首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensitivity of the atmospheric circulation to an increase in ocean surface roughness in the Southern Hemisphere storm track is investigated in a paired general circulation model experiment. Such a change in sea roughness could be induced by ocean waves generated by storms. Two extended permanent-July runs are made. One with standard sea surface roughness, the other with ten times as a large surface roughness over open sea poleward of 40° S. The regional increase in ocean surface roughness significantly modifies the tropospheric circulation in the Southern Hemisphere. The strongest effect is the reduction of tropospheric winds (by 2 m/s or 10%) above the area with increased roughness. The poleward eddy momentum flux is reduced in the upper troposphere and the meridional eddy sensible heat flux is reduced in the lower troposphere. Zonal mean and eddy kinetic energy are consistently reduced.  相似文献   

2.
Annual mean ocean surface heat fluxes have been studied as a function of horizontal resolution in the ECMWF model (cycle 33) and compared with Oberhuber's COADS (1959–1979) based empirical estimates. The model has been run at resolutions of T21, T42, T63 and T106 for 15 months with prescribed monthly varying climatological SST and sea ice. The T42 simulation was extended to 2 years, which enabled us to determine that many differences between the resolution runs were significant and could not be explained by the fact that individual realizations of an ensemble of years can be expected to give different estimates of the annual mean climate state. In addition to systematic differences between the modeled and the observed fluxes, the simulated fields of surface shortwave and longwave radiation showed much more spatial variability than the observed estimates. In the case of the longwave radiation this may be attributable more to deficiencies in the observations than to errors in the model. The modeled latent and sensible heat fields were in better agreement with observations. The primary conclusion concerning the dependence of ocean surface fluxes on resolution is that the T21 simulation differed significantly from the higher resolution runs, especially in the tropics. Although the differences among the three higher resolution simulations were generally small over most of the world ocean, there were local areas with large differences. It appears, therefore, that in relation to ocean surface heat fluxes, a resolution greater than T42 may not be justified for climate model simulations, although the locally large differences found between the higher resolution runs suggest that convergence has not been achieved everywhere even at T106.  相似文献   

3.
The global heat balance: heat transports in the atmosphere and ocean   总被引:10,自引:0,他引:10  
The heat budget has been computed locally over the entire globe for each month of 1988 using compatible top-of-the-atmosphere radiation from the Earth Radiation Budget Experiment combined with European Centre for Medium Range Weather Forecasts atmospheric data. The effective heat sources and sinks (diabatic heating) and effective moisture sources and sinks for the atmosphere are computed and combined to produce overall estimates of the atmospheric energy divergence and the net flux through the Earth's surface. On an annual mean basis, this is directly related to the divergence of the ocean heat transport, and new computations of the ocean heat transport are made for the ocean basins. Results are presented for January and July, and the annual mean for 1988, along with a comprehensive discussion of errors. While the current results are believed to be the best available at present, there are substantial shortcomings remaining in the estimates of the atmospheric heat and moisture budgets. The issues, which are also present in all previous studies, arise from the diurnal cycle, problems with atmospheric divergence, vertical resolution, spurious mass imbalances, initialized versus uninitialized atmospheric analyses, and postprocessing to produce the atmospheric archive on pressure surfaces. Over land, additional problems arise from the complex surface topography, so that computed surface fluxes are more reliable over the oceans. The use of zonal means to compute ocean transports is shown to produce misleading results because a considerable part of the implied ocean transports is through the land. The need to compute the heat budget locally is demonstrated and results indicate lower ocean transports than in previous residual calculations which are therefore more compatible with direct ocean estimates. A Poisson equation is solved with appropriate boundary conditions of zero normal heat flux through the continental boundaries to obtain the ocean heat transport. Because of the poor observational data base, adjustments to the surface fluxes are necessary over the southern oceans. Error bars are estimated based on the large-scale spurious residuals over land of 30 W m–2 over 1000 km scales (1012 m2). In the Atlantic Ocean, a northward transport emerges at all latitudes with peak values of 1.1±0.2 PW (1 standard error) at 20 to 30°N. Comparable values are achieved in the Pacific at 20°N, so that the total is 2.1±0.3 PW. The peak southward transport is at 15 to 20°S of 1.9±0.3 PW made up of strong components from both the Pacific and Indian Oceans and with a heat flux from the Pacific into the Indian Ocean in the Indonesian throughflow. The pattern of poleward heat fluxes is suggestive of a strong role for Ekman transports in the tropical regions.  相似文献   

