.
The relative paleointensity of sedimentation is studied for sediments stripped by deep-water drilling in Lake Baikal (BDP-99 borehole). Two intervals are considered: 0–420 ka (Brunhes chron) and 1.05–1.09 Ma (before, during, and after the Matuyama–Jaramillo reversal). For these intervals, curves of the ideal magnetization of samples are plotted.The paleointensity data obtained along the borehole section reveal four excursions for the Baikal sediments whose identification on the inclination–depth curve is complicated.The lower part of the section (Matuyama–Jaramillo subzones) shows a paleointensity decrease by a factor of five or more relative to periods of invariable polarity.  相似文献   

6.
Songliao Basin, the largest Mesozoic intracontinental nonmarine basin in eastern China, initiated during the latest Jurassic as a backarc extensional basin; rifting failed and thermal cooling controlled subsidence through the early Late Cretaceous. Integrating 2-D and 3D reflection seismic and borehole data with regional geological studies, we interpret sedimentary sequence and structural patterns of the Coniacian-Maastrichtian fill of Songliao Basin as defining a retroforeland basin system developed after 88 Ma (marked by the T11 unconformity in the basin), including (1) significant increase in the thickness of the Nenjiang Formation eastward towards orogenic highlands of the Zhangguangcai Range and the convergent continental margin; (2) a shift of detrital provenance in the basin from north to southeast; and (3) propagation of E-W shortened structures, increasing eastward in amplitude, frequency, and degree of inversion toward the orogen. During latest Cretaceous, foreland basin fill progressively deformed, as the foredeep evolved to a wedge-top tectonic setting, marked by the basin-wide T04 unconformity within the upper Nenjiang Formation at 81.6 Ma. Much of the basin was brought into the orogenic wedge and eroded by the end of the Cretaceous. Late Jurassic/Early Cretaceous backarc rifting of uncratonized basement comprised of accreted terranes likely facilitated and localized the foreland. Synrift normal faults reactivated and extensively inverted as thrust faults are prominent in the eastern 1/3 of the basin, whereas folds developed above detachments in shaley early post-rift strata dominate the western 2/3 of the basin. Songliao foreland development likely was driven by changing plate dynamics and collision along the Pacific margin after 88 Ma.  相似文献   

7.
The biostratigraphic study of a new Upper Cenozoic reference section in the Tunka rift valley (southwestern Baikal region) accompanied by radiocarbon measurements made it possible to date its lithological units. It is established that the section is largely composed of Upper Pleistocene fluvial sediments resting with distinct angular unconformity uapon Pliocene conglomerates. The revealed structural features of the section confirm the views that the directed development of the Tunka depressions was complicated by local inversions, when the sedimentation area became reduced. The main sedimentation features during the Late Cenozoic and its stages are reconstructed for the studied area.  相似文献   

8.
Seismic reflection profiles from the Lake Baikal Rift reveal extensive details about the sediment thickness, structural geometry and history of extensional deformation and syn-rift sedimentation in this classic continental rift. The Selenga River is the largest single source of terrigenous input into Lake Baikal, and its large delta sits astride the major accommodation zone between the Central and South basins of the lake. Incorporating one of the world's largest lacustrine deltas, this depositional system is a classic example of the influence of rift basin structural segmentation on a major continental drainage. More than 3700 km of deep basin-scale multi-channel seismic reflection (MCS) data were acquired during the 1989 Russian and the 1992 Russian–American field programs. The seismic data image most of the sedimentary section, including pre-rift basement in several localities. The MCS data reveal that the broad bathymetric saddle between these two major half-graben basins is underlain by a complex of severely deformed basement blocks, and is not simply a consequence of long-term deltaic deposition. Maximum sediment thickness is estimated to be more than 9 km in some areas around the Selenga Delta. Detailed stratigraphic analyses of the Selenga area MCS data suggest that modes of deposition have shifted markedly during the history of the delta. The present mode of gravity- and mass-flow sedimentation that dominates the northern and southern parts of the modern delta, as well as the pronounced bathymetric relief in the area, are relatively recent developments in the history of the Lake Baikal Rift. Several episodes of major delta progradation, each extending far across the modern rift, can be documented in the MCS data. The stratigraphic framework defined by these prograding deltaic sequences can be used to constrain the structural as well as depositional evolution of this part of the Baikal Rift. An age model has been established for this stratigraphy, by tying the delta sequences to the site of the Baikal Drilling Project 1993 Drill Hole. Although the drill hole is only 100 m deep, and the base of the cores is only ∼670 ka in age, ages were extrapolated to deeper stratigraphic intervals using the Reflection-Seismic-Radiocarbon method of Cohen et al. (1993). The deep prograding delta sequences now observed in the MCS data probably formed in response to major fluctuations in sediment supply, rather than in response to shifts in lake level. This stratigraphic framework and age model suggest that the deep delta packages developed at intervals of approximately 400 ka and may have formed as a consequence of climate changes affiliated with the northern hemisphere glaciations. The stratigraphic analysis also suggests that the Selenga Basin and Syncline developed as a distinct depocentre only during the past ∼2–3 Ma. Received: 1 December 1999 / Accepted: 26 January 2000  相似文献   

