首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An assessment is made of contemporary effective sea-level rise (ESLR) for a sample of 40 deltas distributed worldwide. For any delta, ESLR is a net rate, defined by the combination of eustatic sea-level rise, the natural gross rate of fluvial sediment deposition and subsidence, and accelerated subsidence due to groundwater and hydrocarbon extraction. ESLR is estimated under present conditions using a digital data set of delta boundaries and a simple model of delta dynamics. The deltas in this study represent all major climate zones, levels of population density, and degrees of economic development. Collectively, the sampled deltas serve as the endpoint for river basins draining 30% of the Earth's landmass, and 42% of global terrestrial runoff. Nearly 300 million people inhabit these deltas. For the contemporary baseline, ESLR estimates range from 0.5 to 12.5 mm yr 1. Decreased accretion of fluvial sediment resulting from upstream siltation of artificial impoundments and consumptive losses of runoff from irrigation are the primary determinants of ESLR in nearly 70% of the deltas. Approximately 20% of the deltas show accelerated subsidence, while only 12% show eustatic sea-level rise as the predominant effect. Extrapolating contemporary rates of ESLR through 2050 reveals that 8.7 million people and 28,000 km2 of deltaic area in the sample set of deltas could suffer from enhanced inundation and increased coastal erosion. The population and area inundated rise significantly when considering increased flood risk due to storm surge. This study finds that direct anthropogenic effects determine ESLR in the majority of deltas studied, with a relatively less important role for eustatic sea-level rise. Serious challenges to human occupancy of deltaic regions worldwide are thus conveyed by factors which to date have been studied less comprehensively than the climate change–sea-level rise question.  相似文献   

2.
To use basin stratigraphy for studying past climate change, it is important to understand the influence of evolving boundary conditions (river discharge and sediment flux, initial bathymetry, sea level, subsidence) and the complex interplay of the redistribution processes (plumes, turbidity currents, debris flows). To provide understanding of this complexity, we have employed source to sink numerical models to evaluate which process dominates the observed variability in a sedimentary record of two coastal Pacific basins, Knight Inlet in British Columbia and the Eel Margin of northern California.During the last glacial period, the Eel River supplied comparatively more sediment with a less variable flux to the ocean, while today the river is dominated by episodic events. Model results show this change in the variability of sediment flux to be as important to the deposit character as is the change in the volume of sediment supply. Due to the complex interaction of flooding events and ocean storm events, the more episodic flood deposits of recent times are less well preserved than the flood deposits associated with an ice-age climate.In Knight Inlet, the evolving boundary conditions (rapidly prograding coastline, secondary transport by gravity flows from sediment failures) are a strong influence on the sedimentary record. The delta and gravity flow deposits punctuate the sedimentary record formed by hemipelagic sedimentation from river plumes. Missing time intervals due to sediment failures can take away the advantage of the otherwise amplified lithologic record of discharge events, given the enclosed nature of the fjord basin.  相似文献   

3.
A numerical model, which simulates the dynamics of alluvial river channels on geological (Quaternary) time scales, is presented. The model includes water flow, channel dimensions, sediment transport and channel planform type. A number of numerical experiments, which investigate the response of an alluvial river to imposed sequences of water and sediment supply, with special emphasis on the time lags between these controlling variables, as well as a downstream discharge increase, are presented. It is found that the influence of the time lags can be substantial, having major implications for the reconstructions of palaeo climate based on river channel behavior documented in the geological record. The model is further applied to both a conceptual warm–cold–warm cycle and a reconstructed evolution of the river Meuse, the Netherlands, during the Late Glacial–Holocene warming. Results show that the model is capable of explaining the response of this river, although better validation against palaeoenvironmental data remains necessary.  相似文献   