4.
This work evaluates the performance of several global climate models (GCMs) as forcing of a regional ocean model configuration centered in the Iberian Basin. The study is divided in two parts. First, the output of nine GCMs is analyzed based on the fields needed to force the ocean model (Regional Ocean Modelling System—ROMS). GCMs differ greatly between them and their performance depends on the field. In the second part, the two GCMs with the worst performances in both extremes of the ensemble are used as forcing for two ROMS simulations, with the purpose of assessing the range of uncertainty comprised in this set of GCMs. Two other ROMS runs are setup: one climatologically forced control run, and one forced with the average of all the nine GCMs—the ensemble mean. Results show that the tendency of overestimation/underestimation of the forcings is reflected in the modeled hydrography, both at the surface and deeper layers down to 500 m. Nevertheless, in terms of circulation, all four runs reproduce the Azores Current, as well as the coastal transition zone seasonality (winter poleward flow and summer upwelling-associated equatorward flow). The CGCMs output performance as forcing depends on the forcing variable: one performs well for one or more variables, but badly for others, and which field is well or badly reproduced varies for each CGCM. Therefore, there is not a single CGCM having the best forcing for all variables. Hence, our results indicate that the most adequate approach consists of using the ensemble mean as forcing rather than using an individual model. This is supported by the general low overall (i.e. for all forcing variables) errors of the ensemble mean regarding the control climatological dataset, and the good comparison of the ensemble-forced ROMS run with the control run.  相似文献   

5.
Seasonal estimates of the oceanic poleward heat transport are obtained using a climate model that is a global atmospheric general circulation model on an 8° × 10° grid. The climate model is used to calculate the surface heat flux into each ocean grid point for each day of the year. The rate of ocean heat storage is calculated using climatological surface temperatures, mixed layer depths, and ice amounts. By assuming that the rate of change of heat storage in the deep ocean is spatially constant, the horizontal transports are calculated from the vertical fluxes and the upper ocean storage rates. The oceanic meridional transport for each latitude and for each ocean basin are derived, and results are compared with other calculations of the seasonal transports. In the Northern Hemisphere, comparisons between the simulated seasonal transports indicate that the annual variation is much greater in the Pacific than in the Atlantic.  相似文献   

6.
Summary We present a simple, deterministic energy balance model. The model is designed to represent the atmospheric component of the coupled atmosphere-ocean system. It is a one dimensional, global model with time and space resolutions of one year and 10° of latitude respectively. The model predicts the surface air temperature and estimates the surface freshwater flux diagnostically. The coupling between the atmospheric model and an ocean model is accomplished by heat and freshwater fluxes at their interface. The heat flux is calculated according to the difference in the surface air temperature and ocean surface temperature, while the freshwater flux is estimated from the latent heat transport in the atmosphere by a diagnostic equation. Two parameterizations for the latent heat transport are proposed, which distinguishes the two versions of the model.Before proceeding with interactive runs, we study the behaviour of the model in a decoupled mode. Some experiments with initial conditions altered and external forcings changed ar carried out to investigate the sensitivity and stability of the model. In particular, the influence of the ice-albedo feedback on model solutions is examined. The results of these experiments may be helpful both in understanding the characteristics of the model and in interpreting results when the model is coupled to an OGCM.With 9 Figures  相似文献   

