首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial autocorrelation analysis was used to identify spatial patterns of 1991 Gulf War (GW) troop locations in relationship to subsequent postwar diagnosis of chronic multisymptom illness (CMI). Criteria for the diagnosis of CMI include reporting from at least two of three symptom clusters: fatigue, musculoskeletal pain, and mood and cognition. A GIS‐based methodology was used to examine associations between potential hazardous exposures or deployment situations and postwar health outcomes using troop location data as a surrogate. GW veterans from the Devens Cohort Study were queried about specific symptoms approximately four years after the 1991 deployment to the Persian Gulf. Global and local statistics were calculated using the Moran's I and G statistics for six selected date periods chosen a priori to mark important GW‐service events or exposure scenarios among 173 members of the cohort. Global Moran's I statistics did not detect global spatial patterns at any of the six specified data periods, thus, indicating there is no significant spatial autocorrelation of locations over the entire Gulf region for veterans meeting criteria for severe postwar CMI. However, when applying local G* and local Moran's I statistics, significant spatial clusters (primarily in the coastal Dammam/Dharhan and the central inland areas of Saudi Arabia) were identified for several of the selected time periods. Further study using GIS techniques, coupled with epidemiological methods, to examine spatial and temporal patterns with larger sample sizes of GW veterans is warranted to ascertain if the observed spatial patterns can be confirmed.  相似文献   

2.
Abstract

A significant Geographic Information Science (GIS) issue is closely related to spatial autocorrelation, a burning question in the phase of information extraction from the statistical analysis of georeferenced data. At present, spatial autocorrelation presents two types of measures: continuous and discrete. Is it possible to use Moran's I and the Moran scatterplot with continuous data? Is it possible to use the same methodology with discrete data? A particular and cumbersome problem is the choice of the spatial-neighborhood matrix (W) for points data. This paper addresses these issues by introducing the concept of covariogram contiguity, where each weight is based on the variogram model for that particular dataset: (1) the variogram, whose range equals the distance with the highest Moran I value, defines the weights for points separated by less than the estimated range and (2) weights equal zero for points widely separated from the variogram range considered. After the W matrix is computed, the Moran location scatterplot is created in an iterative process. In accordance with various lag distances, Moran's I is presented as a good search factor for the optimal neighborhood area. Uncertainty/transition regions are also emphasized. At the same time, a new Exploratory Spatial Data Analysis (ESDA) tool is developed, the Moran variance scatterplot, since the conventional Moran scatterplot is not sensitive to neighbor variance. This computer-mapping framework allows the study of spatial patterns, outliers, changeover areas, and trends in an ESDA process. All these tools were implemented in a free web e-Learning program for quantitative geographers called SAKWeb© (or, in the near future, myGeooffice.org).  相似文献   

3.
Up‐to‐date and accurate digital elevation models (DEMs) are essential for many applications such as numerical modeling of mass movements or mapping of terrain changes. Today the Federal Department of Topography, swisstopo, provides Digital Terrain Models (DTMs) and Digital Surface Models (DSMs) derived from airborne LiDAR data with a high spatial resolution of 2 m covering the entire area of Switzerland below an elevation of 2000 m a.s.l.. However, above an elevation of 2000 m a.s.l., which is typical for high‐alpine terrain, the best product available is the a DTM with a spatial resolution of 25 m. This spatial resolution is insufficient for many applications in complex terrain. In this study, we investigate the quality of DSMs derived from opto‐electronic scanner data (ADS80; acquired in autumn 2010) using photogrammetric image correlation techniques based on the multispectral nadir and backward looking sensor data. As reference, we take a high precision airborne LiDAR data set with a spatial resolution of ca. 0.5 m, acquired in late summer 2010, covering the Grabengufer/Dorfbach catchment near Randa, VS. We find the deviations between the two datasets are surprisingly low. In terrain with inclination angles of less than 30° the RMSE is below 0.5 m. In extremely steep terrain of more than 50° the RMSE goes up to 2 m and outliers increase significantly. We also find dependencies of the deviations on illumination conditions and ground cover classes. Finally we discuss advantages and disadvantages of the different data acquisition methods.  相似文献   