9.
U-Pb analyses of single monazite grains from two granulite facies metapelites in the Ivrea Zone (Southern Alps) reveal the presence, in both samples, of at least three different ages and prove that earlier interpretations of supposedly concordant monazite data as cooling ages are unwarranted. One group of monazite data defines a subconcordant discordia line with an upper intercept age of 293.4 ± 5.8 Ma and a lower intercept age of 210 ± 14 Ma. The upper intercept is interpreted as the real cooling age of the monazites. The lower intercept is interpreted as an episode of fluid-driven Pb-loss, indicated by the presence of internal and external corrosion structures not only of the monazites but also of the zircons in the same samples that are also rejuvenated at 210 ± 12 Ma. Another group of monazite data lies above the concordia. The presence of excess 206Pb indicates that these crystals have grown below the monazite blocking temperature, thus after the granulite facies metamorphism. The age of growth of the new monazite crystals is approached by their 207Pb/235U ages that range between 273 and 244 Ma. The two groups of post-cooling age (post-293.4 ± 5.8 Ma) monazite data correspond to two distinct late- and post-Variscan geotectonic regimes that affected the Southern Alps, (1) Permian transtension with decompression and anatectic melting; (2) Upper Triassic to Lower Jurassic rifting with geographically dispersed hydrothermal activity and alkaline magmatism. Received: 7 July 1998 / Accepted: 4 November 1998  相似文献   

10.
A marine stratigraphic sequence across the Pliocene / Pleistocene boundary has been found in the north-ern continental shelf of the South China Sea. The marine Quaternary deposits in the Yinggehai Basin may ex-ceed 2,000 m in thickness, probably providing the best section for studying the lower boundary of the marinePleistocene in South China. The vertical succession with planktonic foraminifers and nannofossils revealed inboreholes in the basin has been well correlated with that in the international stratotype section of thePliocene / Pleistocene boundary at Vrica, Italy, resulting in the acquirement of a biostratigraphic boundary at1.64 Ma. This boundary, however, does not coincide with any prominent lithological palaeoenvironmentalchanges in the study area and can hardly be used in geological practice. There are, in contrast, significantchanges at the level of LAD of Globorotalia multicamerata sensu lato located below the above-mentionedboundary. The percentage of planktonic foraminifers in the total population and preservation of foraminiferaltests display great changes at this level corresponding to a clear onlap on the seismic profiles and indicating adepositional hiatus at ca. 2.0-2.5 Ma. Since the level can be widely traced in the Pearl River Mouth Basin andthe Beibu Gulf Basin and well corresponds with the marked depositional environmental changes recorded inthe west Pacific and other regions, it is recommended that the Plio / Pleistocene boundary be drawn at the levelof Gr. multicamerata sensu lato LAD, roughly concurrent with the Gauss / Matuyama turn.  相似文献   

