首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of binary progenitors of neutron stars (NSs) in the apparent distribution of space velocities and spin–velocity alignment observed in young pulsars is studied. We performed a Monte Carlo synthesis of pulsar populations originated from single and binary stars with different assumptions about the NS natal kick (kick–spin alignment, kick amplitude and kick reduction in electron-capture supernovae in binary progenitors with initial main-sequence masses from the range  8–11 M  which experienced mass exchange due to Roche lobe overflow). The calculated spin–velocity alignment in pulsars is compared with data inferred from radio polarization measurements. The observed space velocity of pulsars is found to be mostly affected by the natal kick velocity form and its amplitude; the fraction of binaries is not important here for reasonably large kicks. The natal kick–spin alignment is found to strongly affect the spin–velocity correlation of pulsars. Comparison with the observed pulsar spin–velocity angles favours a sizeable fraction of binary progenitors and kick–spin angles  ∼5°–20°  .  相似文献   

2.
Be stars are rapidly spinning B stars surrounded by an outflowing disc of gas in Keplerian rotation. Be star/X-ray binary systems contain a Be star and a neutron star. They are found to have non-zero eccentricities and there is evidence that some systems have a misalignment between the spin axis of the star and the spin axis of the binary orbit. The eccentricities in these systems are caused by a kick to the neutron star during the supernova that formed it. Such kicks would also give rise to misalignments. In this paper, we investigate the extent to which the same kick distribution can give rise to both the observed eccentricity distribution and the observed misalignments. We find that a Maxwellian distribution of velocity kicks with a low velocity dispersion,  σk≈ 15 km s−1  , is consistent with the observed eccentricity distribution but is hard to reconcile with the observed misalignments, typically   i ≥ 25°  . Alternatively, a higher velocity kick distribution,  σk= 265 km s−1  , is consistent with the observed misalignments but not with the observed eccentricities, unless post-supernova circularization of the binary orbits has taken place. We discuss briefly how this might be achieved.  相似文献   

3.
Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of  ∼1100 km s−1  , which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of  106– 107 stars pc−3  . Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.  相似文献   

4.
We present a numerical study of the hydrodynamics in the final stages of inspiral of a black hole–neutron star binary, when the binary separation becomes comparable to the stellar radius. We use a Newtonian three-dimensional smooth particle hydrodynamics (SPH) code, and model the neutron star with a soft (adiabatic index Γ=5/3) polytropic equation of state, and the black hole as a Newtonian point mass that accretes matter via an absorbing boundary at the Schwarzschild radius. Our initial conditions correspond to tidally locked binaries in equilibrium, and we have explored configurations with different values of the mass ratio q M NS M BH, ranging from q =1 to 0.1. The dynamical evolution is followed for approximately 23 ms, and in every case studied here we find that the neutron star is tidally disrupted on a dynamical time-scale, forming a dense torus around the black hole that contains a few tenths of a solar mass. A nearly baryon-free axis is present in the system throughout the coalescence, and only modest beaming of a fireball that could give rise to a gamma-ray burst would be sufficient to avoid excessive baryon contamination. We find that some mass (of the order of 10−3–10−2 M) may be dynamically ejected from the system, and could thus contribute substantially to the amount of observed r-process material in the galaxy. We calculate the gravitational radiation waveforms and luminosity emitted during the coalescence in the quadrupole approximation.  相似文献   

5.
We present the results of three-dimensional hydrodynamical simulations of the final stages of in-spiral in a black hole–neutron star binary, when the separation is comparable to the stellar radius. We use a Newtonian smooth particle hydrodynamics (SPH) code to model the evolution of the system, and take the neutron star to be a polytrope with a soft (adiabatic indices     and     equation of state and the black hole to be a Newtonian point mass. The only non-Newtonian effect we include is a gravitational radiation back reaction force, computed in the quadrupole approximation for point masses. We use irrotational binaries as initial conditions for our dynamical simulations, which are begun when the system is on the verge of initiating mass transfer and followed for approximately 23 ms. For all the cases studied we find that the star is disrupted on a dynamical time-scale, and forms a massive     accretion torus around the spinning (Kerr) black hole. The rotation axis is clear of baryons (less than 10−5 M within 10°) to an extent that would not preclude the formation of a relativistic fireball capable of powering a cosmological gamma-ray burst. Some mass (the specific amount is sensitive to the stiffness of the equation of state) may be dynamically ejected from the system during the coalescence and could undergo r-process nucleosynthesis. We calculate the waveforms, luminosities and energy spectra of the gravitational radiation signal, and show how they reflect the global outcome of the coalescence process.  相似文献   