4.
This paper aims to use spatial statistical tools to explore the reciprocal spatial–temporal effects of transport infrastructure and urban growth of Jeddah city, a fast developing polycentric city in Saudi Arabia. Global spatial autocorrelation (Moran's I) and local indicators of spatial association (LISA) are first used to analyze the spatial–temporal clustering of urban growth and transport infrastructure from 1980 to 2007. Then, spatial regression analysis is conducted to investigate the mutual spatial–temporal effects of urban growth and transport infrastructure. Results indicate a significant positive global spatial autocorrelation of all defined variables between 1980 and 2007. LISA results also reveal a constant significant spatial association of transport infrastructure expansion and urban growth variables from 1980 to 2007. The results not only indicate a mutual spatial influence of transport infrastructure and urban growth but also reveal that spatial clustering of transport infrastructure seems to be influenced by other factors. This study shows that transport infrastructure is a constant and strong spatial influencing factor of urban growth in the polycentric urban structure that Jeddah has. Overall, this study demonstrates that exploratory spatial data analysis and spatial regression analysis are able to detect the spatial–temporal mutual effects of transport infrastructure and urban growth. Further studies on the reciprocal relationship between urban growth and transport infrastructure using the study approach for the case of monocentric urban structure cities are necessary and encouraged.  相似文献   

5.
Joanne  Poon  Clive S.  Fraser  Zhang  Chunsun  Zhang  Li  Armin  Gruen 《The Photogrammetric Record》2005,20(110):162-171
The growing applications of digital surface models (DSMs) for object detection, segmentation and representation of terrestrial landscapes have provided impetus for further automation of 3D spatial information extraction processes. While new technologies such as lidar are available for almost instant DSM generation, the use of stereoscopic high-resolution satellite imagery (HRSI), coupled with image matching, affords cost-effective measurement of surface topography over large coverage areas. This investigation explores the potential of IKONOS Geo stereo imagery for producing DSMs using an alternative sensor orientation model, namely bias-corrected rational polynomial coefficients (RPCs), and a hybrid image-matching algorithm. To serve both as a reference surface and a basis for comparison, a lidar DSM was employed in the Hobart testfield, a region of differing terrain types and slope. In order to take topographic variation within the modelled surface into account, the lidar strip was divided into separate sub-areas representing differing land cover types. It is shown that over topographically diverse areas, heighting accuracy to better than 3 pixels can be readily achieved. Results improve markedly in feature-rich open and relatively flat terrain, with sub-pixel accuracy being achieved at check points surveyed using the global positioning system (GPS). This assessment demonstrates that the outlook for DSM generation from HRSI is very promising.  相似文献   

6.
Waldo Tobler frequently reminded us that the law named after him was nothing more than calling for exceptions. This article discusses one of these exceptions. Spatial relations between points are frequently modeled as vectors in which both distance and direction are of equal prominence. However, in Tobler's first law of geography, such a relation is described only from the perspective of distance by relating the decreasing similarity of observations in some attribute space to their increasing distance in geographic space. Although anisotropic versions of many geographic analysis techniques, such as directional semivariograms, anisotropy clustering, and anisotropic point pattern analysis, have been developed over the years, direction remains on the level of an afterthought. We argue that, compared to distance, directional information is still under‐explored and anisotropic techniques are substantially less frequently applied in everyday GIS analysis. Commonly, when classical spatial autocorrelation indicators, such as Moran's I, are used to understand a spatial pattern, the weight matrix is only built from distance, without direction being considered. Similarly, GIS operations, such as buffering, do not take direction into account either, with distance in all directions being treated equally. In reality, meanwhile, particularly in urban structures and when processes are driven by the underlying physical geography, direction plays an essential role. In this article we ask whether the development of early GIS, data (sample) sparsity, and Tobler's law lead to a theory‐induced blindness for the role of direction. If so, is it possible to envision direction becoming a first‐class citizen of equal importance to distance instead of being an afterthought only considered when the deviation from a perfect circle becomes too obvious to be ignored?  相似文献   

