首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrahigh-pressure metamorphism and tectonics   总被引:11,自引:0,他引:11  
Abstract Recognition of several ultrahigh-pressure (UHP) metamorphic terranes in continental collision belts has revolutionized the concept of geodynamic processes. In order to facilitate better communication and focus among active investigators, the Task Group III-6 of the International Lithosphere Program'Ultrahigh-Pressure Metamorphism and Geodynamics in Collision-type Orogenic Belts'held the first two day workshop at Stanford University in December, 1994. Petrotectonic settings, mineral paragenesis, geochronoldgy, and geochemical characteristics of UHP rocks from several recognized and suspected UHP terranes were addressed. This special issue presents 11 papers from the more than 50 contributions from the 88 participants representing 15 countries. Many challenging petrotectonic and petrochemical problems remain to be investigated. These include detailed P-T time paths for both the UHP unit and adjacent units, the role of fluids at mantle depths, deep seismic profiles and mechanisms and rate of exhumation of the UHP unit.  相似文献   

2.
Abstract The Kokchetav Massif of Kazakhstan includes high to ultrahigh-pressure (HP–UHP) metamorphic rocks (some of which were recrystallized at depths in excess of 150 km), juxtaposed against much lower pressure metamorphic components. We investigated the relationship between the HP–UHP metamorphic unit and the low pressure (LP) unit (Daulet Suite) in the Sulu–Tjube area, where the metamorphic rocks have previously been interpreted as constituting a megamelange with subvertical structural attitudes. Analyses of fold structures suggest that the HP–UHP metamorphic unit overlies the LP unit across a west-dipping subhorizontal boundary. In addition, kinematic indicators display top-to-the-north senses of shear along the tectonic contact between the two units, indicating that the HP–UHP unit has been extruded northward onto the LP unit. Following the juxtaposition of the two units, upright folds developed in both units, and these are associated with the previously reported steeply dipping metamorphic foliations. These data have important implications for the mode of exhumation of the UHP rocks from upper mantle to shallow crustal depths.  相似文献   

3.
A model involving buoyancy, wedging and thermal doming is postulated to explain the differential exhumation of ultrahigh-pressure (UHP) metamorphic rocks in the Dabie Mountains, China, with an emphasis on the exhumation of the UHP rocks from the base of the crust to the upper crust by opposite wedging of the North China Block (NCB). The Yangtze Block was subducted northward under the NCB and Northern Dabie microblock, forming UHP metamorphic rocks in the Triassic (240–220 Ma). After delamination of the subduction wedge, the UHP rocks were exhumed rapidly to the base of the crust by buoyancy (220–200 Ma). Subsequently, when the left-lateral Tan–Lu transform fault began to be activated, continuous north–south compression and uplifting of the orogen forced the NCB to be subducted southward under the Dabie Orogen (`opposite subduction'). Opposite subduction and wedging of the North China continental crust is responsible for the rapid exhumation of the UHP and South Dabie Block units during the Early Jurassic, at ca 200–180 Ma at a rate of ∼ 3.0 mm/year. The UHP eclogite suffered retrograde metamorphism to greenschist facies. Rapid exhumation of the North Dabie Block (NDB) occurred during 135–120 Ma because of thermal doming and granitoid formation during extension of continental margin of the Eurasia. Amphibolite facies rocks from NDB suffered retrograde metamorphism to greenschist facies. Different unit(s) and terrane(s) were welded together by granites and the wedging ceased. Since 120–110 Ma, slow uplift of the entire Dabie terrane is caused by gravitational equilibrium.  相似文献   

4.
Located at the Westernmost tip of the Mediterranean sea, the Gibraltar Arc is a very complex zone. The Betics in Spain and the Rif belt in Morocco surround the Alboran sea characterized by a thinned continental crust. The geodynamic evolution of this region results from the convergence of African and Iberian margins since the Late Cretaceous. It is controlled both by plate convergence and mantle dynamics, which significantly impact on morphology, sedimentary environments, tectonics, metamorphism and magmatism. We present here the contents of the special issue on the Gibraltar Arc and nearby regions, following the workshop organized at the University Abdelmalek Essaadi of Tetouan in Morocco from 27 to 28 October, 2011. The goal of this international workshop was to have an overview of the actual advance in research concerning the Rif and Betics chains, the Alboran basin, and their influence on the Iberian and African forelands.  相似文献   