6.
Cygnus X-2 appears to be the descendant of an intermediate-mass X-ray binary (IMXB). Using Mazzitelli's stellar code we compute detailed evolutionary sequences for the system and find that its prehistory is sensitive to stellar input parameters, in particular the amount of core overshooting during the main-sequence phase. With standard assumptions for convective overshooting a case B mass transfer starting with a 3.5-M donor star is the most likely evolutionary solution for Cygnus X-2. This makes the currently observed state rather short-lived, of order 3 Myr, and requires a formation rate > 10−7–10−6 yr−1 of such systems in the Galaxy. Our calculations show that neutron star IMXBs with initially more massive donors (≳4 M) encounter a delayed dynamical instability; they are unlikely to survive this rapid mass transfer phase. We determine limits for the age and initial parameters of Cygnus X-2 and calculate possible dynamical orbits of the system in a realistic Galactic potential, given its observed radial velocity. We find trajectories which are consistent with a progenitor binary on a circular orbit in the Galactic plane inside the solar circle that received a kick velocity ≤200 km s−1 at the birth of the neutron star. The simulations suggest that about 7 per cent of IMXBs receiving an arbitrary kick velocity from a standard kick velocity spectrum would end up in an orbit similar to Cygnus X-2, while about 10 per cent of them reach yet larger Galactocentric distances.  相似文献   

7.
We investigate the age constraints that can be placed on the double pulsar system using models for the spin-down of the first-born 22.7-ms Pulsar A and the 2.77-s Pulsar B with characteristic ages of 210 and 50 Myr, respectively. Standard models assuming dipolar spin-down of both pulsars suggest that the time since the formation of Pulsar B is ∼50 Myr, that is, close to Pulsar B's characteristic age. However, adopting models which account for the impact of Pulsar A's relativistic wind on Pulsar B's spin-down, we find that the formation of Pulsar B took place either 80 or 180 Myr ago, depending on the interaction mechanism. Formation 80 Myr ago, closer to Pulsar B's characteristic age, would result in the contribution from J0737−3039 to the inferred coalescence rates for double neutron star binaries increasing by 40 per cent. The 180 Myr age is closer to Pulsar A's characteristic age and would be consistent with the most recent estimates of the coalescence rate. The new age constraints do not significantly impact recent estimates of the kick velocity, tilt angle between pre- and post-supernova orbital planes or pre-supernova mass of Pulsar B's progenitor.  相似文献   

8.
We investigate the stochastic gravitational wave background that results from neutron star birth throughout the Universe. The neutron star birth rate, as a function of redshift, is calculated using an observation-based model for the evolving star formation rate, together with an estimate of the rate of core-collapse supernovae in the nearby Universe and an estimate of the neutron star/black hole branching ratio. Using three sample waveforms, based on numerical models of stellar core collapse by Zwerger & Müller, the spectral flux density, spectral strain, spectral energy density and duty cycle of the background have been computed. Our results show, contrary to recent claims, that the spectrum of the stochastic background clearly reflects the different physics in the core-collapse models. For a star formation model that is corrected for dust extinction, the neutron star formation rate throughout the Universe is high enough to result in a nearly continuous background of gravitational waves, with spectral features that can be related to emission mechanisms.  相似文献   

9.
We present the results of a systematic exploration of an alternative evolutionary scenario to form double neutron star (DNS) binaries, first proposed by Brown (1995) , which does not involve a neutron star passing through a common envelope. In this scenario, the initial binary components have very similar masses, and both components have left the main sequence before they evolve into contact; preferably the primary has already developed a CO core. We have performed population synthesis simulations to study the formation of DNS binaries via this channel and to predict the orbital properties and system velocities of such systems. We obtain a merger rate for DNSs in this channel in the range of 0.1–12 Myr−1. These rates are still subject to substantial uncertainties such as the modelling of the contact phase.  相似文献   

10.
We have measured the radial velocity variation of the white dwarf secondary in the binary system containing the millisecond pulsar PSR J 1012 + 5307. Combined with the orbital parameters of the radio pulsar, we infer a mass ratio q (≡ M 1/ M 2) = 10.5 ± 0.5. Our optical spectroscopy has also allowed us to determine the mass of the white dwarf companion by fitting the spectrum to a grid of DA model atmospheres: we estimate M 2 = 0.16 ± 0.02 M⊙, and hence the mass of the neutron star is 1.64 ± 0.22 M⊙, where the error is dominated by that of M 2. The orbital inclination is 52 ± 4°. For an initial neutron star mass of ∼ 1.4 M⊙, only a few tenths of a solar mass at most has been successfully accreted over the lifetime of the progenitor low-mass X-ray binary. If the initial mass of the secondary was ∼ 1 M⊙, our result suggests that the mass transfer may have been non-conservative.  相似文献   