7.
地球化学的空间自相关异常信息提取方法   总被引:3,自引:0,他引:3  
针对地球化学数据存在的空间分布相关性特征,该文提出了一种基于空间自相关统计的地球化学异常提取方法。以内蒙古浩布高矿床外围的土壤地球化学数据为例,通过对Sn、Cu元素地球化学数据在不同空间间隔上的全局自相关计算,测算其空间聚集的程度,选取聚集程度最高时的间隔距离作为局部空间自相关的参数,通过局部Moran’s I值研究元素的空间分布特征,分析空间聚类和异常值,从而提取地球化学异常。结果表明,局部空间自相关分析可以揭示Sn、Cu地球化学数据的空间分布特征,能够更好地提取地球化学弱缓异常,说明空间自相关是一种有效的地球化学异常识别方法。  相似文献   

8.
The Brazilian Amazon is a vast territory with an enormous need for mapping and monitoring of renewable and non-renewable resources. Due to the adverse environmental condition (rain, cloud, dense vegetation) and difficult access, topographic information is still poor, and when available needs to be updated or re-mapped. In this paper, the feasibility of using Digital Surface Models (DSMs) extracted from TerraSAR-X Stripmap stereo-pair images for detailed topographic mapping was investigated for a mountainous area in the Carajás Mineral Province, located on the easternmost border of the Brazilian Amazon. The quality of the radargrammetric DSMs was evaluated regarding field altimetric measurements. Precise topographic field information acquired from a Global Positioning System (GPS) was used as Ground Control Points (GCPs) for the modeling of the stereoscopic DSMs and as Independent Check Points (ICPs) for the calculation of elevation accuracies. The analysis was performed following two ways: (1) the use of Root Mean Square Error (RMSE) and (2) calculations of systematic error (bias) and precision. The test for significant systematic error was based on the Student’s-t distribution and the test of precision was based on the Chi-squared distribution. The investigation has shown that the accuracy of the TerraSAR-X Stripmap DSMs met the requirements for 1:50,000 map (Class A) as requested by the Brazilian Standard for Cartographic Accuracy. Thus, the use of TerraSAR-X Stripmap images can be considered a promising alternative for detailed topographic mapping in similar environments of the Amazon region, where available topographic information is rare or presents low quality.  相似文献   

9.
The modifiable areal unit problem arises when the boundaries that define neighborhoods affect perceived levels of segregation. Scholars postulate that this problem is exacerbated when one uses a definition of neighborhoods that is based on administrative units; doing so leads to an aspatial measure of segregation, which may or may not adequately account for the spatial relationships among residential locations. In this article, we assess whether aspatial and spatial definitions of neighborhoods produce different perceived levels of income segregation. Using an original individual‐level dataset on income in San Mateo County, California, we define each individual's neighborhood in three ways – two aspatial and one spatial. On the basis of these definitions of neighborhoods, we then estimate residential income segregation using the local Moran's I statistic. We report two primary findings. First, the three measures generate different perceived levels of income segregation. Specifically, we observe less income segregation when using the aspatial measures as compared with the spatial one. Second, the inconsistencies between these measures are systematic in such a way as to lead to different inferences when used to predict individual voter turnout.  相似文献   