7.
Summary Parameterisations of mixing induced through shear instability, internal wave breaking, and double diffusion are investigated in simulations of ocean climate using a global ocean general circulation model (OGCM). Focus is placed on the sensitivity of the large scale circulation, water mass formation and transport of heat as measures of the model's ability to represent current climate. The model resolution is typical of OGCMs being coupled to atmospheric. GCMs in climate models and the parameterisations investigated are all computationally inexpensive enough to allow for integrations on long time scales. Under the assumption of constant vertical eddy coefficients (the control case), the model climatology displays acceptable values of North Atlantic Deep Water formation, Antarctic Circumpolar Current (ACC) transport, and Indonesian through-flow but an excessively deep and diffuse pycnocline structure with weak stratification in the deep ocean. It is found that various circulation and water mass properties are sensitive to the choice of parameterisation of vertical mixing and that determining a scheme which works satisfactorily over all regions (tropical, mid-latitude, and polar) of the domain is not straightforward. Parameterisations of internal wave breaking or upper ocean shear instability lead to some improvements in the model water mass formation. ACC and poleward heat transport when compared to the control case whereas parameterisations of double diffusive processes did not. Based on these and other results, various recommendations are made for mixing parameterisations in ocean climate models.With 8 Figures  相似文献   

8.
The snow-sea-ice albedo parameterization in an atmospheric general circulation model (GCM), coupled to a simple mixed-layer ocean and run with an annual cycle of solar forcing, is altered from a version of the same model described by Washington and Meehl (1984). The model with the revised formulation is run to equilibrium for 1 × CO2 and 2 × CO2 experiments. The 1 ×CO2 (control) simulation produces a global mean climate about 1° warmer than the original version, and sea-ice extent is reduced. The model with the altered parameterization displays heightened sensitivity in the global means, but the geographical patterns of climate change due to increased carbon dioxide (CO2) are qualitatively similar. The magnitude of the climate change is affected, not only in areas directly influenced by snow and ice changes but also in other regions of the globe, including the tropics where sea-surface temperature, evaporation, and precipitation over the oceans are greater. With the less-sensitive formulation, the global mean surface air temperature increase is 3.5 °C, and the increase of global mean precipitation is 7.12%. The revised formulation produces a globally averaged surface air temperature increase of 4.04 °C and a precipitation increase of 7.25%, as well as greater warming of the upper tropical troposphere. Sensitivity of surface hydrology is qualitatively similar between the two cases with the larger-magnitude changes in the revised snow and ice-albedo scheme experiment. Variability of surface air temperature in the model is comparable to observations in most areas except at high latitudes during winter. In those regions, temporal variation of the sea-ice margin and fluctuations of snow cover dependent on the snow-ice-albedo formulation contribute to larger-than-observed temperature variability. This study highlights an uncertainty associated with results from current climate GCMs that use highly parameterized snow-sea-ice albedo schemes with simple mixed-layer ocean models.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

9.
The global ocean circulation with a seasonal cycle has been simulated with a two-and-a-half layer upper-ocean model. This model was developed for the purpose of coupling to an atmospheric general circulation model for climate studies on decadal time scales. The horizontal resolution is 4° latitude by 5° longitude and is thus not eddy-resolving. Effects of bottom topography are neglected. In the vertical, the model resolves the oceanic mixed layer and the thermocline. A thermodynamic sea-ice model is coupled to the mixed layer. The model is forced at the surface with seasonally varying (a) observed wind stress, (b) heat fluxes, as defined by an atmospheric equilibrium temperature, and (c) Newtonian-type surface salt fluxes. The second layer is coupled to the underlying deep ocean through Newtonian-type diffusive heat and salt fluxes, convective overturning, and mass entrainment in the upwelling regions of the subpolar gyres. The overall global distributions of mixed layer temperature, salinity and thickness are favorably reproduced. Inherent limitations due to coarse horizontal resolution result in large mixed-layer temperature errors near continental boundaries and in weak current systems. Sea ice distributions agree well with observations except in the interiors of the Ross and Weddell Seas. A realistic time rate of change of heat storage is simulated. There is also realistic heat transport from low to high latitudes.  相似文献   