11.
We present phase resolved optical spectroscopy and X-ray timing of the neutron star X-ray binary EXO 0748−676 after the source returned to quiescence in the autumn of 2008. The X-ray light curve displays eclipses consistent in orbital period, orbital phase and duration with the predictions and measurements before the return to quiescence. Hα and He  i emission lines are present in the optical spectra and show the signature of the orbit of the binary companion, placing a lower limit on the radial velocity semi-amplitude of   K 2 > 405 km s−1  . Both the flux in the continuum and the emission lines show orbital modulations, indicating that we observe the hemisphere of the binary companion that is being irradiated by the neutron star. Effects due to this irradiation preclude a direct measurement of the radial velocity semi-amplitude of the binary companion; in fact, no stellar absorption lines are seen in the spectrum. Nevertheless, our observations place a stringent lower limit on the neutron star mass of   M 1 > 1.27 M  . For the canonical neutron star mass of   M 1= 1.4 M  , the mass ratio is constrained to  0.075 < q < 0.105  .  相似文献   

12.
We have identified three possible ways in which future XMM‐Newton observations can provide significant constraints on the equation of state of neutron stars. First, using a long observation of the neutron star X‐ray transient Cen X‐4 in quiescence one can use the RGS spectrum to constrain the interstellar extinction to the source. This removes this parameter from the X‐ray spectral fitting of the pn and MOS spectra and allows us to investigate whether the variability observed in the quiescent X‐ray spectrum of this source is due to variations in the soft thermal spectral component or variations in the power law spectral component coupled with variations in NH. This will test whether the soft thermal spectral component can indeed be due to the hot thermal glow of the neutron star. Potentially such an observation could also reveal redshifted spectral lines from the neutron star surface. Second, XMM‐Newton observations of radius expansion type I Xray bursts might reveal redshifted absorption lines from the surface of the neutron star. Third, XMM‐Newton observations of eclipsing quiescent low‐mass X‐ray binaries provide the eclipse duration. With this the system inclination can be determined accurately. The inclination determined from the X‐ray eclipse duration in quiescence, the rotational velocity of the companion star and the semi‐amplitude of the radial velocity curve determined through optical spectroscopy, yield the neutron star mass. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Spectra of the spreading layers on the neutron star surface are calculated on the basis of the Inogamov–Sunyaev model taking into account general relativity correction to the surface gravity and considering various chemical composition of the accreting matter. Local (at a given latitude) spectra are similar to the X-ray burst spectra and are described by a diluted blackbody. Total spreading layer spectra are integrated accounting for the light bending, gravitational redshift and the relativistic Doppler effect and aberration. They depend slightly on the inclination angle and on the luminosity. These spectra also can be fitted by a diluted blackbody with the colour temperature depending mainly on a neutron star compactness. Owing to the fact that the flux from the spreading layer is close to the critical Eddington, we can put constraints on a neutron star radius without the need to know precisely the emitting region area or the distance to the source. The boundary layer spectra observed in the luminous low-mass X-ray binaries, and described by a blackbody of colour temperature   T c= 2.4 ± 0.1 keV  , restrict the neutron star radii to   R = 14.8 ± 1.5 km  (for a  1.4-M  star and solar composition of the accreting matter), which corresponds to the hard equation of state.  相似文献   

14.
We have solved numerically the general relativistic induction equations in the interior background space–time of a slowly rotating magnetized neutron star. The analytic form of these equations was discussed recently (Paper I), where corrections due to both the space–time curvature and the dragging of reference frames were shown to be present. Through a number of calculations we have investigated the evolution of the magnetic field with different rates of stellar rotation, different inclination angles between the magnetic moment and the rotation axis, as well as different values of the electrical conductivity. All of these calculations have been performed for a constant-temperature relativistic polytropic star and make use of a consistent solution of the initial-value problem which avoids the use of artificial analytic functions. Our results show that there exist general relativistic effects introduced by the rotation of the space–time which tend to decrease the decay rate of the magnetic field. The rotation-induced corrections are however generally hidden by the high electrical conductivity of the neutron star matter, and when realistic values for the electrical conductivity are considered, these corrections become negligible even for the fastest known pulsar.  相似文献   

15.
During the evolution of the neutron star its magnetic field first decays exponentially with the time and then may becomes quasi-stationary. The non-decaying magnetic field of the neutron star is generated by a degenerate electron gas which is in the Landau orbital ferromagnetism (LOFER) state. Possibly, due to the neutron star transition into the LOFER state, magnetic fields remained sufficiently strong in the case of such old magnetic neutron stars as powerful X-ray sources (e.g., Her X-1), millisecond pulsars and the binary pulsar PSR 0655+64.  相似文献   