4.
The Magdalena, a world-class river, in the top ten in terms of sediment load ∼ 150 MT/yr, is the largest river discharging directly into the Caribbean Sea. Data on water discharge, sediment load, and dissolved load of the Magdalena River is presented as an initial interpretation of coastal ecosystems changes in relation to water discharge and sediment load from the Magdalena. During the 1972–1998 yr-period, the Magdalena River has delivered approximately 4022 MT of sediment to the Caribbean coast. The river reflects high inter-annual variability and delivers large portions of its fluvial discharge and sediment loads in short periods of time. The analysis of annual deviations from the 27-yr mean sediment load indicates that 59% of the total sediment load variability of the Magdalena at Calamar could be attributed to flashy peak events. Further analyses of sediment load anomalies suggest that there was a high discharge period in the Magdalena River between 1985 and 1995 and another one in the Canal del Dique between 1985 and 1992. These increasing trends in sediment load coincide with the overall decline of live coral cover around the Rosario Islands, a 145 km2 coral reef complex in the Caribbean Sea that constitutes a marine protected area. The comparison of live coral: algae ratios for the 1983–2004 yr-period, also indicates that there has been an associated increase in the percentage of algae cover (i.e., Grande Island 1983 = 5%, 2004 = 59%). Other analyses show that nearly 850 ha of seagrass existing in the Cartagena Bay in the 1930s, only 76 ha remained in 2001, which is less than 8% of the original cover. There has been a mix of multiple stressors (natural and anthropogenic; local, regional and global; temporal and chronic) affecting the coastal ecosystems in the area, but the effect of the Magdalena River runoff has been constant and very prolonged (several decades). The impacts of heavy sediment loads and freshwater discharges from the Canal del Dique to Cartagena Bay have greatly contributed to the partial disappearance of coral formations and also to a considerable reduction in abundance of seagrass beds in the bay and neighboring areas.  相似文献   

5.
The sediment load delivered from the Huanghe (Yellow River) to the sea has decreased sharply to 0.15 × 109 metric tons per year (0.15 Gt/yr) between 2000 and 2005, and now represents only 14% of the widely cited estimate of 1.08 Gt/yr. The river seems to be reverting to the pristine levels characteristic of the middle Holocene, prior to human intervention. Datasets from 1950 to 2005 from four key gauging stations in the main stream reveal distinct stepwise decreases in sediment load, which are attributed to both natural and anthropogenic impacts over the past 56 yr. Completions of two reservoirs, Liujiaxia (1968) and Longyangxia (1985), in the upper reaches of the river and their joint operations have resulted in stepwise decreases in sediment load coming from the upper reaches. Effective soil conservation practices in the middle reaches since the late 1970s, combined with the operation of the Sanmenxia and Xiaolangdi reservoirs, have also caused stepwise decreases in sediment load at Huayuankou in the middle reaches, but the decrease differs from that observed in the upper reaches. Decrease in precipitation is responsible for 30% of the decrease in sediment load at Huayuankou, while the remaining 70% is ascribed to human activities in the river basin, of which soil conservation practices contribute 40% to the total decrease. Sediment retention within reservoirs accounts for 20% of the total sediment load decrease, although there was notable sediment retention within the Xiaolangdi reservoir from 2000 to 2005. The remaining 10% of the decrease in sediment load is a result of the operation of reservoirs in the upper reaches. In the lower reaches, 20% of the sediment passing Huayuankou has been lost as a result of channel deposition and water abstraction. Soil conservation practices and the operation of reservoirs have lowered the content of coarser sediment (D > 0.05 mm) at Huayuankou, and reduced channel deposition in the lower reaches. In contrast, sediment loss owing to water abstraction in the lower reaches has increased considerably as water consumption for agricultural needs has increased. Therefore, the combined effects of climate change and human activities in the upper, middle, and lower reaches have resulted in stepwise decreases in the sediment load delivered from the Huanghe to the sea. The Huanghe provides an excellent example of the altered river systems impacted by climate change and extensive human activities over the past 56 yr. Further dramatic decreases in sediment load and water discharge in the Huanghe will trigger profound geological, morphological, ecological, and biogeochemical responses in the estuary, delta, and coastal sea.  相似文献   