5.
An introduction to ultrahigh-pressure metamorphism   总被引:6,自引:0,他引:6  
Abstract Ultrahigh-pressure (UHP) metamorphism refers to mineralogical and structural readjustment of supracrustal protoliths and associated mafic-ultramafic rocks at mantle pressures greater than ∼ 25 kbar (80-90 km). Typical products include metapelite, quartzite, marble, granulite, eclogite, paragneiss and orthogneiss; minor mafic and ultramafic rocks occur as eclogitic-ultramafic layers or blocks of various dimensions within the supracrustal rocks. For appropriate bulk compositions, metamorphism at great depths produces coesite, microdiamond and other characteristic UHP minerals with unusual compositions. Thus far, at least seven coesite-bearing eclogitic terranes and three diamond-bearing UHP regions have been documented. All lie within major continental collision belts in Eurasia, have similar supracrustal protoliths and metamorphic assemblages, occur in long, discontinuous belts that may extend several hundred kilometers or more, and typically are associated with contemporaneous high-P blueschist belts. This paper defines the P-T regimes of UHP metamorphism and describes mineralogical, petrological and tectonic characteristics for a few representative UHP terranes including the western gneiss region of Norway, the Dora Maira massif of the western Alps, the Dabie Mountains and the Su-Lu region of east-central China, and the Kokchetav massif of the former USSR. Prograde P-T paths for coesite-bearing eclogites require abnormally low geothermal gradients (approximately 7°C/km) that can be accomplished only by subduction of cold, oceanic crust-capped lithosphere ± pelagic sediments or an old, cold continent. The preservation of coesite inclusions in garnet, zircon, omphacite, kyanite and epidote, and microdiamond inclusions in garnet and zircon during exhumation of an UHP terrane requires either an extraordinarily fast rate of denudation (up to 10 cm/year) or continuous refrigeration in an extensional regime (retreating subduction zone).  相似文献   

6.
Yasuo  Miyagi  Akira  Takasu 《Island Arc》2005,14(3):215-235
Abstract   Prograde eclogites occur in the Tonaru epidote amphibolite mass in the Sambagawa Metamorphic Belt of central Shikoku. The Tonaru mass is considered to be a metamorphosed layered gabbro, and occurs as a large tectonic block (approximately 6.5 km × 1 km) in a high-grade portion of the Sambagawa schists. The Tonaru mass experienced high- P /low- T prograde metamorphism from the epidote-blueschist facies to the eclogite facies prior to its emplacement into the Sambagawa schists. The estimated P – T conditions are T  = 300–450°C and P  = 0.7–1.1 GPa for the epidote-blueschist facies, and the peak P – T conditions for the eclogite facies are T  = 700–730°C and P  ≥ 1.5 GPa. Following the eclogite facies metamorphism, the Tonaru mass was retrograded to the epidote amphibolite facies. It subsequently underwent additional prograde Sambagawa metamorphism, together with the surrounding Sambagawa schists, until the conditions of the oligoclase–biotite zone were reached. The high- P /low- T prograde metamorphism of the eclogite facies in the Tonaru mass and other tectonic blocks show similar steep d P /d T geothermal gradients despite their diverse peak P – T conditions, suggesting that these tectonic blocks reached different depths in the subduction zone. The individual rocks in each metamorphic zone of the Sambagawa schists also recorded steep d P /d T geothermal gradients during the early stages of the Sambagawa prograde metamorphism, and these gradients are similar to those of the eclogite-bearing tectonic blocks. Therefore, the eclogite-bearing tectonic blocks reached greater depths in the subduction zone than the Sambagawa schists. All the tectonic blocks were ultimately emplaced into the hanging wall side of the later-subducted Sambagawa high-grade schists during their exhumation.  相似文献   

7.
Cong  Bolin  Wang  Qingchen  Zhai  Mingguo  Zhang  Ruyuan  Zhao  Zhongyan Ye  Kai 《Island Arc》1994,3(3):135-150
Abstract Based on petrological, structural, geological and geochronological research, the authors summarize the progress of ultra-high pressure (UHP) metamorphic rock study since 1989 by Chinese geoscientists and foreign geoscientists in the Dabie-Su-Lu region. The authors introduce and discuss a two-stage exhumation process for the UHP metamorphic rocks that have various lithologies; eclogite, ultramafics, jadeitic quartzite, gneiss, schist and marble. The metamorphic history of UHP metamorphic rocks is divided into three stages, that is, the pre-eclogite stage, coesite eclogite stage, and retrograde stage. Prior to UHP metamorphism, the ultramafics had a high temperature environment assemblage of mantle and others had blueschist facies assemblages. The granulite facies assemblages, which have recorded a temperature increase event with decompression, have developed locally in the Weihai basaltic rocks. Isotopic ages show a long range from > 700 Ma to 200 Ma. The diversity in protoliths of UHP metamorphic rocks may be related to the variation of isotopic ages older than 400 Ma. The Sm-Nd dating of ~ 220 Ma could reflect the initial exhumation stage after the peak UHP metamorphism in relation to the collision between the Sino-Korean and Yangtze blocks and subsequent events. Petrological and structural evidence imply a two-stage exhumation process. During the initial exhumation, the UHP metamorphic rocks were sheared and squeezed up in a high P/T regime. In the second exhumation stage the UHP metamorphic rocks were uplifted and eventually exposed with middle crustal rocks.  相似文献   