16.
We investigate whether the recently observed population of high-velocity white dwarfs can be derived from a population of binaries residing initially within the thin disc of the Galaxy. In particular, we consider binaries where the primary is sufficiently massive to explode as a Type II supernova. A large fraction of such binaries are broken up when the primary then explodes as a supernova, owing to the combined effects of the mass loss from the primary and the kick received by the neutron star on its formation. For binaries where the primary evolves to fill its Roche lobe, mass transfer from the primary leads to the onset of a common envelope phase during which the secondary and the core of the primary spiral together as the envelope is ejected. Such binaries are the progenitors of X-ray binaries if they are not broken up when the primary explodes. For those systems that are broken up, a large number of the secondaries receive kick velocities ∼100–200 km s−1 and subsequently evolve into white dwarfs. We compute trajectories within the Galactic potential for this population of stars and relate the birth rate of these stars over the entire Galaxy to those seen locally with high velocities relative to the local standard of rest (LSR) . We show that for a reasonable set of assumptions concerning the Galactic supernova rate and the binary population, our model produces a local number density of high-velocity white dwarfs compatible with that inferred from observations. We therefore propose that a population of white dwarfs originating in the thin disc may make a significant contribution to the observed population of high-velocity white dwarfs.  相似文献   

17.
We performed an X‐ray timing and spectral analysis of the variable source 3XMM J185246.6+003317 to investigate its physical nature. The data from all observations of 3XMMJ185246.6+003317 conducted by XMM‐Newton EPIC MOS1 and MOS2 with the same instrumental setup in 2004–2009 were reprocessed to form a homogenous data set of solar barycenter corrected photon arrival times and high S/N spectra of 3XMM J185246.6+003317. A Bayesian method for the search, detection, and estimation of the parameters of a periodic signal of unknown shape was employed, as developed by Gregory & Loredo (1992, 1993). The results show that 3XMM J185246.6+003317 is a transient neutron star with the genuine spin‐period of 23.11722 (23.11711–23.11727) s and its derivative of 5.3(0.3–5.5)×10–11 s s–1, implying a characteristic age of 7 (6–104) kyr, if the period derivative can be ascribed to the genuine spin‐down rate of the neutron star. The rotational‐phase averaged X‐ray spectra at the different brightness periods can be fitted with a highly absorbed blackbody model with different temperatures. The phase‐folded light curves in different energy bands with high S/N ratio show a double‐peaked profile; the variations depend on time and energy, indicating that radiation emerges from at least two emitting areas. The spectra at the phases corresponding to the maxima in the phase‐folded light curve show different spectral parameters of absorbed blackbody radiation, i.e. the hotter one has a smaller size. The source is detected only from September 2008 to April 2009 with persistently decreasing brightness, but not before, even though it was observed by XMM. Hence, it is a transient neutron star or a binary system hosting it. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
A close high‐mass binary system consisting of a neutron star (NS) and a massive OB supergiant companion is expected to lead to a Thorne‐Żytkow object (TZO) structure, which consists of a NS core and a stellar envelope. We use the scenario machine program to calculate the formation tracks of TZOs in close high‐mass NS binaries and their subsequent evolution. We propose and demonstrate that the explosion and instant contraction of a TZO structure leave its stellar remnant as a soft gamma‐ray repeater and an anomalous X‐ray pulsar respectively. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The orbital motion of the Sun has been linked with solar variability, but the underlying physics remains unknown. A coupling of the solar axial rotation and the barycentric orbital revolution might account for the relationships found. Some recent published studies addressing the physics of this problem have made use of equations from rotational physics in order to model particle motions. However, our standard equations for rotational velocity do not accurately describe particle motions due to orbital revolution. The Sun's orbital motion is a state of free fall; in consequence, aside from very small tidal motions, the associated particle velocities do not vary as a function of position on or within the body of the Sun. In this note, I describe and illustrate the fundamental difference between particle motions in rotation and revolution, in order to dispel some part of the confusion that has arisen in the past and that which may yet arise in the future. This discussion highlights the principal physical difficulty that must be addressed and overcome by future dynamical spin–orbit coupling hypotheses.  相似文献   

20.
Eddington-limited X-ray bursts from neutron stars can be used in conjunction with other spectroscopic observations to measure neutron star masses, radii and distances. In order to quantify some of the uncertainties in the determination of the Eddington limit, we analysed a large sample of photospheric radius-expansion thermonuclear bursts observed with the Rossi X-ray Timing Explorer . We identified the instant at which the expanded photosphere 'touches down' back on to the surface of the neutron star and compared the corresponding touchdown flux to the peak flux of each burst. We found that for the majority of sources, the ratio of these fluxes is smaller than ≃1.6, which is the maximum value expected from the changing gravitational redshift during the radius expansion episodes (for a  2 M  neutron star). The only sources for which this ratio is larger than ≃1.6 are high-inclination sources that include dippers and Cyg X-2. We discuss two possible geometric interpretations of this effect and show that the inferred masses and radii of neutron stars are not affected by this bias. On the other hand, systematic uncertainties as large as ∼50 per cent may be introduced to the distance determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号