10.
Abstract

A new coupled atmosphere‐ocean model has been developed for climate predictions at decade to century scales. The atmospheric model is similar to that of Hansen et al. (1983) except that the atmospheric dynamic equations for mass and momentum are solved using Arakawa and Lamb's (1977) C grid scheme and the advection of potential enthalpy and water vapour uses the linear upstream scheme (Russell and Lerner, 1981). The new global ocean model conserves mass, allows for divergent flow, has a free surface and uses the linear upstream scheme for the advection of potential enthalpy and salt. Both models run at 4° × 5° resolution, with 9 vertical layers for the atmosphere and 13 layers for the ocean. Twelve straits are included, allowing for subgrid‐scale water flow. Runoff from land is routed into appropriate ocean basins. Atmospheric and oceanic surface fluxes are of opposite sign and are applied synchronously. Flux adjustments are not used. Except for partial strength alternating binomial filters (Shapiro, 1970), which are applied to the momentum components in the atmosphere and oceans, there is no explicit horizontal diffusion.

A 120‐year simulation of the coupled model starting from the oceanic initial conditions of Levitus (1982) is discussed. The model dynamics stabilize after several decades. The maximum northward ocean heat flux is 1.4 × 1015 W at 16°N. The model appears to maintain the vertical gradients characterizing the separation between the upper and deep ocean spheres. Inadequacies in the coupled model simulation lead to decreasing temperature and salinity in the high latitude North Atlantic and to a poor simulation of the northern North Atlantic thermohaline circulation. The mass transport of the Gulf Stream is about half of observed values, while the transports of the Kuroshio and Antarctic Circumpolar Currents are similar to observations. Additional deficiencies include a climate drift in the surface air temperature of 0.006°C year‐1 due to a radiation imbalance of 7.4 Wm‐2 at the top of the atmosphere and too warm temperatures in the eastern portions of tropical oceans. The coupled model should be useful for delineating modelling capabilities without the use of flux adjustments and should serve as a benchmark for future model improvements.  相似文献   

11.
Abstract

The meridional heat transport across a latitude circle in a model ocean is calculated by using a general circulation model with a coarse grid, a medium grid and a fine grid capable of resolving the mesoscale eddies in order to show to what extent this transport depends on grid size. Although the grid size strikingly affects the current velocities, it has almost no effect upon the meridional heat transport.  相似文献   

12.
Results are presented from a new version of the Hadley Centre coupled model (HadCM3) that does not require flux adjustments to prevent large climate drifts in the simulation. The model has both an improved atmosphere and ocean component. In particular, the ocean has a 1.25° × 1.25° degree horizontal resolution and leads to a considerably improved simulation of ocean heat transports compared to earlier versions with a coarser resolution ocean component. The model does not have any spin up procedure prior to coupling and the simulation has been run for over 400 years starting from observed initial conditions. The sea surface temperature (SST) and sea ice simulation are shown to be stable and realistic. The trend in global mean SST is less than 0.009 °C per century. In part, the improved simulation is a consequence of a greater compatibility of the atmosphere and ocean model heat budgets. The atmospheric model surface heat and momentum budget are evaluated by comparing with climatological ship-based estimates. Similarly the ocean model simulation of poleward heat transports is compared with direct ship-based observations for a number of sections across the globe. Despite the limitations of the observed datasets, it is shown that the coupled model is able to reproduce many aspects of the observed heat budget. Received: 1 October 1998 / Accepted: 20 July 1999  相似文献   