8.
Hiroyuki  Ishimoto  Kenji  Shuto  Yoshihiko  Goto 《Island Arc》2006,15(2):251-268
Abstract   Middle Miocene to Quaternary primitive basalts and high magnesian andesite (HMA) in North Hokkaido resulted from three periods of intense volcanism; early-stage (12–10 Ma), middle-stage (9–7 Ma) and late-stage (3–0 Ma). Based on the chemical compositions of olivines and chromian spinels and bulk chemistry of the primitive rocks, we examined depths of segregation of the calculated primary magmas and the degrees of partial melting of the source mantle. In the context of asthenospheric mantle upwelling, petrological data from the present study can be accounted for by the secular change in the depth of magma segregation from the upwelled asthenospheric mantle, which is composed of fertile peridotite. Thus, the early-stage primary magmas were generated by higher degrees of partial melting of the shallower part of hot asthenospheric mantle, whereas the middle- and late-stage primary magmas resulted from lower degrees of partial melting of a deeper part of the asthenospheric mantle. The early-stage HMA magma was generated by partial melting of the remnant subcontinental lithospheric mantle composed of refractory peridotite. This melting might have resulted from an increased geothermal gradient caused by upwelling of hot asthenosphere.  相似文献   

9.
High-pressure metamorphic rocks are exposed in Karangsambung area of central Java, Indonesia. They form part of a Cretaceous subduction complex (Luk–Ulo Complex) with fault-bounded slices of shale, sandstone, chert, basalt, limestone, conglomerate and ultrabasic rocks. The most abundant metamorphic rock type are pelitic schists, which have yielded late Early Cretaceous K–Ar ages. Small amounts of eclogite, glaucophane rock, garnet–amphibolite and jadeite–quartz–glaucophane rock occur as tectonic blocks in sheared serpentinite. Using the jadeite–garnet–glaucophane–phengite–quartz equilibrium, peak pressure and temperature of the jadeite–quartz–glaucophane rock are P  = 22 ± 2 kbar and T  = 530 ± 40 °C. The estimated P–T conditions indicate that the rock was subducted to ca 80 km depth, and that the overall geothermal gradient was ∼ 7.0 °C/km. This rock type is interpreted to have been generated by the metamorphism of cold oceanic lithosphere subducted to upper mantle depths. The exhumation from the upper mantle to lower or middle crustal depths can be explained by buoyancy forces. The tectonic block is interpreted to be combined with the quartz–mica schists at lower or middle crustal depths.  相似文献   

10.
A detailed tectonic analysis demonstrates that the present observed regional tectonic configuration of the ultrahigh-pressure metamorphic terrane in the Dabie massif was mainly formed by the extension processes of the post-Indosinian continent-continent oblique collision between the Sino-Korean and Yangtze cratons and ultrahigh-pressure metamorphism (UHPM). The configuration is characterized by a regional tectonic pattern similar to metamorphic core complexes and by the development of multi-layered detachment zones. On the basis of the identification of compressional and extensional fabrics, it is indicated that the exhumation and uplift of ultrahigh-pressure (UHP) metamorphic rocks from the mantle depth to the surface can be divided into at least three different decompression retrogressive metamorphism and tectonic deformation stages, in which the subhorizontal crustal-scale extensional flow in the middle-lower crust under amphibolite facies conditions is an important geodynamic process in the exhumation of UHP metamorphic rocks. Moreover, the extensional flow is probably driven by delamination and magmatic underplating of thickened lithospheric mantle following the continental oblique collision.  相似文献   