10.
Fires threaten human lives, property and natural resources in Southern African savannas. Due to warming climate, fire occurrence may increase and fires become more intense. It is crucial, therefore, to understand the complexity of spatiotemporal and probabilistic characteristics of fires. This study scrutinizes spatiotemporal characteristics of fires and the role played by abiotic, biotic and anthropogenic factors for fire probability modelling in a semiarid Southern African savanna environment. The MODIS fire products: fire hot spots (MOD14A2 and MYD14A2) and burned area product MODIS (MCD45A1), and GIS derived data were used in analysis. Fire hot spots occurrence was first analysed, and spatial autocorrelation for fires investigated, using Moran's I correlograms. Fire probability models were created using generalized linear models (GLMs). Separate models were produced for abiotic, biotic, anthropogenic and combined factors and an autocovariate variable was tested for model improvement. The hierarchical partitioning method was used to determine independent effects of explanatory variables. The discriminating ability of models was evaluated using area under the curve (AUC) from the receiver operating characteristic (ROC) plot. The results showed that 19.2–24.4% of East Caprivi burned when detected using MODIS hot spots fire data and these fires were strongly spatially autocorrelated. Therefore, the autocovariate variable significantly improved fire probability models when added to them. For autologistic models, i.e. models accounting for spatial autocorrelation, discrimination was good to excellent (AUC 0.858–0.942). For models not counting spatial autocorrelation, prediction success was poor to moderate (AUC 0.542–0.745). The results of this study clearly showed that spatial autocorrelation has to be taken in to account in the fire probability model building process when using remotely sensed and GIS derived data. This study also showed that fire probability models accounting for spatial autocorrelation proved to be superior in regional scale burned area estimation when compared with MODIS burned area product (MCD45A1).  相似文献   

11.
12.
Traditional methods of recording fire burned areas and fire severity involve expensive and time-consuming field surveys. Available remote sensing technologies may allow us to develop standardized burn-severity maps for evaluating fire effects and addressing post fire management activities. This paper focuses on multiscale characterization of fire severity using multisensor satellite data. To this aim, both MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) data have been processed using geo-statistic analyses to capture pattern features of burned areas.Even if in last decades different authors tried to integrate geo-statistics and remote sensing image processing, methods used since now are only variograms, semivariograms and kriging. In this paper, we propose an approach based on the use of spatial indicators of global and local autocorrelation. Spatial autocorrelation statistics, such as Moran's I and Getis–Ord Local Gi index, were used to measure and analyze dependency degree among spectral features of burned areas. This approach enables the characterization of pattern features of a burned area and improves the estimation of fire severity.  相似文献   

13.
Previously, we developed an integrated software package called ICAMS (Image Characterization and Modeling System) to provide specialized spatial analytical functions for interpreting remote sensing data. This paper evaluates three fractal dimension measurement methods that have been implemented in ICAMS: isarithm, variogram, and a modified version of triangular prism. To provide insights into how the fractal methods compare with conventional spatial techniques in measuring landscape complexity, the performance of two spatial autocorrelation methods, Moran's I and Geary's C, is also evaluated. Results from analyzing 25 simulated surfaces having known fractal dimensions show that both the isarithm and triangular prism methods can accurately measure a range of fractal surfaces. The triangular prism method is most accurate at estimating the fractal dimension of surfaces having higher spatial complexity, but it is sensitive to contrast stretching. The variogram method is a comparatively poor estimator for all surfaces, particularly those with high fractal dimensions. As with the fractal techniques, spatial autocorrelation techniques have been found to be useful for measuring complex images, but not images with low dimensionality. Fractal measurement methods, as well as spatial autocorrelation techniques, can be applied directly to unclassified images and could serve as a tool for change detection and data mining.  相似文献   