11.
Granulite-grade, anorthositic and mafic xenoliths recovered from a Jurassic kimberlite pipe near Kirkland Lake, Ontario are fragments of the lower crust that underlies the ca. 2.7 Ga Abitibi greenstone belt of the Superior craton. Cathodoluminescence imaging and/or backscatter electron microscopy of zircon from four individual xenoliths reveals a complex crystallization history, characterized by two main stages of zircon growth. The age of the two stages has been constrained by combining imaging results with isotope dilution U-Pb dating of grain fragments and single grains. Minimum ages for the first crystallization stage in individual xeno liths are 2584 ± 7 Ma, 2629 ± 8 Ma, 2633 ± 3 Ma, whereas an approximate crystallization age for a fourth sample is 2788 ± 57 Ma. The second main stage of growth consists of chemically and isotopically distinct metamorphic zircon overgrowths. Times of solid-state zircon growth are most broadly constrained in three samples to the interval between 2.52 Ga to 2.40 Ga, and most precisely dated in a meta-anorthosite at 2416 ± 30 Ma. These complex zircons are intergrown with garnet and clinopyroxene of the host granulite-facies assemblage, and thus the Paleoproterozoic ages of the metamorphic overgrowths are interpreted to reflect an interval of isobaric, granulite-grade metamorphism of the lower crust beneath the greenstone belt approximately 150 million years after craton formation. This interval of metamorphism is broadly coeval with the intrusion of the Matachewan dyke swarm across the southern Superior craton, and with mafic magmatism and deposition of Huronian rift-margin sediments 200 km to the south during the opening of the Matachewan ocean. It is proposed that a significant volume of magma intruded the crust-mantle interface during rifting, promoting isobaric metamorphism and zircon growth in the deep levels of the Superior craton. Subsequent major rifting events along this margin apparently failed to produce a similar lower crustal response. The results have important implications for the structure of lithosphere beneath Archean continental crust. Received: 3 October 1995 / Accepted: 11 February 1997  相似文献   

12.
New mid Miocene to present plate tectonic reconstructions of the southern Central American Volcanic Arc (CAVA) reveal that the inception of Cocos Ridge subduction began no earlier than 3 Ma, and possibly as late as 2 Ma. The Cocos Ridge has been displaced from the Malpelo Ridge to the southeast since 9 Ma along the Panama Fracture Zone (PFZ) system. Ambiguous PFZ and Coiba Fracture Zone (CFZ) interaction since 9 Ma precludes conclusively establishing the age of initial Cocos Ridge subduction. Detailed reconstructions based on magnetic anomalies offshore reveal several other variations in subduction parameters beneath southern Central America that preceded subduction of the Cocos Ridge, including southeastward migration of the Nazca–Cocos–Caribbean triple junction along the Middle America Trench (MAT) from 12 Ma to present, and subduction of ≤2 km high scarps both parallel and perpendicular to the trench from 6 to 1 Ma.The timing of changes in subduction processes has commonly been determined by (and correlated with) geologic changes in the upper plate. However, reliable 40Ar/39Ar dating of these events has become available only recently [Abstr. Programs-Geol. Soc. Am. (2002)]. These new dates better constrain the magmatic and structural history of southern Costa Rica. Observations from this data set include: a gap in the volcanic record from 11 to 6 Ma, which coincides temporally with emplacement of most plutons in southern Costa Rica, normal arc volcanism ceased after 3.5 Ma in southern Costa Rica, and Pliocene (mostly 1.5 Ma) adakite volcanism was widely distributed from central Panama to southern Costa Rica (though volumetrically insignificant).This new data reveals that many geologic phenomena, commonly attributed to subduction and underplating of the buoyant Cocos Ridge, in fact precede inception of Cocos Ridge subduction and seem to correlate more favorably in time with earlier tectonic events. Adakite volcanic activity corresponds in space and time with the subduction of a large scarp associated with a tectonic boundary off southern Panama. Regional unconformities and an 11–6 Ma gap in arc volcanism match temporally with oblique subduction of the Nazca plate beneath central and southern Costa Rica. Cessation of volcanic activity, low-temperature cooling of plutons in the Cordillera de Talamanca (CT), and rapid increases in sedimentation in the fore-arc and back-arc basins coincide with passage of the Nazca–Cocos–Caribbean triple junction and initiation of subduction of “rough” crust associated with Cocos–Nazca rifting 3.5 Ma, closely followed by initial subduction of the Cocos Ridge 2–3 Ma. None of the aforementioned geologic events occurred at a time that would allow for underplating by the Cocos Ridge. Rather they are probably related to complex interactions with subduction of complicated plates offshore. All of the aforementioned events indicate that the southern Central American subduction system has been in flux since at least 12 Ma.  相似文献   

13.
Phosphates are present on the surface of the Mio-Pliocene unconformity in the Otway, Port Phillip and Gippsland basins of south-east Australia. The phosphates occur as lenticular lag deposits and include reworked phosphatic intraclasts, vertebrate bone and teeth. In situ phosphatized burrows are also found in sediments of Late Miocene and Early Pliocene age. The phosphatic intraclasts on the unconformity are interpreted as reworked phosphatized burrows derived from latest Miocene sediments (6 to 5 Ma). The phosphatization of these intraclasts is temporally related to the unconformity. The timing of phosphogenesis coincides with a period of transgression across the south-east Australian margin following Late Miocene uplift. This transgression is responsible for initial marine erosion of the underlying Miocene sequence, creation of a period of very slow sedimentation that was favourable to phosphate formation and subsequent deposition of the latest Miocene through to Pliocene sediments. The continental weathering of the uplifted highlands adjacent to the sedimentary basins, global phosphorus enrichment in the Late Miocene oceans and localized upwelling may all have contributed to phosphatization in south-eastern Australia.  相似文献   