13.
Performance of the OPA/ARPEGE-T21 global ocean-atmosphere coupled model   总被引:1,自引:0,他引:1  
 The climatology of the OPA/ARPEGE-T21 coupled general circulation model (GCM) is presented. The atmosphere GCM has a T21 spectral truncation and the ocean GCM has a 2°×1.5° average resolution. A 50-year climatic simulation is performed using the OASIS coupler, without flux correction techniques. The mean state and seasonal cycle for the last 10 years of the experiment are described and compared to the corresponding uncoupled experiments and to climatology when available. The model reasonably simulates most of the basic features of the observed climate. Energy budgets and transports in the coupled system, of importance for climate studies, are assessed and prove to be within available estimates. After an adjustment phase of a few years, the model stabilizes around a mean state where the tropics are warm and resemble a permanent ENSO, the Southern Ocean warms and almost no sea-ice is left in the Southern Hemisphere. The atmospheric circulation becomes more zonal and symmetric with respect to the equator. Once those systematic errors are established, the model shows little secular drift, the small remaining trends being mainly associated to horizontal physics in the ocean GCM. The stability of the model is shown to be related to qualities already present in the uncoupled GCMs used, namely a balanced radiation budget at the top-of-the-atmosphere and a tight ocean thermocline. Received: 1 February 1996 / Accepted: 1 August 1996  相似文献   

14.
 We have developed a new method to accelerate tracer simulations to steady-state in a 3-D global ocean model, run off-line. Using this technique, our simulations for natural 14C ran 17 times faster when compared to those made with the standard non-accelerated approach. For maximum acceleration we wish to initialize the model with tracer fields that are as close as possible to the final equilibrium solution. Our initial tracer fields were derived by judiciously constructing a much faster, lower-resolution (degraded), off-line model from advective and turbulent fields predicted from the parent on-line model, an ocean general circulation model (OGCM). No on-line version of the degraded model exists; it is based entirely on results from the parent OGCM. Degradation was made horizontally over sets of four adjacent grid-cell squares for each vertical layer of the parent model. However, final resolution did not suffer because as a second step, after allowing the degraded model to reach equilibrium, we used its tracer output to re-initialize the parent model (at the original resolution). After re-initialization, the parent model must then be integrated only to a few hundred years before reaching equilibrium. To validate our degradation-integration technique (DEGINT), we compared 14C results from runs with and without this approach. Differences are less than 10‰ throughout 98.5% of the ocean volume. Predicted natural 14C appears reasonable over most of the ocean. In the Atlantic, modeled Δ14C indicates that as observed, the North Atlantic Deep Water (NADW) fills the deep North Atlantic, and Antartic Intermediate Water (AAIW) infiltrates northward; conversely, simulated Antarctic Bottom Water (AABW) does not penetrate northward beyond the equator as it should. In the Pacific, in surface eastern equatorial waters, the model produces a north–south assymetry similar to that observed; other global ocean models do not, because their resolution is inadequate to resolve equatorial dynamics properly, particularly the intense equatorial undercurrent. The model’s oldest water in the deep Pacific (at −239‰) is close to that observed (−248‰), but is too deep. Surface waters in the Southern Ocean are too rich in natural 14C due to inadequacies in the OGCM’s thermohaline forcing. Received: 18 March 1997 / Accepted: 27 July 1997  相似文献   