6.
The paper is concerned with identifying changes in the time series of water and sediment discharge of the Zhujiang (Pearl River), China. The gradual trend test (Mann–Kendall test), and abrupt change test (Pettitt test), have been employed on annual water discharge and sediment load series (from the 1950s–2004) at nine stations in the main channels and main tributaries of the Zhujiang. Both the Mann–Kendall and Pettitt tests indicate that water discharge at all stations in the Zhujiang Basin showed no significant trend or abrupt shift. Annual water discharges are mainly influenced by precipitation variability, while the construction of reservoirs/dams in the Zhujiang Basin had little influence on water discharge. Sediment load, however, showed significant decreasing trends at some stations in the main channel of the Xijiang and Dongjiang. More stations have seen significantly decreasing trends since the 1990s. The decreasing sediment load in the Zhujiang reflects the impacts of reservoir construction in the basin. In contrast, the Liujiang, the second largest tributary of the Xijiang, has experienced a significant upward shift of sediment load around 1991 likely caused by exacerbated rock desertification in the karst regions. The annual sediment load from the Zhujiang (excluding the delta region) to the estuary has declined from 80.4 × 106 t averaged for the period 1957–1995 to 54.0 × 106 t for the period 1996–2004. More specifically, the sediment load declined steadily since the early 1990s so that in 2004 it was about one-third of the mean level of pre-90s. Water discharge and sediment load of the Zhujiang would be more affected by human activities in the future with the further reservoir developments, especially the completion of the Datengxia hydroelectric project, and an intensification of the afforestation policy in the drainage basin.  相似文献   

7.
The terraces at the confluence of Kali Gandaki and Miristi Khola (West Nepal) consist of coarse-grained deposits which are considered to be Late Pleistocene to Holocene in age. The stacking pattern of lithofacies is characterised by an alternation of fluvial and debris flow deposits. These periodic changes in sedimentation processes are attributed to climatic variations.Deposits of extended, highly mobile, braided rivers most probably developed under glacial conditions and reflect high sediment supply and high water discharge rates. Deposits of small, only moderately braided river systems evolved during a warmer climate with comparatively low sediment supply and water discharge rates. The mobilisation and redeposition of morainic material by enormous debris flows predominately occurred at the beginning of a warm period and was triggered by earthquakes, glacier lake outburst floods or strong monsoonal rain.  相似文献   

8.
During the Holocene, the Dutch and Belgian coasts evolved, controlled by post-glacial eustatic sea-level rise, spatially varying vertical subsurface motions (glacio-isostatic crustal rebound, compaction, tectonics) and spatially varying sediment supply (mainly marine sand). The marine sand supply changed as the tidal dynamics and the wave climate changed due to the changing geometry and depth of the North Sea during the Holocene transgression. These changes influenced the coastal evolution. This study compares the results of separate numerical model calculations of the large-scale Holocene tide- and wave-induced sand transport in the southern North Sea with existing geological data of the Dutch and Belgian large-scale coastal evolution, resulting in a qualitatively good correlation. The large-scale coastal evolution is interpreted in terms of the oceanographical forcing, and an integrated conceptual model of the Holocene evolution of the Dutch and Belgian coasts is proposed. The large-scale wave-driven bed-load transport was an order of magnitude smaller than the tidal transports. The modelled tidal transport direction changed from onshore before 6 ka BP to along shore at present for the Zeeland and Holland coasts; the influence that waves may have had on the tidal transport by suspending sand gradually decreased. This change in direction caused the modelled tidal sand supply to the coast to decrease for the Belgian, Zeeland and Holland coasts. While the offshore area of the Holland coast remained a zone of (small) deposition due to decreasing northward sand transports, the offshore area of the Zeeland coast became increasingly erosional after 6 ka BP due to the encroaching divergence of the tidal transports. Due to uncertainty in the magnitude of the modelled sand transports, but robustness in the transport patterns, the focus is on the qualitative rather than the quantitative model results. When compared with the trend of closure, expansion and later erosion and reopening of the coast, the above decrease in sand supply must have been slow enough compared with the decrease in sea-level rise to cause a temporary sand surplus which decayed to a slight deficit as the decrease in supply and the rise in sea level continued. The Wadden Sea coast exchanged little or no sand with the adjacent deeper North Sea throughout the Holocene.  相似文献   

9.
The Huanghe, the second largest river in China, is now under great pressure as a water resource. Using datasets of river water discharge, water consumption and regional precipitation for the past 50 years, we elucidate some connections between decreasing water discharges, global El Niño/Southern Oscillation (ENSO) events and anthropogenic impacts in the drainage basin. Global ENSO events, which directly affected the regional precipitation in the river basin, resulted in approximately 51% decrease in river water discharge to the sea. The degree of anthropogenic impacts on river water discharge is now as great as that of natural influences, accelerating the water losses in the hydrological cycle. The large dams and reservoirs regulated the water discharge and reduced the peak flows by storing the water in the flood season and releasing it in the dry season as needed for agricultural irrigation. Thus, as a result, large dams and reservoirs have shifted the seasonal distribution patterns of water discharge and water consumption and finally resulted in rapidly increasing water consumption. Meanwhile, the annual distribution pattern of water consumption also changed under the regulation of dams and reservoirs, indicating that the people living in the river basin consume the water more and more to suit actual agricultural schedule rather than depending upon natural pattern of annual precipitation. The combination of the increasing water consumption facilitated by the dams and reservoirs and the decreasing precipitation closely associated with the global ENSO events over the past half century has resulted in water scarcity in this world-famous river, as well as in a number of subsequent serious results for the river, delta and coastal ocean.  相似文献   