14.
Conventional and SHRIMP U-Pb analyses of zircon, monazite, titanite and apatite from the high grade rocks of the Northampton Complex in Western Australia provide constraints on the timing of metamorphic processes and deformation events in the northern Darling Mobile Belt (western margin of the Archean Yilgarn Craton). Paragneisses and mafic volcanics and/or intrusions have undergone granulite facies metamorphism in a probable extensional tectonic setting prior to formation of W- to NW-verging folds and thrusts cut by normal shears (interpreted as late collapse structures) during the main deformation event (D1). These structures are folded by open to tight folds with NW-striking axial surfaces developed in a second, NE-SW contractional event (D2). Zircons from a mafic granulite provide an age of 1079 ± 3 Ma attributed to new zircon growth prior to, or at the peak of regional granulite facies metamorphism. Metamorphic monazites extracted from a paragneiss yield an identical age of 1083 ± 3 Ma. The similarity of ages between zircons from the mafic granulite (1079 ± 3 Ma) and monazites from the paragneiss (1083 ± 3 Ma) is interpreted to reflect fast cooling and/or rapid uplift, which is consistent with thrusting of the gneissic units during the first deformation event (D1) associated with the onset of retrograde metamorphism. Granitic activity at 1068 ± 13 Ma was followed by intrusion of post-D2 pegmatite (989 ± 2 Ma), which constrains the end of metamorphism and associated deformation. Cooling of the complex to about 500 °C is timed by the apatite age of 921 ± 23 Ma. SHRIMP U-Pb ages of detrital zircons from a paragneiss sample yield a maximum age of 2043 Ma, with no evidence of an Archean Yilgarn signature. A majority of ages between 1.6 and 1.9 Ga are consistent with derivation from the Capricorn Orogen on the northern margin of the Yilgarn Craton. Younger detrital zircons with 1150–1450 Ma ages, however, indicate an additional source that had undergone early Grenvillian igneous or metamorphic event(s) and also places a maximum age constraint upon deposition. The source of this clastic material may have been from within the southern Darling Mobile Belt or from Greater India (adjacent to the Northampton Complex in Rodinia reconstructions). This study documents an extended Grenvillian history, with basin formation, sedimentation, granulite facies metamorphism, contractional tectonics (two periods with orthogonal directions of shortening) and late pegmatite emplacement taking place between 1150–989 Ma on the western margin of the Yilgarn Craton. Ages recorded in this study indicate that the proposed global distribution of Grenvillian belts during assembly of the Rodinia supercontinent should be reassessed to include the Darling Mobile Belt. Received: 7 January 1998 / Accepted: 10 March 1999  相似文献   

15.
Disperse and punctual studies; absence of integration of data ranging from local to regional focus; interpretations based only on lithostratigraphic features; and interpretation of data premised on an allochthonous origin of the Caribbean plate, are some of factors that increase the confusion and uncertainty in understanding the Sinú-San Jacinto Basin. The sedimentary record of Upper Cretaceous to Eocene has been traditionally interpreted as the record of deep-water settings. However, recently these sediments have been related to shallow marine and deltaic settings. Second problematic point is about the deposition environment of the Oligocene to Late Miocene succession. Some studies suggest canyons, turbidites and sediments deposited in deep-water settings. However, recent studies propose deltaic and shallow marine settings. The last stratigraphic problem is related to the controversial fluvial vs. shallow marine interpretations of the Pliocene sediments. Based upon seismic stratigraphic analysis in recent and reprocessed 2D seismic data, integrated with well data, we propose chronostratigraphic charts for the northern, central and southern zones of the Sinú-San Jacinto Basin. Twenty seismic facies based on amplitude, continuity, frequency and geometry of seismic reflectors and twelve seismic sequences were recognized. The seismic stratigraphic analysis in this study suggests that the sediments of Upper Cretaceous to Paleocene/Eocene were associated to continental to shallow marine settings. Lagoons, coastal plain and carbonate platform dominated during this period. The Oligocene to Middle Miocene record was characterized by deep-water deposition, whereas the Late Miocene to recent sedimentation was characterized by falling base level, characterized by deltaic and fluvial deposits. Five syn-rift sequences with wedge-shaped geometry were identified in this study. Three Triassic to Jurassic syn-rift sequences were characterized by seismic facies typical of fluvial to lacustrine and flood plain sedimentation. Two Cretaceous to Paleocene syn-rift sequences were characterized by seismic facies related to lagoons to coastal plain settings. Normal high-angle faults with a northeast-southwest direction related to rifting processes controlled the development of these sequences. The sheet-drape post-rift section was characterized by passive margin settings in the northern part of the Sinú-San Jacinto Basin and by diachronic tectonic inversion of older normal faults during Cenozoic, predominantly in the central and southern zones. The stratigraphic record related to the Mesozoic to Early Cenozoic rifting; the shallow marine sedimentation during Eocene and the tectono-stratigraphic continuity across the northern Colombia and northwestern Venezuela is coherent and well explained by the in situ origin of the Caribbean plate and is not explained by the “allochthonous” model.  相似文献   