15.
We have developed an improved version of a world ocean model with the intention of coupling to an atmospheric model. This article documents the simulation capability of this 1° global ocean model, shows improvements over our earlier 5° version, and compares it to features simulated with a 0.5° model. These experiments use a model spin-up methodology whereby the ocean model can subsequently be coupled to an atmospheric model and used for order 100-year coupled model integrations. With present-day computers, 1° is a reasonable compromise in resolution that allows for century-long coupled experiments. The 1° ocean model is derived from a 0.5°-resolution model developed by A. Semtner (Naval Postgraduate School) and R. Chervin (National Center for Atmospheric Research) for studies of the global eddy-resolving world ocean circulation. The 0.5° bottom topography and continental outlines have been altered to be compatible with the 1° resolution, and the Arctic Ocean has been added. We describe the ocean simulation characteristics of the 1° version and compare the result of weakly constraining (three-year time scale) the three-dimensional temperature and salinity fields to the observations below the thermocline (710 m) with the model forced only at the top of the ocean by observed annual mean wind stress, temperature, and salinity. The 1° simulations indicate that major ocean circulation patterns are greatly improved compared to the 5° version and are qualitatively reproduced in comparison to the 0.5° version. Using the annual mean top forcing alone in a 100-year simulation with the 1° version preserves the general features of the major observed temperature and salinity structure with most climate drift occurring mainly beneath the thermocline in the first 50–75 years. Because the thermohaline circulation in the 1° version is relatively weak with annual mean forcing, we demonstrate the importance of the seasonal cycle by performing two sensitivity experiments. Results show a dramatic intensification of the meridional overturning circulation (order of magnitude) with perpetual winter surface temperature forcing in the North Atlantic and strong intensification (factor of three) with perpetual early winter temperatures in that region. These effects are felt throughout the Atlantic (particularly an intensified and northward-shifted Gulf Stream outflow). In the Pacific, the temperature gradient strengthens in the thermocline, thus helping counter the systematic error of a thermocline that is too diffuse.Partial support is provided by the Office of Health and Environmental Research of the US Department of Energy The National Center for Atmospheric Research is sponsored by the National Science Foundation  相似文献   

16.
In this study, we investigate the influence of tropical cyclones (TCs) on large-scale circulation and ocean heat transport in the South China Sea (SCS) by using an ocean general circulation model at a 1/8° resolution during 2000–2008. The model uses a data assimilation system to assimilate observations in order to improve the representation of SCS circulation. The results reveal an unexpected deep SCS circulation anomaly induced by TCs, which suggests that effects of TC can penetrate deeper into the ocean. This deep effect may result from the near inertial oscillations excited by TCs. The inertial oscillations can propagate downward to the oceanic interior. The analyses confirm that TCs have two effects on ocean heat transport of the SCS. Firstly, the wind stress curl induced by TCs affects the structure of SCS circulation, and then changes heat transport. Secondly, TCs pump surface heat downward to the thermocline, increasing the heat injection from the atmosphere to the ocean. Two effects together amplify the outflow of the surface heat southward away the SCS through the Mindoro and Karimata Straits. The TC-induced heat transports through the Mindoro, Balabac and Karimata Straits account for 20 % of the total heat transport through three straits. An implication of this study is that ocean models need to simulate the TC effect on heat transport in order to correctly evaluate the role of the SCS through flow in regulating upper ocean circulation and climate in the Indonesian maritime continent and its adjacent regions.  相似文献   

17.
Recent studies suggested that tropical cyclones (TCs) contribute significantly to the meridional oceanic heat transport by injecting heat into the subsurface through mixing. Here, we estimate the long-term oceanic impact of TCs by inserting realistic wind vortices along observed TCs tracks in a 1/2° resolution ocean general circulation model over the 1978–2007 period. Warming of TCs’ cold wakes results in a positive heat flux into the ocean (oceanic heat uptake; OHU) of ~480 TW, consistent with most recent estimates. However, ~2/5 of this OHU only compensates the heat extraction by the TCs winds during their passage. Another ~2/5 of this OHU is injected in the seasonal thermocline and hence released back to the atmosphere during the following winter. Because of zonal compensations and equatorward transport, only one-tenth of the OHU is actually exported poleward (46 TW), resulting in a marginal maximum contribution of TCs to the poleward ocean heat transport. Other usually neglected TC-related processes however impact the ocean mean state. The residual Ekman pumping associated with TCs results in a sea-level drop (rise) in the core (northern and southern flanks) of TC-basins that expand westward into the whole basin as a result of planetary wave propagation. More importantly, TC-induced mixing and air-sea fluxes cool the surface in TC-basins during summer, while the re-emergence of subsurface warm anomalies warms it during winter. This leads to a ~10 % reduction of the sea surface temperature seasonal cycle within TCs basins, which may impact the climate system.  相似文献   