10.
This paper addresses the influence of external forcing (changes in tectonics, sea level and climate) on the downstream and long-term (103–105 years) evolution of sediment composition along a fluvial longitudinal profile. The River Meuse served as a case study for a semi 2-D forward-modelling approach to simulate the downstream sediment transport in the 200- to 0-ka period. This has been related to bulk geochemical properties of the tributary catchments to quantify the bulk composition of the sediment load in the main river. The model was used to test the hypothesis that long-term fluvial dynamics influences sediment composition.The simulation exercise showed that long-term fluvial dynamics can yield systematic temporal changes in fluvial sediment composition, especially in high-relief areas. We tested a scenario of minimal discharges and maximum hillslope erosion during cold glacial periods (weathering-limited sediment supply), alternating with maximal discharges and minimal hillslope erosion during prolonged interstadials or interglacials (transport-limited sediment supply). This scenario largely reproduced the timing and direction of measured changes in the bulk and clay geochemistry of fine-grained sediments, which were deposited in the River Meuse lower reach from 13 to 0 ka. However, it failed to reproduce the measured amplitude of change, which was five to six times larger than the modelled amplitude. This suggests that climate-dependent changes in weathering intensity of rocks and saprolite in the source areas were more important and that aeolian inputs from outside the drainage basin have co-determined the sediment composition.  相似文献   

11.
Bolide impacts on Mars, within the proposed ocean boundaries (“contacts 1 and 2”) in the northern lowlands, would certainly have generated ultra high energy waves similar to tsunamis on Earth. Impacts into putative Noachian and Hesperian seas of variable areal extents and depths would have experienced high-energy inundations (transgressions), which would have left an imprint in the stack of deposits adjacent to the proposed shorelines. On Earth, the principal influencing factors for tsunami-wave energy are the character of shoreline topography and coastal water depth, which control wave compression and shoreline friction. Shorelines with narrow embayments and steep offshore gradients produce wave compression and increased collision of grains within the carried load contrasted with linear shorelines and shallow offshore gradients that dissipate energy. Steep offshore gradients produce concentrated major wave friction with the bed engendering high kinetic energy in the wave during emplacement of tsunami-generated sediment, which differs from shallow offshore beds that produce lower frictional effects over a wider area and drawdown of wave energy. Thus, overprinting of transported quartz grains on Earth is greatest where wave energy is highest, attenuated down to minor or nil overprinting where wave energy is less. Such grain overprinting in the form of energy-induced microtextures would also be observed in other grain types such as olivine and plagioclase, as such mineralogies are expected to dominate the Martian landscape based on orbital and local field (lander and rover) perspectives. Kinetic energy variation in tsunamis is controlled more by the square of velocity than mass, the resulting collisional effects of which produce swarms of v-shaped percussion microfeatures on quartz and other silicate mineral surfaces when velocity and compression are highest. This work indicates that a valid test for the ocean hypothesis is targeting “coastal” areas adjacent to narrow embayments where offshore depths are known to be highest, as possible tsunami-emplaced sediments, especially those that have been protected from atmospheric conditions through relatively rapid burial, may reveal a high frequency of percussion cracks, features of which appear to be unique to such terrestrial environments.  相似文献   