16.
This study characterizes some issues of the Paleozoic and Mesozoic tectonomagmatic evolution of Precambrian structures from the southwestern margin of the Siberian craton. The relationship between the Devonian and Triassic magmatic events is demonstrated from the example of the Severnaya rift-related structure, South Yenisei Ridge. U-Pb SHRIMP dating yielded ages of 387 ± 5 Ma for leucogranites and 240 ± 3 Ma for the overlying alkaline trachytes. These ages show good agreement with Ar-Ar geochronological data (392–387 Ma) obtained for micas from paragneisses and leucogranite dykes of the Yenisei suture zone, the extension of which is superimposed by the studied rift-related structure. The previous geological evidence and the Devonian age estimate first obtained for magmatic rocks of the Yenisei Ridge allow us to interpret the studied leucogranites as products of Devonian continental rifting, similar to volcanic and intrusive rocks of the North Minusa depression and Agul graben. Like other localities within the western margin of Siberian craton, the formation of Triassic alkaline rocks may be related to the Siberian superplume activity.  相似文献   

17.
The Rodna Mountains afford the most internal structural window into the crystalline units of the Eastern Carpathians in Romania. The Rodna Mountains consist of Variscan metamorphic nappes that were restacked in the Alpine phase of Carpathian development forming the Subbucovinian and Infrabucovinian nappes. In order to evaluate age of deformation, ten samples were taken from the zone of greenschist facies mylonitic schist that marks the Alpine tectonic boundary between the Subbucovinian and Infrabucovinian nappes and 40Ar/39Ar laser single-grain ages determined for schistosity-forming muscovite. Microstructural assessment of quartz and muscovite distinguished two deformation events. Single-grain ages from the microstructurally most strongly reworked samples (four samples) give a tight clustering of ages at ca. 95 Ma. The least reworked schists have a broader clustering of ages spanning ca. 200–280 Ma with a late Permian peak and some samples showing outlier ages in the range 200–100 Ma. The relative development of the outliers, which correlates with evidence for increased microstructural reworking, is interpreted to mark progressive isotopic resetting. The ca. 95 Ma ages for the most reworked schists are estimates for the age of the Alpine nappe stacking. The ca. 200–280 Ma ages are similar to those of magmatism, metamorphism, and sedimentation thought to mark post-Variscan-pre-Alpine rifting and ocean basin formation in parts of the Alps and may be the thermal imprint of a related event in the Eastern Carpathians.  相似文献   

18.
The results of geological, structural, tectonic, and geoelectric studies of the dry basins in the Baikal Rift Zone and western Transbaikalia, combined under the term Baikal region, are integrated. Deformations of the Cenozoic sediments related to pulsing and creeping tectonic processes are classified. The efficiency of mapping of the fault-block structure of the territories overlapped by loose and poorly cemented sediments is shown. The faults mapped at the ground surface within the basins are correlated with the deep structure of the sedimentary fill and the surface of the crystalline basement, where they are expressed in warping and zones of low electric resistance. It is established that the kinematics of the faults actively developing in the Late Cenozoic testifies to the relatively stable regional stress field during the Late Pliocene and Quaternary over the entire Baikal region, where the NW-SE-trending extension was predominant. At the local level, the stress field of the uppermost Earth’s crust is mosaic and controlled by variable orientation of the principal stress axes with the prevalence of extension. The integrated tectonophysical model of the Mesozoic and Cenozoic rift basin is primarily characterized by the occurrence of mountain thresholds, asymmetric morphostructure, and block-fault structure of the sedimentary beds and upper part of the crystalline basement. The geological evolution of the Baikal region from the Jurassic to Recent is determined by alternation of long (20–115 Ma) epochs of extension and relatively short (5.3–3.0 Ma) stages of compression. The basins of the Baikal Rift System and western Transbaikalia are derivatives of the same geodynamic processes.  相似文献   