11.
The timing of ultra-high pressure (UHP) metamorphism has been difficult to determine because of a lack of age constraints on crucial events, especially those occurring on the prograde path. New Sensitive High-Resolution Ion Microprobe (SHRIMP) U–Pb age and rare-earth element (REE) data of zircon are presented for UHP metamorphic rocks (eclogite, garnet peridotite, garnet pyroxenite, jadeite quartzite and garnet gneiss) along the Dabie–Sulu UHP complex of China. With multiphase metamorphic textures and index mineral inclusions within zircon, the Dabie data define three episodes of eclogite-facies metamorphism, best estimated at 242.1 ± 0.4 Ma, 227.2 ± 0.8 Ma and 219.8 ± 0.8 Ma. Eclogite-facies zircons of the Sulu UHP complex grew during two major episodes at 242.7 ± 1.2 and 227.5 ± 1.3 Ma, which are indistinguishable from corresponding events in the Dabie UHP complex. A pre-eclogite metamorphic phase at 244.0 ± 2.6 Ma was obtained from two Sulu zircon samples which contain low pressure–temperature (plagioclase, stable below the quartz/Ab transformation) and hydrous (e.g., amphibole, stable below  2.5 Gpa) mineral inclusions. In terms of Fe–Mg exchange of trapped garnet–clinopyroxene pairs within zircon domains, we are able to determine the Pressure–Temperature (PT) conditions for a specific episode of metamorphic zircon growth. We suggest that mineral phase transformations and associated dehydration led to episodic eclogite-facies zircon growth during UHP metamorphism ( 2.7 Gpa) began at 242.2 ± 0.4 Ma (n = 74, pooling the Dabie–Sulu data), followed by peak UHP metamorphism (>  4 Gpa) at 227.3 ± 0.7 Ma (n = 72), before exhumation (<  220 Ma) to quartz stability (~ 1.8 Gpa). The Dabie–Sulu UHP metamorphism lasted for about 15 Ma, equivalent to a minimum subduction rate of 6 mm/year for the descending continental crust.  相似文献   

12.
Abstract The chemical Th-U-total Pb isochron method (CHIME) was applied to determine the age of monazite and thorite in five gneisses and zircon in an ultra high-pressure (UHP) phengite schist from the Su-Lu region, eastern China. The CHIME ages and isotopic ages reported in the literature show that gneisses in the Su-Lu region are divided into middle Proterozoic (1500–1720 Ma) and Mesozoic (100–250 Ma) groups. The Proterozoic group includes paragneiss and orthogneiss of the amphibolite-granulite facies, and their protolith age is late Archean-early Proterozoic. The Mesozoic group is mainly composed of orthogneiss of the greenschist-epidote amphibolite facies, and the protolith age is Middle Paleozoic-Early Proterozoic. The Proterozoic and Mesozoic gneisses occupy northern and southern areas of the Su-Lu region, respectively, which are divided by a major Wulian-Qingdao-Yantai fault. Ultra high-pressure metamorphic rocks occur as blocks in the Mesozoic gneisses, and form a UHP complex.
The UHP phengite schist in the Mesozoic orthogneiss contains detrital zircons with late Proterozoic CHIME age ( ca 860 Ma). Age of the UHP metamorphism is late Proterozoic or younger, and protolith age of the UHP metamorphic rocks is probably different from that of the surrounding Mesozoic gneisses.  相似文献   

13.
Young-Woo  Kil 《Island Arc》2006,15(2):269-282
Abstract   Geochemical data on Baegryeong Island spinel peridotites found in Miocene alkali basalt provide the information for lithosphere composition, chemical processes, equilibrium pressure and temperature conditions. Spinel peridotite xenoliths, showing transitional textures between protogranular and porpyroclastic textures, were accidentally trapped by the ascending alkali basalt magma. The xenoliths originate at depths from 50 to 70 km with a temperature range from 800 to 1100°C. The variations of modal and mineral compositions of the spinel peridotite xenoliths indicate that the xenoliths have undergone 1–10% fractional melting. The spinel peridotites from Baegryeong Island have undergone cryptic mantle metasomatism subsequent to melt extraction. Metasomatic agent of enriched spinel peridotite xenoliths was carbonatite melt.  相似文献   