12.
Data on the amount and composition of organic carbon were determined in sediment cores from the Kara and Laptev Sea continental margin, representing oxygen isotope stages 1–6. The characterization of organic matter is based on hydrogen index (HI) values, n-alkanes and maceral composition, indicating the predominance of terrigenous organic matter through space and time. The variations in the amount and composition of organic carbon are mainly influenced by changes in fluvial sediment supply, Atlantic water inflow, and continental ice sheets. During oxygen isotope stage (OIS) 6, high organic carbon contents in sediments from the Laptev Sea and western East Siberian Sea continental margin were probably caused by the increased glacial erosion and further transport in the eastward-flowing boundary current along the continental margin. During OIS 5 and early OIS 3, some increased amounts of marine organic matter were preserved in sediments east of the Lomonosov Ridge, suggesting an influence of nutrient-rich Pacific waters. During OIS 2, terrigenous organic carbon supply was increased along the Barents and western Kara Sea continental margin caused by extended continental ice sheets in the Barents Sea (Svalbard to Franz Josef Land) area and increased glacial erosion. Along the Laptev Sea continental margin, on the other hand, the supply of terrigenous (organic) matter was significantly reduced due to the lack of major ice sheets and reduced river discharge. Towards the Holocene, the amount of total organic carbon (TOC) increased along the Kara and Laptev Sea continental margin, reaching average values of up to 0.5 g C cm−2 ky−1. Between about 8 and 10 ka (9 and 11 Cal ka), i.e., during times when the inner shallow Kara and Laptev seas became largely flooded for the first time after the Last Glacial Maximum, maximum supply of terrigenous organic carbon occurred, which is related to an increase in coastal erosion and Siberian river discharge. During the last 8000 years, the increased amount of marine organic carbon preserved in the sediments from the Kara and Laptev Sea continental margin is interpreted as a result of the intensification of Atlantic water inflow along the Eurasian continental margin.  相似文献   

13.
In response to climatic warming, eustatic sea level has been predicted to rise by about 50 cm in the next century. While feedbacks between vegetation growth and sediment deposition tend to allow marshes to maintain their morphology under a constant rate of sea level rise, recent observations of marsh deterioration suggest that changes in the rate of sea level rise may induce loss of economically and ecologically important marshland. We have developed a three dimensional model of tidal marsh evolution that couples vegetation growth and sediment transport processes including bed accretion and wave erosion. We use the model to simulate the response of marshes and tidal flats along the Fraser River Delta, British Columbia to 100 yr forecasts of sea level change. Under low sea level-rise scenarios, the delta and its marshes prograde slightly, consistent with historical measurements. While accretionary processes greatly mediate the response to increased rates of sea level rise, vegetation zones transgress landward under median and high sea level rise rate scenarios. In these scenarios, low marsh erosion and constriction of high marsh vegetation against a dyke at its landward edge result in a 15–35% loss of marshland in the next century. Several important behavioral changes take place after 2050, suggesting that predictions based on field observations and short term model experiments may not adequately characterize (and sometimes underestimate) long-term change. In particular, the replacement of highly productive high marsh vegetation by less productive low marsh vegetation results in continued reduction of the system's total biomass productivity, even as the rate of loss of vegetated area begins to decline.  相似文献   

14.
The quantification of geohazards and water resources in intraplate areas requires an integrated approach connecting monitoring, reconstruction and prediction of underlying processes. Intraplate rifts such as the Northwestern European rift system and coastal areas such as the Rhine–Meuse delta system are characterized by an interplay of climatic variations and neotectonics. The Netherlands Environmental Earth System Dynamics Initiative (NEESDI) addresses the interplay of lithosphere and surface processes through an integration of upper mantle and crustal scale studies with high-resolution analyses of the sedimentary record, geomorphology and hydrodynamic regime. Recent faulting imaged by seismic reflection data and trenching appears to exert a major control on uplift and subsidence patterns in the area, effecting coastal evolution and river dynamics in the Rhine–Meuse system.  相似文献   