19.
Supergene Mn-oxide deposits are widely distributed in Guangxi, Guangdong, Yunnan, and Hunan Provinces, South China, accounting for 18% of the total Mn reserves in the country. Direct dating of supergene Mn enrichment, however, is lacking. In this paper, we present high-resolution 40Ar/39Ar ages of Mn oxides from the Xinrong Mn deposit, western Guangdong, to place numerical constraints on the timing and duration of supergene Mn enrichment. A total of ten cryptomelane samples, spanning a vertical extent of 67 m, were dated using the 40Ar/39Ar laser incremental heating technique, with seven samples yielding well-defined plateau or pseudo-plateau ages ranging from 23.48 ± 0.91 to 2.06 ± 0.05 Ma (2σ). One sample yields a staircase spectrum that does not reach a plateau; the spectrum, however, indicates the presence of two or more generations of Mn oxides in the sample, whose ages are best estimated at 22.34 ± 0.31 and 10.2 ± 0.86 Ma, respectively. The remaining two samples gave meaningless or uninterpretable results due to significant 39Ar recoil and contamination by old phases. The 40Ar/39Ar data thus reveal a protracted history of weathering and supergene Mn enrichment that started at least in the end of the Oligocene or beginning of Miocene and extending into the latest Pliocene. Staircase-apparent age spectra, resulting from banded or botryoidal samples, yield an average growth rate of Mn oxides at 0.6–0.7 × 10−3 mm kyr−1. The values indicate that a 1-mm grain of Mn oxides may host minerals precipitated during a time span of ca. 1.5 m.y., and accumulation of Mn oxides to form economic deposits under weathering environments may take millions of years. The distribution of weathering ages shows that the oldest Mn oxides occur on the top of the profile, whereas the youngest minerals are found at the bottom, suggesting downward propagation of weathering fronts. However, two samples located at the intermediate depths of the profile yield ages comparable with those occurring at the highest elevations. Such a complexity of age distribution is interpreted in terms of preferential penetration of Mn-rich weathering solutions along more permeable fault zones, or as a result of multi stages of dissolution and re-precipitation of Mn oxides. A synthesis of geochronological and geological data suggests that formation of the Xinrong deposit was a consequence of a combination of favorable lithological, climatic, and structural conditions. Because the climatic and structural conditions are similar among the provinces of South China during the Cenozoic, the geochronological results obtained at Xinrong may also have implications for the timing of supergene Mn enrichment throughout South China.  相似文献   

20.
The current geodynamics and tectonophysics of the Baikal rift system (BRS) as recorded in lithospheric stress and strain are discussed in the context of self organization of nonlinear dissipative dynamic systems and nonlinear media. The regional strain field inferred from instrumental seismic moment and fault radius data for almost 70,000 MLH  2.0 events of 1968 through 1994 shows a complex pattern with zones of high strain anisotropy in the central part and both flanks of the rift system (the South Baikal, Hovsgöl, and Muya rift basins, respectively). The three zones of local strain anisotropy highs coincide with domains of predominantly vertical stress where earthquakes of different magnitudes are mostly of normal slip geometry. Pulse-like reversals of principal stresses in the high-strain domains appear to be nonlinear responses of the system to subcrustal processes. In this respect, the BRS lithosphere is interpreted in terms of the self organization theory as a geological dissipative system. Correspondingly, the domains of high strain anisotropy and stress change, called rifting attractor structures (RAS), are the driving forces of its evolution. The location and nonlinear dynamics of the rifting attractors have controlled lithospheric stress and strain of the rift system over the period of observations, and the same scenario may have been valid also in the Mesozoic-Cenozoic rifting history. The suggested model of a positive-feedback (fire-like) evolution of nonlinear dynamical systems with rifting attractors opens a new perspective on the current geodynamics and tectonophysics of the Baikal rift system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号