14.
Digital surface models (DSMs) extracted from very high resolution (VHR) satellite stereo images are becoming more and more important in a wide range of geoscience applications. The number of software packages available for generating DSMs has been increasing rapidly. The main goal of this work is to explore the capabilities of VHR satellite stereo pairs for DSMs generation over different land-cover objects such as agricultural plastic greenhouses, bare soil and urban areas by using two software packages: (i) OrthoEngine (PCI), based on a hierarchical subpixel mean normalized cross correlation matching method, and (ii) RPC Stereo Processor (RSP), with a modified hierarchical semi-global matching method. Two VHR satellite stereo pairs from WorldView-2 (WV2) and WorldView-3 (WV3) were used to extract the DSMs. A quality assessment on these DSMs on both vertical accuracy and completeness was carried out by considering the following factors: (i) type of sensor (i.e., WV2 or WV3), (ii) software package (i.e., PCI or RSP) and (iii) type of land-cover objects (plastic greenhouses, bare soil and urban areas). A highly accurate light detection and ranging (LiDAR) derived DSM was used as the ground truth for validation. By comparing both software packages, we concluded that regarding DSM completeness, RSP produced significantly (p < 0.05) better scores than PCI for all the sensors and type of land-cover objects. The percentage improvement in completeness by using RSP instead of PCI was approximately 2%, 18% and 26% for bare soil, greenhouses and urban areas respectively. Concerning the vertical accuracy in root mean square error (RMSE), the only factor clearly significant (p < 0.05) was the land cover. Overall, WV3 DSM showed slightly better (not significant) vertical accuracy values than WV2. Finally, both software packages achieved similar vertical accuracy for the different land-cover objects and tested sensors.  相似文献   

15.
This paper is concerned with the application of high spatial resolution elevation data derived from light detection and ranging technologies (lidar) to surface hydrologic modeling. In recent years, airborne lidar technology has been employed to develop high accuracy digital elevation models (DEMs) with horizontal resolution on the order of a few meters. As with any spatial data product there are limits to the lidar's practical use that vary with the intended application. This paper considers potential issues and challenges for the use of lidar-derived DEMs in surface hydrologic modeling applications, such as characterizing flow direction and power, identifying sub-basins in a watershed, and calculating upstream contributing area and other variables. We compare results using conventional 30m DEMs and 6m lidar for a high relief study area and a low relief study area. Results are more comparable between these data sources, regardless of hydrologic operation, for the high relief area, while the similarity of results in the low relief area is dependent upon the particular operation. Post-processing on the lidar data successfully removed such flow obstacles as bridges that might have artificially impeded surface flow. An exploration of the effect of spatial resolution on results suggests that cell size is a more significant factor than production method.  相似文献   

16.
在ArcGIS和GeoDA等软件的支持下,本文利用标准差指数、变异系数法,结合重心迁移、空间自相关等探索性空间数据分析法(ESDA),首先,对2000~2014年全国整体农村居民人均纯收入进行时间演变特征分析,接着对2000~2013年全国31个省级农村居民人均纯收入的空间分异格局、重心迁移趋势和空间相关性等特征进行分析。结果表明,中国农村收入增速加快,逐渐超过城镇,贫富差距拉大;中国省级农村居民收入区域分异特征出现变化,由严格的东高西低的梯度型变为中西部较低的局部跳跃型;全局空间正相关性显著,存在空间集聚特征,形成东部沿海省份和东北地区的高值聚集区以及西部大片区域的低值聚集区;从省级收入增长率上来看,区域增速的高低发生转变;农民人均收入重心向西北迁移,有利于减小东西收入差距。  相似文献   

17.
We present a geostatistical approach that accounts for spatial autocorrelation in malaria mosquito aquatic habitats in two East African urban environments. QuickBird 0.61 m data, encompassing visible bands and the near infra‐red (NIR) bands, were selected to synthesize images of Anopheles gambiae s.l. aquatic habitats in Kisumu and Malindi, Kenya. Field sampled data of An. gambiae s.l. aquatic habitats were used to determine which ecological covariates were associated with An. gambiae s.l. larval habitat development. A SAS/GIS® spatial database was used to calculate univariate statistics, correlations and perform Poisson regression analyses on the An. gambiae s.l. aquatic habitat datasets. Semivariograms and global autocorrelation statistics were generated in ArcGIS®. The spatially dependent models indicate the distribution of An. gambiae s.l. aquatic habitats exhibits weak positive autocorrelation in both study sites, with aquatic habitats of similar log‐larval counts tending to cluster in space. Individual anopheline habitats were further evaluated in terms of their covariations with spatial autocorrelation by regressing them on candidate spatial filter eigenvectors. This involved the decomposition of Moran's I statistic into orthogonal and uncorrelated map pattern components using a negative binomial regression. The procedure generated synthetic map patterns of latent spatial correlation representing the geographic configuration of An. gambiae s.l. aquatic habitat locations in each study site. The Gaussian approximation spatial filter models accounted for approximately 13% to 32% redundant locational information in the ecological datasets. Spatial statistics generated in a SAS/GIS® module can capture spatial dependency effects on the mean response term of a Poisson regression analysis of field and remotely sampled An. gambiae s.l. aquatic habitat data.  相似文献   