15.
Glaciations had a profound impact on the global sea-level and particularly on the Arctic environments. One of the key questions related to this topic is, how did the discharge of the Siberian Ob and Yenisei rivers interact with a proximal ice sheet? In order to answer this question high-resolution (1–12 kHz), shallow-penetration seismic profiles were collected on the passive continental margin of the Kara Sea Shelf to study the paleo-drainage pattern of the Ob and Yenisei rivers. Both rivers incised into the recent shelf, leaving filled and unfilled river channels and river canyons/valleys connecting to a complex paleo-drainage network.These channels have been subaerially formed during a regressive phase of the global sea-level during the Last Glacial Maximum. Beyond recent shelf depths of 120 m particle transport is manifested in submarine channel–levee complexes acting as conveyor for fluvial-derived fines. In the NE area, uniform draping sediments are observed. Major morphology determining factors are (1) sea-level fluctuations and (2) LGM ice sheet influence. Most individual channels show geometries typical for meandering rivers and appear to be an order of magnitude larger than recent channel profiles of gauge stations on land.The Yenisei paleo-channels have larger dimensions than the Ob examples and could be originated by additional water release during the melt of LGM Putoran ice masses.Asymmetrical submarine channel–levee complexes with channel depths of 60 m and more developed, in some places bordered by glacially dominated morphology, implying deflection by the LGM ice masses. A total of more than 12,000 km of acoustic profiles reveal no evidence for an ice-dammed lake of greater areal extent postulated by several workers. Furthermore, the existence of the channel–levee complexes is indicative of unhindered sediment flow to the north. Channels situated on the shelf above 120-m water depth exhibit no phases of ponding and or infill during sea-level lowstand. These findings denote the non-existence of an ice sheet on large areas of the Kara Sea shelf.  相似文献   

16.
Paul D. Komar 《Icarus》1979,37(1):156-181
Comparisons are undertaken between the hydraulics of channelized water flows on Mars, large terrestrial rivers, deep-sea turbidity currents, and the catastrophic flow of Lake Missoula floods. Expected bottom shear stresses, velocities and discharges, flow powers, and other parameters are computed for each. Sand transport rates and the times required for channel erosion are estimated for Mangala Channel. These calculations indicate that the turbidity currents and Lake Missoula floods were similar to channelized water flow on Mars in their flow characteristics and in their abilities to erode and transport sediments. Like the Lake Missoula floods, deep-sea turbidity currents are catastrophic in character, being formed by the slumping of large masses of sediment trapped in submarine canyons or deposited on the continental slope. The repeated flows originating from submarine canyons have formed deep-sea channels similar in scale and overall morphology to the Martian outflow channels. The submarine canyon can be viewed as the counterpart of the chaotic terrain or crater which serves as sources for many Martian channels. Like most Martian outflow channels, the deep-sea channels generally lack tributaries or have only minor tributaries, instead consisting of a single pronounced channel extending for several hundred kilometers from its origin at the submarine canyon to deep abyssal depths. The channels vary considerably in dimensions, but most commonly have widths in the range 2 to 15 km with reliefs of 50 to 450 meters, again similar in scale to the Martian channels. Other similarities include sections of anastomosing channels, a general lack of pronounced meandering, and a lack of an apparent “delta” where the transported sediments are deposited. The similarities of channel morphology and flow hydraulics indicate the deep-sea channels and turbidity currents can be useful in furthering our understanding of the Martian outflow channels. Physical processes in the deep-sea occur under a reduced effective gravity because of the overlying water with its buoyancy. The deep-sea channels provide another set of Earth-based channels which can be studied to determine the effects of gravity on such factors as channel meandering and anastomosing characteristics.  相似文献   

17.
The case for an ocean having once occupied the northern lowlands of Mars has largely been based indirectly on the debouching of the outflow channels into the lowlands, and directly on erosional features along the margins of the lowlands interpreted to be the result of wave action. Two global shorelines were previously mapped from albedo variation, embayment relationships, and scarps interpreted as coastal cliffs. However, not since the early, Viking-based studies, has there been a focused assessment of the presence or absence of coastal constructional landforms such as barrier ridges and spits, located on or near the mapped “shorelines.” Such constructional landforms are typically found in association with coastal erosional features on Earth, and therefore warrant a detailed search for their presence on Mars. All presently available THEMIS VIS and MOC NA images located on or near either of the two “shorelines,” within the Chryse Planitia/Arabia Terra region (10° to 44° N; 300° to 0° E) and the Isidis Planitia region (0° to 30° N; 70° to 105° E), were examined in search of any features that could reasonably be considered candidate coastal ridges. Additionally, raw MOLA profiles were used in conjunction with a technique developed from Differential Global Positioning System profiles across terrestrial paleo-shorelines, to search for coastal ridges throughout these same regions. Out of 447 THEMIS VIS and 735 MOC NA images examined, only four candidates are observed that are plausibly interpreted as coastal ridges; no candidate coastal ridges are observed in the MOLA profiles. This overwhelming paucity of candidate features suggests one of five possible scenarios in terms of the existence of standing bodies of water within the martian lowlands: (1) No ocean existed up to the level of either of the previously mapped “shorelines”; (2) An ocean existed, however wave action, the primary agent responsible for construction of coastal landforms, was minimal to non-existent; (3) An ocean existed, but sediment input was not significant enough to form coastal deposits; (4) An ocean existed, but readily froze, and over time sublimated; and lastly (5) An ocean existed and coastal landforms were constructed, but in the intervening time since their formation they have nearly all been eroded away.  相似文献   