18.
The results from an integration of a global ocean circulation model have been condensed into an analysis of the volume, heat, and salt transports among the major ocean basins. Transports are also broken down between the model's Ekman, thermocline, and deep layers. Overall, the model does well. Horizontal exchanges of mass, heat, and salt between ocean basins have reasonable values; and the volume of North Atlantic Deep Water (NADW) transport is in general agreement with what limited observations exist. On a global basis the zonally integrated meridional heat transport is poleward at all latitudes except for the latitude band 30°S to 45°S. This anomalous transport is most likely a signature of the model's inability to form Antarctic Intermediate (AAIW) and Antarctic bottom water (AABW) properly. Eddy heat transport is strong at the equator where its convergence heats the equatorial Pacific about twice as much as it heats the equatorial Atlantic. The greater heating in the Pacific suggests that mesoscale eddies may be a vital mechanism for warming and maintaining an upwelling portion of the global conveyor-belt circulation. The model's fresh water transport compares well with observations. However, in the Atlantic there is an excessive southward transport of fresh water due to the absence of the Mediterranean outflow and weak northward flow of AAIW. Eddies in the mid-latitudes act to redistribute heat and salt down the mean gradients. Residual fluxes calculated from a sum of the computed advective (including eddies), forced, and stored fluxes of heat and salt represent transport mostly due to vertical sub-grid scale mixing processes. Perhaps the model's greatest weakness is the lack of strong AAIW and AABW circulation cells. Accurate thermohaline forcing in the North Atlantic (based on numerous hydrographic observations) helps the model adequately produce NADW. In contrast, the southern ocean is an area of sparse observation. Better thermohaline observations in this area may be needed if models such as this are to produce the deep convection that will achieve more accurate simulations of the global 3-dimensional circulation.  相似文献   

19.
The change in ocean net surface heat flux plays an important role in the climate system. It is closely related to the ocean heat content change and ocean heat transport, particularly over the North Atlantic, where the ocean loses heat to the atmosphere, affecting the AMOC(Atlantic Meridional Overturning Circulation) variability and hence the global climate.However, the difference between simulated surface heat fluxes is still large due to poorly represented dynamical processes involving multisca...  相似文献   

20.
Global Climatic Impacts of a Collapse of the Atlantic Thermohaline Circulation   总被引:31,自引:3,他引:31  
Part of the uncertainty in predictions by climate models results fromlimited knowledge of the stability of the thermohaline circulation ofthe ocean. Here we provide estimates of the response of pre-industrial surface climatevariables should the thermohalinecirculation in the Atlantic Ocean collapse. For this we have usedHadCM3, an ocean-atmosphere general circulation model that is run without fluxadjustments. In this model a temporary collapse was forced by applying a strong initial freshening to the top layers of the NorthAtlantic. In the first five decades after the collapse surface air temperatureresponse is dominated by cooling of much of the NorthernHemisphere (locally up to 8 °C, 1–2 °C on average) and weakwarming of theSouthern Hemisphere (locally up to 1 °C, 0.2 °C onaverage). Response is strongest around the North Atlantic but significant changesoccur over the entire globe and highlight rapidteleconnections.Precipitation is reduced over large parts of the Northern Hemisphere.A southward shift of the IntertropicalConvergence Zone over the Atlantic and eastern Pacific createschanges in precipitation that are particularly large in South America andAfrica. Colder and drier conditions in much of the Northern Hemisphere reducesoil moisture and net primary productivity of the terrestrial vegetation. Thisis only partlycompensated by more productivity in the Southern Hemisphere.The total global net primary productivity by the vegetation decreases by5%. It should be noted, however, that in this version of the model thevegetation distribution cannotchange, and atmospheric carbon levels are also fixed. After about 100 yearsthe model's thermohaline circulation has largelyrecovered, and most climatic anomalies disappear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号