18.
The existing crisis management research mostly reveals the patterns of the public's panic levels from the perspectives of public management, sociology, and psychology, only a few studies have revealed the spatiotemporal characteristics. Therefore, this study investigates the spatial distribution and temporal patterns and influencing factors on the general public's panic levels using the Baidu Index data from a geographic perspective. The results show that: (1) The public's panic levels were significantly correlated with the spatial distance between the epicenter and the region of investigation, and with the number of confirmed cases in different regions when the pandemic began to spread. (2) Based on the spatial distance between the epicenter and the region, the public's panic levels in different regions could be divided into three segments: core segment (0–500 km), buffer segment (500–1300 km), and peripheral segment (>1300 km). The panic levels of different people in the three segments were consistent with the Psychological Typhoon Eye Effect and the Ripple Effect can be detected in the buffer segment. (3) The public's panic levels were strongly correlated with whether the spread of the infectious disease crisis occurred and how long it lasted. It is suggested that crisis information management in the future needs to pay more attention to the spatial division of control measures. The type of crisis information released to the general public should depend on the spatial relationship associated with the place where the crisis breaks out.  相似文献   

19.
A precise knowledge of the crop distribution in the landscape is crucial for the agricultural sector to inform better management and logistics. Crop-type maps are often derived by the supervised classification of satellite imagery using machine learning models. The choice of data sampled during the data collection phase of building a classification model has a tremendous impact on a model's performance, and is usually collected via roadside surveys throughout the area of interest. However, the large spatial extent, and the varying accessibility to fields, often makes the acquisition of appropriate training data sets difficult. As such, in situ data are often collected on a best-effort basis, leading to inefficiencies, sub-optimal accuracies, and unnecessarily large sample sizes. This highlights the need for new more efficient tools to guide data collection. Here, we address three tasks that one commonly faces when planning to collect in situ data: which survey route to select among a set logistically feasible routes; which fields are the most relevant to collect along the chosen survey route; and how to best augment existing in situ data sets with additional observations. Our findings show that the normalised Moran's I index is a useful indicator for choosing the survey route, and that sequential exploration methods can identify the most important fields to survey on that route. The provided recommendations are flexible, overcome the main logistical constraints associated with in situ data collection, yield accurate results, and could be incorporated in a mobile application to assist data collection in real-time.  相似文献   

20.
GIDS空间插值法估算云下地表温度   总被引:1,自引:2,他引:1  
周义  覃志豪  包刚 《遥感学报》2012,16(3):492-504
选用陆面区域温度最佳空间插值法—梯度距离平方反比法(GIDS),为近似估算云下地表温度提供了可能。实验选取暖季南京江宁地区ETM+影像和ASTERGDEMV1高程数据,探索分析GIDS估算云下地表温度的可行性和可信性。对14种空间大小云覆盖区实验研究表明:利用GIDS插值估算云下地表温度具有可行性,且估算误差随着云覆盖区范围增大而增加,其最大MAE<0.9℃,最大RMSE<1.2℃,并在云覆盖区小于100×100像元时,最大MAE<0.8℃、RMSE<1℃;插值精度与最近邻无云像元典型代表性、区域内空间复杂度和地表覆盖类型均有关,存在不稳定性和动态性;云下NDVI均方差与MAE、RMSE有着一致变化趋势,借助NDVI均方差指示云下地表空间异质性及NDVI–LST负相关性,可对插值结果进行可信性评判,以避免插值结果盲目应用,推进和提升地表温度产品应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号