14.
J. G. Liou    R. Y. Zhang  W. G. Ernst 《Island Arc》1995,4(4):362-375
Abstract Minor epidote-zoisite, phengite, glaucophane, nyböite, talc, magnesite, and dolomite occur as matrix phases or as mineral inclusions in some ultrahigh-pressure (UHP) rocks from the Dabie-Sulu terrane. Some of these phases contain inclusions of coesite or coesite pseudomorphs and appear to have been in equilibrium with coesite at the time of formation. Their occurrences in the UHP rocks together with experimentally determined and calculated phase relations indicate that they are stable at mantle depths in relatively low-temperature environments. Because of the apparently dry nature of subducted continental protoliths of the Yangtze craton, small amounts of volatile components at depths exceeding 50 km along a cold subduction zone may have been stored mainly by these hydrous and carbonate phases. These minerals, in addition to some dense hydrous magnesian silicates, act as important carriers for H2O and CO2 recycled at mantle depths. Available petrological and geochemical data support limited or no fluid flow in this region. At very high pressures and low temperatures, the subducted sialic crust evidently served as a desiccating agent. Partial melting of the subducting slab, therefore, may not have occurred, and near absence of volatile expulsion from the subducting slab to the overlying mantle wedge + continental crust may have inhibited large-scale partial melting, accounting for the lack of a typical contemporaneous calc-alkaline magmatic arc.  相似文献   

15.
H. Tabata  S. Maruyama  & Z. Shi 《Island Arc》1998,7(1-2):142-158
The ultrahigh- and high-pressure (UHP–HP) metamorphic belt of the Dabie Mountains, central China, formed by the Triassic continental subduction and collision, is divided into four metamorphic zones; from south to north, the greenschist facies zone, epidote amphibolite to amphibolite facies zone, quartz eclogite zone, and coesite eclogite zone, based on metabasite mineral assemblages. Most of the coesite-bearing eclogites consist mainly of garnet and omphacite with homogeneous compositions and have partially undergone hydration reactions to form clinopyroxene + plagioclase + calcic amphibole symplectites during amphibolite facies overprinting. However, the least altered eclogites sometimes contain garnet and omphacite that preserve compositional zoning patterns which may have originated during their growth at peak temperature conditions of ∼ 750 °C, suggesting a short duration of UHP metamorphic conditions and/or consequent rapid cooling during exhumation. Systematic investigation on peak metamorphic temperatures of coesite eclogite have revealed that, contrary to the general trend of metamorphic grade in the southern Dabie unit, the coesite eclogite zone shows rather flat thermal structure (T = 600 ± 50 °C) with the highest temperature reaching up to 850 °C and no northward increase in metamorphic temperature, which is opposed to the previous interpretations. This feature, along with the preservation of compositional zonation, implies complicated differential movement of each eclogite mass during UHP metamorphism and the return from the deeper subduction zone at mantle depths to the surface.  相似文献   

16.
Keiko  Hattori  Simon  Wallis  Masaki  Enami  Tomoyuki  Mizukami 《Island Arc》2010,19(1):192-207
The Higashi-akaishi garnet-bearing ultramafic body in the Sanbagawa metamorphic belt, Southwest Japan, represents a rare example of oceanic-type ultrahigh-pressure metamorphism. The body of 2 km × 5 km is composed mostly of anhydrous dunite with volumetrically minor lenses of clinopyroxene-rich rocks. Dunite samples contain high Ir-type platinum group elements (PGE) and Cr in bulk rocks, high Mg and Ni in olivine, and high Cr in spinel. On the other hand, clinopyroxene-rich rocks contain low concentrations of Ir-type PGE and Cr, high concentrations of fluid-mobile elements in bulk rocks, and low Ni and Mg in olivine. Clinopyroxene is diopsidic with low Al2O3. The compositions of bulk rocks and mineral chemistry of spinel, olivine, and clinopyroxene suggest that the olivine-dominated rocks are residual mantle peridotites after high degrees of influx partial melting, and that the clinopyroxene-rich rocks are cumulates of subduction-related melts. Thus, the Higashi-akaishi ultramafic body originated from the interior of the mantle wedge, most likely the forearc upper mantle. It was then incorporated into the Sanbagawa subduction channel by a mantle flow, and underwent high pressure metamorphism to a depth greater than 100 km. Such a strong active flow in the mantle wedge is likely facilitated by the lack of serpentinites along the interface between the slab and the overlying mantle, as it was too hot for serpentine. These unusually hot conditions and strong active mantle flow may reflect conditions in the earliest stage of development of subduction, and may have been maintained by massive upwelling and subsequent eastward flow of asthenospheric mantle in the northeastern Asian continent in Cretaceous time when the Sanbagawa belt began to form.  相似文献   