18.
Paul D. Komar 《Icarus》1980,42(3):317-329
Depending on their grain sizes (settling velocities), sediments are transported in rivers as bed load, in suspension, or as wash load. The coarsest material rolls or bounces along the bottom as bed load whereas finer material is placed into suspension by the water turbulence. The finest sediments are transported as wash load, evenly distributed through the water depth and effectively moving at the same rate as the water. The criteria for quantitatively determining which grain-size ranges are being transported in terrestrial rivers as bed load, suspended load and wash load are applied to an analysis of sediment transport in the large Martian outflow channels, assuming their origin to have been from water flow. Of importance is the balance of the effects of the reduced Martian gravity on the water flow velocity versus the reduction in grain settling velocities. Analyses were performed using grain densities ranging from 2.90 g/cm3 (basalt) to 1.20 g/cm3 (volcanic ash). The results show that the Martian flows could have transported cobbles in suspension and that nearly all sand-size material and finer would have been transported as wash load. Wash-load transport requires little or no net expenditure of the water-flow power, so the sands and finer could have been carried in nearly unlimited quantities. A comparison with terrestrial rivers indicates that concentrations as high as 60–70% by weight of wash-load sediment could have prevailed in the Martian flows, resulting in the very rapid erosion of the channels.  相似文献   

19.
The 174 km diameter Terby impact crater (28.0°S-74.1°E) located on the northern rim of the Hellas basin displays anomalous inner morphology, including a flat floor and light-toned layered deposits. An analysis of these deposits was performed using multiple datasets from Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions, with visible images for interpretation, near-infrared data for mineralogical mapping, and topography for geometry. The geometry of layered deposits was consistent with that of sediments that settled mainly in a sub-aqueous environment, during the Noachian period as determined by crater counts. To the north, the thickest sediments displayed sequences for fan deltas, as identified by 100 m to 1 km long clinoforms, as defined by horizontal beds passing to foreset beds dipping by 6-10° toward the center of the Terby crater. The identification of distinct sub-aqueous fan sequences, separated by unconformities and local wedges, showed the accumulation of sediments from prograding/onlapping depositional sequences, due to lake level and sediment supply variations. The mineralogy of several layers with hydrated minerals, including Fe/Mg phyllosilicates, supports this type of sedimentary environment. The volume of fan sediments was estimated as >5000 km3 (a large amount considering classical martian fan deltas such as Eberswalde (6 km3)) and requires sustained liquid water activity. Such a large sedimentary deposition in Terby crater is characteristic of the Noachian/Phyllosian period during which the environment favored the formation of phyllosilicates. The latter were detected by spectral data in the layered deposits of Terby crater in three distinct layer sequences. During the Hesperian period, the sediments experienced strong erosion, possibly enhanced by more acidic conditions, forming the current morphology with three mesas and closed depressions. Small fluvial valleys and alluvial fans formed subsequently, attesting to late fluvial processes dated as late Early to early Late Hesperian. After this late fluvial episode, the Terby impact crater was submitted to aeolian processes and permanent cold conditions with viscous flow features. Therefore, the Terby crater displays, in a single location, geologic features that characterize the three main periods of time on Mars, with the presence of one of the thickest sub-aqueous fan deposits reported on Mars. The filling of Terby impact crater is thus one potential “reference geologic cross-section” for Mars stratigraphy.  相似文献   

20.
We compare the initial behavior of Fe/O and He/H abundance ratios and their relationship to the evolution of the proton energy spectra in "small" and "large" gradual solar energetic particle (SEP) events. The results are qualitatively consistent with the behavior predicted by the theory of Ng et al. published in 1999. He/H ratios that initially rise with time are a signature of scattering by non-Kolmogorov Alfvén wave spectra generated by intense beams of shock-accelerated protons streaming outward in large gradual SEP events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号