17.
Abstract In the first extensive, systematic study of inclusions in zircons from ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic rocks of the Kokchetav Massif of Kazakhstan (separated from 232 rock samples from all representative lithologies and geographic regions), we identified graphite, quartz, garnet, phengite, phlogopite, rutile, albite, K-feldspar, amphibole, zoisite, kyanite, calcite, dolomite, apatite, monazite, omphacite and jadeite, as well as the diagnostic UHP metamorphic minerals (i.e. microdiamond and coesite) by laser Raman spectroscopy. In some instances, coesite + quartz and diamond + graphite occur together in a single rock sample, and inclusion aggregates also comprise polycrystalline diamond crystals overgrowing graphite. Secondary electron microscope and cathodoluminescence studies reveal that many zircons display distinct zonation textures, which comprise core and wide mantle, each with distinctive inclusion microassemblages. Pre-UHP metamorphic minerals such as graphite, quartz, phengite and apatite are common in the core, whereas diamond, coesite, garnet and jadeite occupy the mantle. The inclusions in core are irrelevant to the UHP metamorphism. The zircon core is of detrital or relatively low-grade metamorphic origin, whereas the mantle is of HP to UHP metamorphic origin. The zonal arrangement of inclusions and the presence of coesite and diamond without back-reaction imply that aqueous fluids were low to absent within the zircons during both prograde and retrograde metamorphism, and that the zircon preserves a prograde pressure–temperature record of the Kokchetav metamorphism which, elsewhere, has been more or less obliterated in the host rock.  相似文献   

18.
Step heating experiments on ultra-high pressure (UHP) mcks from the Dabie Mountain shows a majority of CO2 in fluid inclusion (excluding H2O); CO is also a significant component, with a small content of N2 and CH4. Carbon isotopic composition of CO2 in fluid of metamorphic climax stage (-25%0- -30%0) is different from that of mantle carbon, indicating that UHP rocks did not experience obvious transformation by mantle fluids despite their subduction depth. CO2 was derived from carbon matter in the pmtoliths of UHP rocks in a relatively confined system, showing that the UHP rocks subsided quickly and uplifted quickly from the mantle. Current organization: Research Institute of Petroleum Exploration and Development, Beijing 100083, China.  相似文献   

19.
Shigenori  Maruyama  J. G. Liou  Ruyuan  Zhang 《Island Arc》1994,3(2):112-121
Abstract In the Triassic suture between the Sino-Korean and Yangtze cratons, the Dabie metamorphic Complex in central China includes three tectonic units: the northern Dabie migmatitic terrane, the central ultrahigh-P coesite- and diamond-bearing eclogite belt, and the southern high-P blueschist-eclogite belt. This complex is bounded to the north by a north-dipping normal fault with a Paleozoic accretionary complex and to the south by a north-dipping reverse fault with Yangtze basement plus its foreland fold-and-thrust sequence. Great differences in metamorphic pressure suggests that these units reached different depths during metamorphism and their juxtaposition occurred by wedge extrusion of subducted old continental fragments. These units were subsequently subjected to (i) Barrovian type regional metamorphism and deformation at shallow depths; (ii) intrusion of Cretaceous granitic plutons; and (iii) doming and segmentation into several blocks by normal and strike-slip faults. A new speculative model of tectonic exhumation of UHP rocks is proposed.  相似文献   

20.
Abundant metabasites occur in highly deformed granitic and migmatitic gneisses as blocks and lenses of tens of meter size around the Haiyangsuo area, northeast part of Sulu UHP belt, eastern China. They comprise garnet-pyroxene granulites, eclogitized granulites and amphibolites. Their protolith compositions were mainly olivine tholeiite and quartz tholeiite, and show variation from Mg-rich to Fe-rich component as tholeiitic cumulates. Pearce’s element ratio slopes suggested that protolith of these rocks were comagmatic, and generated from a primary magma by fractional crystallization of plagioclase, olivine and clinopyroxene. The crystallization differentiation has also been evidenced by trace elements, such as parallel REE patterns, Ni vs Ce variations, Sr increasing depletions, although the large ion lithophile elements (LILE) were modified to different extent during metamorphism. Trace element composition and Nd isotopes indicate a depleted mantle origin for these rocks. But they are not likely to be fragments of ophiolites or tholeiites connected with subduction, they formed probably at intra-continent environment. Sm-Nd whole rock isochron age of 2252±180Ma indicates approximately the formation age of igneous protolith of these rocks, almost 2000Ma earlier than the formation of the Dabie-Sulu UHP collision zone at about 240–220 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号